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Abstract. The conventional climate gridded datasets based on observations only are widely used in atmospheric
sciences; our focus in this paper is on climate and hydrology. On the Norwegian mainland, seNorge2 provides
high-resolution fields of daily total precipitation for applications requiring long-term datasets at regional or
national level, where the challenge is to simulate small-scale processes often taking place in complex terrain.
The dataset constitutes a valuable meteorological input for snow and hydrological simulations; it is updated
daily and presented on a high-resolution grid (1 km of grid spacing). The climate archive goes back to 1957.
The spatial interpolation scheme builds upon classical methods, such as optimal interpolation and successive-
correction schemes. An original approach based on (spatial) scale-separation concepts has been implemented
which uses geographical coordinates and elevation as complementary information in the interpolation. seNorge2
daily precipitation fields represent local precipitation features at spatial scales of a few kilometers, depending
on the station network density. In the surroundings of a station or in dense station areas, the predictions are
quite accurate even for intense precipitation. For most of the grid points, the performances are comparable to
or better than a state-of-the-art pan-European dataset (E-OBS), because of the higher effective resolution of
seNorge2. However, in very data-sparse areas, such as in the mountainous region of southern Norway, seNorge2
underestimates precipitation because it does not make use of enough geographical information to compensate
for the lack of observations. The evaluation of seNorge2 as the meteorological forcing for the seNorge snow
model and the DDD (Distance Distribution Dynamics) rainfall–runoff model shows that both models have been
able to make profitable use of seNorge2, partly because of the automatic calibration procedure they incorporate
for precipitation. The seNorge2 dataset 1957–2015 is available at https://doi.org/10.5281/zenodo.845733. Daily
updates from 2015 onwards are available at http://thredds.met.no/thredds/catalog/metusers/senorge2/seNorge2/
provisional_archive/PREC1d/gridded_dataset/catalog.html.

1 Introduction

Conventional climatological datasets are based on observed
data only and they provide valuable information for a large
spectrum of users in modern societies (Simmons et al., 2016).
The Norwegian Meteorological Institute (MET) produces
and maintains the seNorge collection of high-resolution grid-
ded datasets for daily mean temperature and total precipita-
tion in support of climate, hydrology and atmospheric sci-
ences in general.

The object of this paper is the daily total precipitation
gridded fields of the latest seNorge version 2.0 (or simply
seNorge2). It is worth mentioning that the seNorge2 daily
mean temperature dataset has been described in the paper by
Lussana et al. (2018). Despite being released only recently,
seNorge2 has already been used in a few applications, such as
snow and permafrost mapping (Gisnås et al., 2017) and eval-
uation of climate projections (Kotlarski et al., 2017). Most
noticeably, the Norwegian Water Resources and Energy Di-
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rectorate (NVE) uses seNorge2 as meteorological forcing for
the national forecasting system for floods, avalanches and
landslides. As a consequence, the temperature and precipi-
tation fields are regularly updated on a daily basis.

The daily precipitation dataset has a focus on the Nor-
wegian mainland, though it extends into Sweden and
Finland too, and it is produced on a regular grid with 1km
grid spacing in both the Easting and Northing directions.
The data are presented as (i) an historical archive cover-
ing the period from 1957 to 2015, which is available at
http://doi.org/10.5281/zenodo.845733; (ii) daily updates
from 2015 onwards, available for public download at
http://thredds.met.no/thredds/catalog/metusers/senorge2/
seNorge2/provisional_archive/PREC1d/gridded_dataset/
catalog.html. The current historical archive has been named
“release 17.08”, with reference to the release date August
2017. MET is planning to make available regular updated
releases of this dataset to the users. The file format chosen
is the Network Common Data Form (netCDF) and the files
include numerous descriptive attributes.

The seNorge2 statistical interpolation method is based on
a modified optimal interpolation (OI: Eliassen, 1954; Gandin
and Hardin, 1965) scheme, where innovative ideas on the
interaction between precipitation at different spatial scales
have been implemented. OI has been developed as an objec-
tive analysis scheme for meteorological fields, and then it has
been widely used in data assimilation to provide initial con-
ditions for numerical models (Kalnay, 2003; Daley, 1991;
Lorenc, 1986). The availability of a background or first-guess
field is a central component of OI. The concept of a first-
guess field was introduced in the context of objective analy-
sis during the 1950s (Bergthörsson and Döös, 1955; Thomp-
son, 1961) and it coincided with the prior information used
in Bayesian statistical schemes. In our work, OI has been
used as a spatial interpolation technique and the background
field has been estimated from the in situ observations in-
stead of being observation-independent information derived
from numerical atmospheric models or climatology, as for
the “classical” OI. Bayesian spatial interpolation schemes
have been applied to precipitation in the past (Todini, 2001;
Schiemann et al., 2010b; Lussana et al., 2009; Aalto et al.,
2016). However, the absence of an independent background
motivated us to adopt an approach inspired by the successive-
correction methods (Barnes, 1964) in the form proposed by
Bratseth (1986). The spatial interpolation scheme developed
for seNorge2 is based on an iteration of a statistical interpo-
lation scheme over a decreasing sequence of spatial scales.
This idea has been widely used for mesoscale meteorolog-
ical analysis in successive-correction methods; see Uboldi
and Buzzi (1994), and references therein. However, we have
adapted this method to the special statistical properties of
precipitation fields, and its implementation can be regarded
as an original contribution to this research field.

