
Int. J. Internet Protocol Technology, Vol. 1, No. 3, 2006 159

Copyright © 2006 Inderscience Enterprises Ltd.

Sens-ation: a service-oriented platform for
developing sensor-based infrastructures

Tom Gross*, Tareg Egla and Nicolai Marquardt
Faculty of Media,
Bauhaus-University Weimar, Germany
E-mail: Tom.Gross@medien.uni-weimar.de
E-mail: Tareg.Egla@medien.uni-weimar.de
E-mail: Nicolai.Marquardt@medien.uni-weimar.de
*Corresponding author

Abstract: Context-aware systems use sensors in order to analyse their environment and
to adapt their behaviour. We have designed and developed Sens-ation, an open and generic
service-oriented platform, which provides powerful, yet easy-to-use, tools to software developers
who want to develop context-aware, sensor-based infrastructures. The service-oriented paradigm
of Sens-ation enables standardised communication within individual infrastructures, between
infrastructures and their sensors, but also among distributed infrastructures. On a whole,