In the scientific literature, numerous approaches have been
described to address spatial interpolation of precipitation

for different combinations of spatial and temporal resolu-
tions. In the article by Hofstra et al. (2008), a review and
inter-comparison of six interpolation methods can be found.
Not surprisingly, a number of inter-comparison studies have
found “inhomogeneities in the gridded data that are primar-
ily caused by inhomogeneities in the underlying station data”
(Hofstra et al., 2008, 2010). Haylock et al. (2008) describes
a three-step process interpolation technique, aimed at es-
tablishing E-OBS: a pan-European archive of observational
gridded datasets at monthly and daily timescales, available
on a 0.25◦ by 0.25◦ latitude–longitude grid. First, monthly
totals are interpolated using thin-plate splines (Wahba and
Wendelberger, 1980). Second, daily values are obtained us-
ing Kriging Wackernagel (2013) and taking into account the
monthly totals. The third step aims at obtaining uncertainty
estimates for E-OBS. In this paper, we will use E-OBS as
a reference dataset to evaluate seNorge2. The conclusions of
the work by Masson and Frei (2014) favor the use of sta-
tistical interpolation schemes based on a two-step approach,
where the background is estimated from the data, such as
Kriging with external drift that is rather similar to OI. In
addition, they conclude that the inclusion of a single topo-
graphic predictor may be sufficient in the interpolation, and
they support “the common practice of using a climatologi-
cal mean field as a background in the interpolation of daily
precipitation”. OI combined with principal component anal-
ysis have been used to reconstruct historical climate datasets
of precipitation in Switzerland (Schiemann et al., 2010b).
In the paper by Crespi et al. (2016), an interpolation ap-
proach based on local weighted linear regression (LWLR)
has been compared with local regression Kriging (RK). This
last method (RK) uses only geographical coordinates and el-
evation, while LWLR uses several additional geographical
parameters, such as slope steepness, slope orientation and
distance from the sea. LWLR shows better results than RK
at high-elevation sites provided that the data density is suffi-
ciently high, while “RK is more robust in performing extrap-
olation over areas with complex orography and scarce data
coverage, where LWLR may provide unrealistic precipita-
tion values”, thus indicating that the inclusion of additional
geographical information in complex terrain can actually im-
prove the interpolation results, though once again the results
of a method over a specific domain strongly depend on the
station network available. The paper by Masson and Frei
(2016) contains important remarks and recommendations on
the use of gridded datasets for computing temporal trends of
precipitation, which is not at all straightforward because of
“artifacts in trend patterns due to local inhomogeneities in
the data and the station network”.

The previous seNorge versions (v1.0 and v1.1) were based
on a linear estimation of precipitation on the grid (Førland
and Tveito, 1997; Mohr, 2008, 2009): for each point, the
three closest observations are identified by means of a tri-
angulation procedure, and then the (linear) estimated value
is adjusted taking into account both the elevation differences
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and the geographical characteristics of the site surrounding
the grid point that may cause undercatch of precipitation due
to the effect of wind (i.e., “wind field deformation and deflec-
tion of hydrometeors over the gauge orifice results in a sys-
tematic measurement bias” – Frei et al., 2003).

seNorge2 uses the information from much more than the
three closest stations to estimate precipitation in a location;
in addition, geographical information such as elevation, lati-
tude and longitude has been incorporated into the statistical
interpolation scheme.

seNorge2 has been evaluated by means of several com-
plementary approaches, such as analysis of a case study;
accumulation over a temporal period much longer than
1 day; verification of the performances at station loca-
tions by using summary statistics and skill scores; and
verification of the performances over grid points by com-
paring seNorge2 to E-OBS, which was recently chosen
by the Copernicus Climate Change Service as a refer-
ence dataset for Europe (https://insitu.copernicus.eu/news/
the-european-climate-assessment-dataset-and-copernicus).

Because of the importance of seNorge2 as input for hy-
drological applications, the indirect evaluation of the precip-
itation fields as components of the water cycle by means of
snow and hydrological models has been included in the pa-
per. Indirect evaluation relies on the fact that successful mod-
eling of hydrological processes requires reliable meteorolog-
ical forcing data, which is a crucial but often undervalued
element of the model chain (e.g., Magnusson et al., 2015).
Indirect evaluation has proven useful in the verification of
surface models (Masson et al., 2013), for example. Our ap-
proach is similar to the one described by Berg et al. (2014)
to evaluate long-term precipitation.

The outline of the paper is as follows. Section 2 presents
the geographical area and the observations used. In Sect. 3
the seNorge2 statistical interpolation method is described.
The evaluations of the precipitation fields at station locations
and over the grid points are reported in Sect. 4. The indirect
evaluation of precipitation as a component of the water cy-
cle is reported in Sect. 5, together with brief descriptions of
the seNorge snow model and the DDD (Distance Distribution
Dynamics) rainfall–runoff model that have been used for the
indirect evaluation.

2 Geographical area and data

The seNorge2 domain is shown in Fig. 1. The geographical
area of interest is the Norwegian mainland, plus a strip of
land extending into Sweden and Finland that has been added
so as to properly cover the Norwegian catchments stretching
along the national borders. The domain is characterized by
a complex topography, with the highest peaks above 2000 m
in southern Norway and in northern Sweden. The steep to-
pography is known to cause pronounced orographic enhance-

Figure 1. seNorge2 domain, topography (gray shades, meters
above mean sea level) and station locations (blue triangles, valid for
the date: 24 November 2014). The total number of station locations
in the example is 737. The top-left inset shows the time series for
the number of available observations for the whole period covered
by the dataset: 1957–2015; the red line marks the day 24 November
2014. The two lateral panels show the distributions of elevations
for both the digital elevation model (gray dots) and stations (blue
dots) along the Easting (bottom panels) and Northing (lateral panel)
coordinates.

ment of precipitation along the Norwegian coast, especially
along the western coast of southern Norway.

The daily precipitation for day D has been defined as
the accumulated precipitation between 06:00 UTC of day
D − 1 and 06:00 UTC of day D. The dataset is based on
in situ observations from the Norwegian Climate Database
(data.met.no). We also include data from the European
Climate Assessment Dataset (ECA&D: Klein Tank et al.,
2002) for regions neighboring Norway. The original non-
homogenized time series have been used, to have a larger
dataset than the one provided by the homogenized time se-
ries. The number of stations used for the interpolation varies
with time due to data availability and the station distribution
is uneven throughout the spatial domain. As an example, in
Fig. 1 the spatial distribution of stations for 24 November
2014 is shown, together with the time series of the number
of available observations for the whole period covered by the
dataset. In the case of 24 November 2014, which is close
to the end of the period covered by the historical dataset,
737 observations were available. The number of observations
vary between 600, before 1960, and approximately 900 dur-
ing the seventies and the nineties, and then the number of
observations gradually decrease to approximately 700 before
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increasing again after 2010. In general, the station network is
denser in the southern part of the domain, while it becomes
sparser in its northernmost part. With reference to the hierar-
chy of atmospheric motions proposed by Thunis and Born-
stein (1996), the average distances between nearby station
locations correspond to the lower boundary of the mesoscale
(meso-γ ), and they are consistent with the representation
of thunderstorms, thunderstorm groups and fronts. The two
panels in Fig. 1 show the distribution of station elevations to-
gether with the domain topography; the stations are located
at elevations that seldom exceed 1000 m, so that it might be
expected that predicted precipitation fields would be more
representative and accurate for lower elevations than in the
highest mountains.

3 Methods

3.1 Optimal interpolation

The OI aims at providing the best (i.e., minimum error vari-
ance for the analysis), linear, unbiased estimate of the un-
known meteorological field by combining prior information
(i.e., background) on the grid with in situ observations. In the
following, we use the same notation as Lussana et al. (2010)
(based on Ide et al., 1997): the vector y indicates the m ob-
servations of either air temperature or precipitation, and the
vector x represents the n grid cells. Superscripts o, b and
a denote observation, background and analysis, respectively,
while the superscript t indicates the unknown true value. Ma-
trices are in bold roman type (capital letters). Scalar variables
are in italic type, so the ith component of a vector x is xi ,
while for a generic matrix W, components are indicated as
Wij .

OI relies on the assumptions of Gaussian distribution for
both the observation error ε

o ≡ y
o − y

t and the background
error ε

b ≡ y
b−y

t (or η
b ≡ x

b−x
t for grid points). As a con-

sequence, their distributions are completely defined by their
mean values and covariance matrices only. Both the obser-
vations and the background are assumed to be unbiased es-
timates of the true value and their error covariance matri-
ces are specified by means of analytical functions, such that
ε

o ∼ N (0,R), ε
b ∼ N (0,S) and η

b ∼ N (0,B). Furthermore,
observations and background are regarded as uncorrelated
variables.

The analysis is also a random variable with a Gaussian
distribution (Jazwinski, 2007) and its mean values on the grid
and at station locations can be written as

x
a = x

b + K
(
y

o − y
b
)
, (1)

y
a = y

b + W
(
y

o − y
b
)
, (2)

where the two matrices of interpolation weights are K, the
gain matrix, and W, the influence matrix.

The equations for the weight matrices K and W depend on
our choices for the error covariance matrices. The observa-

tion error covariance matrix R is assumed to be diagonal and
all the observations are assumed to have the same error vari-
ance σ 2

o ; then, R ≡ σ 2
o I (I is the identity matrix). The back-

ground error covariance matrices requires the specification
of the correlation between two generic points r i = (xi,yi,zi)
and rj = (xj ,yj ,zj ), which for us is the correlation function
ρ:

ρ(r i ,rj ) = exp

{
−

1
2

[(
d(r i ,rj )

Dh

)2
+

(
1z(r i ,rj )

Dz

)2
]}

, (3)

where d(r i,rj ) is the horizontal distance between the two
points; 1z(r i,rj ) is the difference between their elevations;
Dh and Dz are the horizontal and vertical de-correlation
lengths, respectively. The generic component Sij of the back-
ground error covariance matrix at station locations (a similar
expression holds for B too) is Sij ≡ σ 2

b ρ(r i,rj ), where r i

and rj indicate the locations of the ith and j th stations, and
the background error variance σ 2

b is assumed to be the same
for all the points. The components of the background error
correlation matrix at station locations S̃ can be written as
S̃ij ≡ ρ(r i,rj ), while the background error correlation ma-
trix between grid points and station locations is the n × m

matrix with components G̃ij ≡ ρ(r i,rj ), where r i indicates
the spatial location of the ith grid point and rj is the j th
station location.

Given our assumptions about the error covariance matri-
ces, the expressions for the weight matrices are derived di-
rectly from the theory of linear Kalman filters (Uboldi et al.,
2008):

K = G̃
(

S̃ + ε2I
)−1

, (4)

W = S̃
(

S̃ + ε2I
)−1

, (5)

where ε2 is the ratio σ 2
o /σ 2

b .
Two elements of the OI diagnostics are introduced in this

paragraph, because they have been used in the optimization
of parameters (Sect. 3.2.2). First, the integrated data influ-
ence (IDI: Uboldi et al., 2008; Lussana et al., 2016) is the
sensitivity of the analysis in a generic point on the domain
to variations in the observations, independently of the actual
observed values. In practice, the IDI field is the result of an
OI scheme where the observations are set to 1 and the back-
ground is set to 0, such that regions where the observations
effectively introduce information have IDI values close to 1.
On the other hand, for data-void regions the IDI values are
close to 0.

Second, the leave-one-out cross-validation (CV) analysis
y̌

a: each component of the m-vector y̌
a is the analysis value

obtained for the corresponding station location by using all
the other observations, but without using the observation
measured at that station location. The equation for y̌

a can
be written as (Uboldi et al., 2008; Lussana et al., 2010)

y̌
a = y

o + w
T

(
y

a − y
o) , (6)
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where the vector w has components wi = (1 − Wii)−1. The
deviation between the CV analysis and its corresponding ob-
servation represents an estimate of the analysis error based
on the idea that each observation is used as an independent
verification of the analysis field. Because not all the avail-
able information is used, the error estimate can be regarded
as a conservative one.

3.2 Spatial interpolation of daily accumulated

precipitation

The precipitation field is regarded as a composition of several
(precipitation) events, which are considered individually, in
the sense that the statistical properties of the field are allowed
to change between events.

For each event, the statistical interpolation scheme has
been implemented by means of an iterative algorithm on
a cascade of spatial scales, ranging from the synoptic scale
down to the small scale. As stated in Uboldi et al. (2008),
given the filtering properties of OI, the choice of the scale
parameters Dh and Dz in the correlation function ρ (Eq. 3)
determines a minimum distance scale (wavelength) resolved
by the analysis. In addition, the spatial resolution of the ob-
servational network dictates a minimum for that choice be-
cause those small spatial features not resolved by the obser-
vational network will not be accurately represented by the
analysis. The iterative algorithm presented exploits the OI
filtering properties. Starting from a first-guess of the aver-
age precipitation value (i.e., the largest scale), several suc-
cessive iterations of OI-derived corrections (over a decreas-
ing sequence of values for Dh) are applied to the predicted
precipitation field.

3.2.1 Identification of events

An individual event on the grid is a connected zone of grid
points where the precipitation exceeds the predefined thresh-
old of 0.1mm day−1.

Initially, a first guess for the distribution of events both on
the grid and for station locations is obtained. The observa-
tions measuring precipitation (i.e., wet observations) are ten-
tatively grouped in events by using a triangulation-based pro-
cedure: two wet observations are assigned to the same event
if a direct connection between them exists (i.e., they lie on the
vertices of the same triangle) or if they are connected through
only one observation not measuring precipitation (i.e., ver-
tices of adjacent triangles). In this latter case, the observation
not measuring precipitation (i.e., dry observation) is also in-
cluded in the first guess of that event. Then, an interpolation
procedure based on the nearest neighbor is used to group grid
points into events. The precipitation is set to 0mm for all the
grid points outside the event areas.

In the second step, each event is considered individually,
aiming at determining those grid points where precipitation
is most likely to occur. The question is to decide whether

the analysis at a grid point is more influenced by the sur-
rounding wet observations or by the dry ones. As described
in Sect. 3.1, the influence on the analysis of a set of observa-
tions can be quantified through the IDI value. Suppose that
the ith grid point has been assigned in our first guess to a spe-
cific event: then precipitation is most likely to occur there if
the IDI of the wet observations (xIDIw) included in the event
under consideration is greater than or equal to a fraction of
the IDI of the dry observations (xIDId ):

xIDIw
i ≥ 0.6 · xIDId

i →precipitation occurs at the

ith grid point. (7)

We require that the influence of the dry observations xIDId
i

must be considerably larger than xIDIw
i for a grid point to

be considered “dry”. This can be regarded as a conservative
choice; in case of uncertainty (i.e., when xIDId

i and xIDIw
i are

not too different), we prefer to estimate a precipitation value
for the ith grid point instead of taking the more drastic deci-
sion of setting it to 0. The factor 0.6 in Eq. (7) has been set as
in (Lussana et al., 2009), because it improves the agreement
between the model results and the observations. As described
in Sect. 3.1, the IDI values are obtained as the analysis val-
ues (Eq. 2) with the background set to 0 and the observed
values set to 1. In this case, the OI parameters used in the
IDI elaboration can vary from grid point to grid point: Dh is
the horizontal distance to the closest available station loca-
tion (irrespective of the observed value); Dz is the maximum
elevation within the event first-guess (a minimum value of
500m is pre-set); ε2 ≡ σ 2

o /σ 2
b = 0.1, which means that we

impose the IDI field to fit the value 1 in the surroundings of
observation locations.

Finally, adjacent (connected) grid points where the precip-
itation is most likely to occur are assigned to the same event
and the event gets a unique label. The wet observations are
assigned to the same event of the surrounding grid points.
In the special case of a wet observation surrounded by dry
grid points only, a new event is created. The isolated wet ob-
servation is associated with this new event, together with the
closest grid points. This special situation may occur in dense
station areas (i.e., station density comparable to the grid res-
olution) when, for example, only one station measures pre-
cipitation.

3.2.2 Iterative optimal interpolation

As stated in Sect. 3, the iterative algorithm operates on a cas-
cade of spatial scales, which is defined through a decreasing
sequence of K values for Dh = {large scale, . . ., local scale}.
The largest scale Dh

1 is set to the semi-major axis of the
ellipsoid of minimal area enclosing all grid points of the
event under consideration (i.e., its ellipsoid hull), and then
Dh

k+1 = Dh
k − 10km (k = 1, . . .,K) and the local scale Dh

K

are set to the minimum distance between two stations (the
minimum allowed value is 10km).
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The regional topography influences the precipitation pat-
terns, and consequently points at the same elevation tend to
be more correlated than points at different elevations. Be-
cause of that, we have decided to include elevation differ-
ences in our (de)correlation functions ρ (Eq. 3). The se-
quence of K vertical scales Dz

k is not predefined, such as
for Dh. On the contrary, they are optimized every time step
and for each Dh

k value. The optimal Dz
k is chosen among

four possible values Dz = {5000 m,2000 m,1000 m,500m}.
A value of Dz = 5000 m means that the de-correlation of pre-
cipitation along the vertical is actually not needed; then, the
de-correlation gradually increases with decreasing Dz. By
decreasing the correlation ρ between points, we also reduce
the spatial extent of the area of influence that every observa-
tion has on the analysis. Because our method is based only
on observations, a predefined lower limit of 500m has been
set for Dz; otherwise, the total extension of data-sparse areas
may become too large.

The application of the OI iterative scheme requires the def-
inition of two further elements: (1) a spatial averaging oper-
ator 〈. . .〉h,v to process the vector-observed values. The op-
erator is applied to its components to obtain for each sta-
tion location a “processed observation” meant to represent
the average precipitation in a neighborhood of a predefined
size around that location. The neighborhood considered is
a cylinder of radius h and height v, having its center of mass
at the station location; (2) ε2 (Eqs. 4–5), the ratio between
the observation and background error covariances ε2, spec-
ifies the weight of the new information (i.e., the processed
observations) compared to the background. At each iteration,
the background is the result of previous iteration steps, and it
represents the integrated effect of the larger spatial scales. ε2

is set to 0.1, as in the IDI calculation of Sect. 3.2.1, and its
value is kept constant in the elaboration.

The iterative OI algorithm is based on two nested loops.

– The outer loop over the Dh = {large scale, . . .,
local scale} scales (index k = 1, . . .,K). For the k

iteration, the background is the analysis obtained at
iteration k − 1: x

b
k = x

a
k−1 and y

b
k = y

a
k−1. As initial

conditions, the vectors x
b
1 and y

b
1 are set to the mode of

the distribution of observed precipitation values.

– The inner loop over Dz = {5000 m,2000 m,

1000 m,500m} (index c = 1, . . .,4). The obser-
vation vector used is the processed observation
y

o
k,c ≡ 〈yo〉Dh

k ,Dz
c
. First, the cross-validation

analysis y̌
a
k,c is computed as in Eq. (6), where

the influence matrix W is computed using the
pair (Dh

k ,Dz
c) in Eq. (3) to define the correlation

function. Then, the optimal value for Dz (D̃z)
is chosen as the one that minimizes the relative
error between y̌

a
k,c and y

o
k,c (i.e., relative er-

ror = prediction/observation). However, we are not
using the actual (CV) predicted and (processed)

observed values in the definition of relative error.
In fact, the “started logs” (st.log) (Erdin, 2009;
Rocke and Durbin, 2003) of those values have
been used, so as “to ensure an equal scaling of
positive and negative deviations of prediction
from observations and because the relative error is
highly sensitive to small observations that might
be under or overestimated by a large factor in the
prediction” (Erdin, 2009). The relative error is
written as

relsk,c (8)

=

√√√√ 1
m

·

m∑

j=1

[
st.log

(
y̌a
j,k,c

)
− st.log

(
yo
j,k,c

)]2
,

where . . .j,k,c indicates the j th vector component
for iteration (k,c) and the started logs are defined
as

st.log(x) (9)

=

{
log10 (x) if x > lc,

log10 (lc) + (x − lc)/ [lc · ln(10)] if x ≤ lc.

The critical threshold has been set to lc ≡ 1.5mm.

– Out of the inner loop and back to the outer loop. The
analyses x

a
k (Eq. 1) and y

a
k (Eq. 2) are obtained; the

weight matrices K and W (Eqs. 4–5) used in the anal-
ysis procedure are computed with the correlation func-
tion ρ (Eq. 3) defined by the two parameters Dh and
D̃z.

The final analyses are x
a = x

a
K and y

a = y
a
K .

4 Evaluation of the precipitation fields

4.1 Case studies

In Fig. 2, two examples of precipitation fields are shown. In
the top panel, a case study for daily precipitation is presented,
which has been chosen because it is representative of a typi-
cal situation where intense precipitation occurs. The presence
of a low-pressure system over southern Norway causes the
advection of moist air from over the ocean towards the main-
land, thus determining intense precipitation along the coast,
especially in the presence of steep topography (see Fig. 1).
The figure also gives an idea of the range of spatial scales
involved in such a precipitation event. In this case, the most
intense part of the precipitation takes place in the south, over
an area of about 500km by 500km; inside this region, precip-
itation hotspots of different sizes are present, with the most
intense ones (red colors) having an extension of no more than
50km by 50km and often far less than that. The higher the
station density, the finer would be the effective spatial resolu-
tion (i.e., spatial detail) of the final prediction. In the bottom
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panel, the seNorge2 mean annual accumulated precipitation
field for the 30-year period 1981–2010 is shown. The precipi-
tation patterns agree quite well with the expected climatology
(e.g., Tveito et al., 1997). The highest precipitation amounts
of more than 3000 mm are recorded along the western coast
in southern Norway. The regions with the lowest annual pre-
cipitation amounts are recorded inland in the north and on
the leeward side of the highest Norwegian mountains in the
south.

4.2 Verification at station locations

Figure 3 shows the equitable threat score (ETS: Jol-
liffe and Stephenson, 2003), which “measures the frac-
tion of observed events that were correctly predicted, ad-
justed for hits associated with random chance” (see the
WWRP/WGNE Joint Working Group on Forecast Verifica-
tion Research website at http://www.cawcr.gov.au/projects/
verification). Three gridded datasets of daily precipitation
have been considered: (i) seNorge2; (ii) E-OBS (described
in the introduction; version 16.0 has been used); and (iii)
seNorge2 upscaled onto the E-OBS coarser grid of about
20km by 20km (i.e., 0.25◦ by 0.25◦ regular latitude–
longitude grid), so as to allow for a comparison between
E-OBS and seNorge2 performances when both datasets
have a similar representativeness (i.e., represents same spa-
tial scales). Because a grid point value represents area
mean conditions across (at least) one grid box, the up-
scaling has been done by averaging all the seNorge2 grid
points within the coarser E-OBS boxes (as recommended by
Christoph Frei and Phil D. Jones; see the Appendix of the
UERRA report http://uerra.eu/component/dpattachments/
?task=attachment.download&id=42). The ETS has been
computed by taking into account all the available Nor-
wegian data in the period 1981–2010 (i.e., approximately
5 000 000 observations) and the values extracted from the
precipitation datasets have been evaluated against the obser-
vations. By taking into account a 30-year period, the dataset
should include enough extreme precipitation events, such
that the statistics of those rare events can be considered
meaningful. Note that the observations have been used in the
spatial interpolation, so they do not constitute independent
information, and for this reason such an evaluation provides
information only for the performance at station locations and
not over grid points.

seNorge2 considered at its original resolution clearly
shows the benefits of a finer effective resolution, if compared
to E-OBS, especially for intense precipitation. The ETS
is generally above 0.9, and even for precipitation amounts
higher than 128mm day−1 the fraction of observed events
that were correctly predicted is approximately 0.8. The best
performances are obtained for daily precipitation amounts
around 10mm day−1, probably because such intensities are
often (i.e., more frequently than for the other intensities) re-
lated to large-scale precipitation and the uncertainties associ-

Figure 2. seNorge2 examples. (a) Total precipitation for the day
24 November 2014. (b) Mean annual precipitation, based on the
annual precipitation from 1981 to 2010.

ated with intermittency are less significant. The comparison
of seNorge2 and E-OBS over the same (coarser) grid shows
that the two datasets perform rather similarly. seNorge2 has
higher ETS values than E-OBS for most of the thresholds,
though E-OBS presents slightly better ETS for the most in-
tense precipitation amounts.

4.3 Verification over grid points

The quality assessment of seNorge2 precipitation fields over
grid points has been done by comparing them against the
pan-European reference E-OBS dataset (version 16.0). The
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Figure 3. Equitable threat score (ETS) for daily precipitation over
all the available Norwegian stations. Datasets are seNorge2 (red);
seNorge2 upscaled to the E-OBS grid (blue, 0.25◦ × 0.25◦ geo-
graphical latitude–longitude coordinate reference system); and E-
OBS (green). Several precipitation thresholds have been consid-
ered: 1, 2, 4, 8, 16, 32, 64 and 128mm day−1. Time interval:
30 years, from 1981 to 2010.

dataset is compared on the E-OBS 0.25◦ by 0.25◦ regular
latitude–longitude grid. Figure 4 shows the results regrid-
ded over the original seNorge2 grid with a nearest-neighbor
interpolation, such that the sizes of the boxes reflect the
E-OBS grid resolution. As for Sect. 4.2, the 30-year pe-
riod 1981–2010 has been considered in the verification, such
that the statistics should be robust and resistant. E-OBS and
seNorge2 are based on different spatial interpolation meth-
ods, but they use the same observations. seNorge2 makes
use of more observations over Norway, in addition to the
ECA&D dataset that is the E-OBS archive of observations.
As a consequence, the assessment of seNorge2 presented in
this section is relative to the E-OBS performances, rather
than being in absolute terms.

In Fig. 4, the comparison between E-OBS and seNorge2
daily precipitation shows that the two datasets are rather sim-
ilar over most of the domain. The fitted linear regression co-
efficient shows that for most grid points seNorge2 precip-
itation is within ±20% of E-OBS precipitation and often
very close to 1. Note that in the work by Frei et al. (2003),
the precipitation biases in a high-resolution gridded dataset
over the Alps (underestimate) due to measurement biases and
network biases (i.e., “distribution of rain gauges is biased,
with high-elevation areas being undersampled in comparison
to lowland and valley-floor conditions”) is estimated to be
within 5 and 25% (up to 40% in winter for elevations higher
than 1500 m). A multiplicative bias of up to ±20% between
seNorge2 and E-OBS daily precipitation can be considered
a satisfactory agreement between the dataset. The correlation
coefficient is also above 0.9 for a large portion of the domain.

As highlighted by the boxplots in the two insets of Fig. 4,
the significant differences between the two datasets are found

Figure 4. Daily precipitation comparison between E-OBS and
seNorge2, which has been upscaled to the E-OBS grid (0.25◦ ×

0.25◦ geographical latitude–longitude coordinate reference sys-
tem). (a) Fitted linear regression coefficient, seNorge2 = coeff ·

EOBS; regions where the coefficient values are smaller than 0.8 or
larger than 1.2 are highlighted by thick contouring lines. (b) Corre-
lation coefficient. The two insets in the top-left corners in the panels
show the elevation dependence of the corresponding variable; note
that the box width is proportional to the number of points in the
elevation range.

in southern Norway; in the mountain area where the high-
est peaks are located, seNorge2 underestimates precipita-
tion compared to E-OBS. For elevation higher than 1000 m,
the linear regression coefficient gradually decreases, and it
reaches the value of approximately 0.6 at 2000 m. Anal-
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ogously, the correlation coefficients decrease to values of
about 0.8 at 2000 m. As an explanation, we have verified
that in our interpolation method (Sect. 3.1), as Dh becomes
smaller and smaller, the optimization of Dz also favors the
smallest value of 500m, so that the adjustments at local
scales involve a smaller number of grid points (i.e., in both
the horizontal and vertical directions) than the ones for the
larger spatial scales. By design, the interpolation scheme re-
constructs local precipitation features only in the surround-
ings of station locations, where these features can be trusted,
while in data-void areas the precipitation field is determined
by the large-scale signal recovered by the available net-
work of gauges. However, for those regions where the av-
erage difference between station elevations and topography
is twice the Dz value or more, elevation differences mat-
ter much more than differences in the horizontal distances.
Given the raingauge network bias towards the lowest eleva-
tions (see Fig. 1), we may argue that the biases (underesti-
mation) shown in Fig. 4 result from the fact that seNorge2
in the (almost) data-void areas of the mountains in southern
Norway is representative of larger spatial scales than the ones
recovered by E-OBS.

Note that Fig. 4 also shows a few grid points where
seNorge2 predictions significantly overestimate precipitation
compared to E-OBS (red colors in the top panels) and the
correlation reaches values between 0.7 and 0.8. Most likely,
these are the local effects of observations that have been in-
cluded in seNorge2 only, thus bringing valuable information
on a local scale that is not present in E-OBS.

5 Indirect evaluation of precipitation as

a component of the water cycle

5.1 Comparison to hydrological observations

In Fig. 5, the annual average catchment water balance is
shown as the sum of runoff and actual evapotranspiration
(i.e., sinks of water) against precipitation (i.e., input). The
years from 2000 to 2013 have been considered and the 151
runoff measurements capture the outflow from catchments
without artificial influence (e.g., hydropower) and glaciers.
The actual evapotranspiration estimates were obtained from
the MODIS Global Evapotranspiration Project (Mu et al.,
2011).

The datasets considered in the comparison are (i)
seNorge2 and (ii) seNorge1.1 (Mohr, 2008) (see the intro-
duction). The regression lines are obtained through the ap-
plication of a robust and resistant procedure as described
in Lanzante (1996). seNorge1.1 shows higher annual to-
tal precipitation than the water losses for most catchments
(coefficient of regression 1.08), while seNorge2 underesti-
mates the input term in the water balance (coefficient of
regression 0.63). The linear regressions between precipita-
tion and the sum of runoff and evapotranspiration show a
higher coefficient of determination (r2) for seNorge1.1 than

Figure 5. Average yearly precipitation (inputs of water to the catch-
ment) against the sum of average yearly runoff and actual evapo-
transpiration (losses of water from the catchment) for the period
from 1 January 2000 to 31 December 2013 for seNorge1.1 (blue)
and seNorge2 (red). The upper left box shows the distribution of
regression residuals when the sum of runoff and actual evapotran-
spiration exceeds 2000mm yr−1.

seNorge2. On the other hand, the seNorge2 points tend to
lie closer to the regression line, as shown in the box on
the upper left of Fig. 5 where the regression residuals are
reported for both versions. The sum of squares of residu-
als (i.e., residual = precipitation − predicted value by the lin-
ear regression) for seNorge1.1 is twice as large as the one
for seNorge2: 12 958 521.8 (mm yr−1)2 for seNorge2 against
25 435 946.8 (mm yr−1)2 for seNorge1.1. As a consequence,
seNorge2 provides less accurate (i.e., higher bias) but more
precise (i.e., lower spread) estimates of the annual averaged
precipitation than seNorge1.1.

5.2 Impact on the seNorge snow model simulations

Daily updated maps of snow conditions have been produced
for Norway since 2004 by using the seNorge snow model
(www.seNorge.no; Tveito et al., 2002; Engeset et al., 2004;
Saloranta, 2012, 2014a, b, 2016) and the seNorge conven-
tional climatological datasets as model forcing data. The sim-
ulated snow maps are used among others by the avalanche
and flood forecasting services, hydropower energy situation
analysis, as well as the general public.

Briefly described, the seNorge snow model (v.1.1.1) uses
a threshold air temperature to separate between snow and
rain precipitation, handles separately the ice and liquid wa-
ter fractions of the total SWE, and keeps track of the accu-
mulation and melting of snow. The daily snowmelt rate is
a function of air temperature and solar radiation. The two
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Figure 6. The model underestimation (Fu, red circles) and overestimation (Fo, blue circles) areas of SCA (% of all grid cells) in the three
regions (Fig. 7) and for the two grid data versions (v.1.1 in the left column and v.2 in the right column) in 2001–2015 (on the days when
a MODIS satellite image is available for comparison). The solid lines denote GAM curves (with standard error) fitted to the cloud of points.
The horizontal dashed lines denote the 5% deviation level within which the model results are considered “good” in NVE operational snow
mapping (Saloranta, 2016).

melt model parameters are estimated using the extensive melt
rate data from Norwegian snow pillows (Saloranta, 2014a).
Moreover, the average grid cell snowmelt rates are also af-
fected by the simulated fraction of snow-covered area (SCA)
in the model grid cells.

In the evaluation, the seNorge snow model is run with
the temperature and precipitation from the seNorge1.1 and
seNorge2 conventional climatological datasets as forcing in
the period 2001–2015, and the simulated SCA values in the
grid cells are compared to the corresponding SCA values
derived from MODIS (MODerate resolution Imaging Spec-
troradiometer; http://modis.gsfc.nasa.gov/) satellite images
using the Normalized Difference Snow Index (NDSI) and
the Norwegian Linear Reflectance to snow cover algorithm

(NLR) (Salomonson and Appel, 2004; Solberg et al., 2006).
No specific model calibration has been done prior to this
evaluation. For each day when a satellite image is available,
each grid cell is classified into three categories: model under-
estimation or overestimation, or good match. A good match
is defined here as when the difference in the simulated and
observed SCA does not exceed ±50%-points. These three
categories are also assigned scores of −1, 0 and +1, re-
spectively. This type of classification is applied in order to
make the analysis more robust to systematic errors that can
be present in the observed satellite-based SCA, e.g., due to
the effect of forest canopy over the snow-covered area.

In order to make regional summaries of the evaluation re-
sults, Norway is divided into eastern, western and northern
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Figure 7. The bias index B for SCA in the seNorge grid cells for the
two gridded dataset versions (v.1.1. in a and v.2 in b) in March–July
2001–2015. In (a), the three regions used in Fig. 6 are shown.

regions and the fraction of the region’s grid cells where the
model simulations significantly underestimate (Fu) and over-
estimate (Fo) in comparison to the observed SCA (i.e., a de-
viation exceeding ±0.5) are calculated for each day a satel-
lite image is available.

Table 1. 90% percentile values of the model underestimation (Fu)
and overestimation (Fo) (in % of grid cells) in the three regions and
for the two versions of the conventional climate dataset.

90% percentile Fu, Fo Eastern Western Northern

seNorge1.1 7%, 13% 7%, 12% 5%, 6%
seNorge2 8%, 4% 7%, 5% 18%, 3%
seNorge2∗ 8%, 5% 7%, 5% 18%, 2%

∗ Based only on data from the Norwegian climate database, without using ECA&D
data outside Norway.

As the maximum deviation between observed and simu-
lated SCA may occur at different times in different eleva-
tions and regions, a monthly mean of the model fit category
scores (−1,0,+1) is calculated for each seNorge grid cell
and month (if at least 15 score values are available for the
particular grid cell and month). Then, a bias index B is de-
fined for each grid cell by summing up the minimum and
the maximum values (i.e., the largest underestimations and
overestimations) of the monthly mean scores (if at least three
monthly means are available). This index B should reflect
the systematic bias (if any) in simulated SCA in the partic-
ular grid cell encountered during the period from March to
July.

The regional model underestimation and overestimation
(Fu, Fo) of the SCA, based on a total of 369, 318 and 265
MODIS images in eastern, western and northern Norway, re-
spectively, are shown in Fig. 6. The 90% percentile values of
Fu and Fo are shown in Table 1. These results show that the
snow model run with seNorge1.1 data forcing clearly overes-
timates the SCA in the main melting season (May–June) in
eastern and western Norway (Fig. 6). When the snow model
is run with the seNorge2 data forcing, the average Fu and Fo
are roughly within a 5% deviation level for the whole analy-
sis period from March to July in eastern and western Norway
(Fig. 6). In northern Norway, however, the results show a dif-
ferent pattern, where the snow model run with seNorge1.1
data forcing performs rather well, while the model applica-
tion based on seNorge2 data forcing significantly underesti-
mates the SCA in May–June (Fig. 7; Table 1).

The maps of the bias index B (Fig. 7) reveal the patterns
of SCA overestimation in eastern and western Norway when
using seNorge1.1 data, and of SCA underestimation in north-
ern Norway when using seNorge2 data.

5.3 Impact on the DDD hydrological model simulations

The DDD rainfall–runoff model (Skaugen and Onof, 2014;
Skaugen and Mengistu, 2016) has been calibrated using the
seNorge2 meteorological grid over 136 Norwegian catch-
ments (see Fig. 8). Input to the DDD model is only precipita-
tion and temperature; the model is semi-distributed in that the
moisture accounting (rainfall and snowmelt) is performed for
10 elevation zones of equal area. DDD has a two-dimensional
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Figure 8. Geographical distribution of Pcorr. The inset shows the
histograms with the distribution of Pcorr values; the mean value is
reported.

representation of the subsurface reservoir allowing for spa-
tial variability of groundwater levels as a function of distance
from the river network. Similar to the seNorge snow model,
snowmelt is estimated using a calibrated temperature index
model (without the additional solar radiation term) and a cal-
ibrated threshold temperature separating solid and liquid pre-
cipitation. The runoff dynamics of the DDD are characterized
by a parsimonious parameter regime where the parameters
are individually estimated from Geographical Information
Systems (GIS) or from observed runoff records (recession
analysis) and not collectively against observed runoff. Esti-
mating the parameters in such a way reduces the tendency
of model parameters when calibrated as a set, to collectively
compensate for errors in input data and model structure, and
hence acquire unrealistic values. DDD is calibrated by opti-
mizing the Kling–Gupta efficiency (KGE) skill score (Kling
et al., 2012) where the parameters are optimized so that cor-
relation is maximized, variability is reproduced and bias is
minimized.

The model parameters for the catchments have been cali-
brated for the period 1 September 2000 to 31 December 2014
and validated for the period 1 September 1985 to 31 August
2000. Then, in total, about 30 years of data are involved in
the evaluation.

The mean KGE for the 136 catchments is 0.87, and the
mean bias is 0.1%, indicating that the volume of observed
and simulate runoff was practically the same. The ability in
DDD to adjust the amount of precipitation obtained from the
meteorological grids was crucial for obtaining such a low
bias. The adjustment is made through a correction factor that
linearly increases/decreases the precipitation in the course of

the calibration. DDD has the ability to use different correc-
tion factors for precipitation as liquid (rain Pcorr) or solid
(snow Scorr).

The correction factor Scorr should be higher than Pcorr due
to the expected greater gauge undercatch for snow compared
to liquid precipitation. However, for a calibrated parameter
set, this is not always the case. For this study, the calibrated
correction factors for precipitation and snow are meant to
evaluate the seNorge2 dataset.

In general, the water balance seems reasonable, although
the simulated actual evapotranspiration (AE) shows lower
values when compared with the ones reported in Sect. 5.1,
and it displays a rather high variability. Values of AE lower
than the expected ones indicate that the correction factors are
also too low, since the runoff volumes have reasonable val-
ues. So, with the understanding of a possible underestima-
tion of AE, we interpret the calibrated corrections as indica-
tors of underestimation/overestimation of precipitation in the
seNorge2 meteorological grid.

Figure 8 shows the calibrated Pcorr values plotted accord-
ing to the centroid of the catchment they represent. The his-
tograms of the calibrated Pcorr are also displayed. We see
that the mean value for Pcorr (1.25) is well beyond 1.0. The
geographical distribution of Pcorr reveals that seNorge2 un-
derestimates liquid precipitation on the western coast along
the country and in the mountains. These results are consistent
with the analysis of Sect. 4.3. Scorr behaves rather similarly
to Pcorr, with a mean value of 1.18.

6 Data availability

The seNorge2 dataset 1957–2015 is available at https://doi.
org/10.5281/zenodo.845733. The observations of daily pre-
cipitation measured by the network of stations managed by
the Norwegian Meteorological Institute can be downloaded
at frost.met.no. Some of the agreements signed with the
station data providers (i.e., other than the Norwegian Me-
teorological Institute) restrict the redistribution of the sta-
tion data and they cannot be made freely available through
frost.met.no. Please contact the corresponding author for fur-
ther information.

7 Conclusions

The seNorge version 2.0 (seNorge2) high-resolution obser-
vational gridded dataset for daily total precipitation over Nor-
way is described in this paper. The main objective of the
dataset is to support climate and hydrology applications and
is presented on a high-resolution grid with 1 km of grid spac-
ing in both the zonal and meridional directions.

The MET observational network of raingauges is denser in
the southern part of the domain and sparser in the north. The
number of observations varies between 600 and 900, depend-
ing on the year. In addition, the distribution of observations
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has a bias towards the lower elevations and the highest den-
sities are found locally along the coast. Most of the moun-
tainous regions present a very sparse measurement network,
especially for elevations above 1000 m.

The climatological archive goes back to 1957 and is
distributed in a single large file covering the time pe-
riod 1957–2015, which is available for public download
at http://doi.org/10.5281/zenodo.845733. Daily updates
are stored and made available for public download at
http://thredds.met.no/thredds/catalog/metusers/senorge2/
seNorge2/provisional_archive/PREC1d/gridded_dataset/
catalog.html. Furthermore, the data are shown on the web
portals senorge.no and xgeo.no.

The spatial interpolation scheme relies on statistical
(Bayesian) methods and is based on a combination of two
classical interpolation schemes, namely optimal interpola-
tion and successive-correction methods. An original multi-
scale-separation approach has been implemented by means
of a statistical interpolation scheme where the information
is passed through a cascade of (decreasing) spatial scales,
which covers a wide range of scales from the synoptic mo-
tions down to the lower boundary of the mesoscale. seNorge2
does not include the correction for undercatch due to the
wind and the relation between precipitation and elevation
is introduced only locally around the station locations. As
a consequence, the predicted precipitation field may poten-
tially underestimate the actual precipitation, especially at
higher elevations where the station network is sparser.

The evaluation of the seNorge2 daily precipitation fields
is based on a 30-year dataset (1981–2010); the time period is
long enough to provide useful information for extreme pre-
cipitation events too. The dataset of daily totals can prop-
erly represent both large-scale precipitation and small-scale
features down to spatial scales of a few kilometers, depend-
ing on the network density. At station locations, the fraction
of observed events that were correctly predicted is above
0.9 for precipitation intensities of about 10mm day−1, and
it decreases to approximately 0.8 in the case of heavy pre-
cipitation (i.e., above 128mm day−1). Intense precipitation
is more likely to be underestimated than weak precipita-
tion. seNorge2 is especially well suited for those applica-
tions requiring a finer effective resolution of the predicted
precipitation field, higher than the effective resolution of pan-
European datasets or global reanalysis. Over the grid points
thus not necessarily corresponding to station locations, the
quality of the seNorge2 predicted precipitation is comparable
to state-of-the-art pan-European datasets, though seNorge2
is expected to represent local scale features that cannot be
included in coarser datasets. However, the uncertainties in-
crease considerably for the data-void area on the mountains
in southern Norway where seNorge2 seems to significantly
underestimate precipitation. The precipitation climatology
derived from seNorge2 provides reasonable results, though
it is not the focus of this paper to evaluate the derived clima-
tological fields.

The comparison of seNorge2 with the measurements of the
long-term water balance shows that seNorge2 tends to under-
estimate precipitation. The indirect evaluations of seNorge2
by considering the performances of the seNorge snow model
and of the DDD model show that, for snow, a significant un-
derestimation has been detected in northern Norway, while
for the rest of the country the estimates are in reasonable
agreement with the observations; for liquid precipitation, un-
derestimation occurs along the western coast of Norway and
in the mountains.

The seNorge project at MET has the objective of maintain-
ing and improving the conventional (observational) climate
gridded datasets of daily temperature and precipitation. Fu-
ture developments will focus on increasing the performances
in data-sparse regions, e.g., following the recommendations
of Masson and Frei (2014) on the use of climatological pre-
cipitation fields for the interpolation of daily precipitation.
Furthermore, the issue of wind-induced underestimation of
solid precipitation will be addressed.
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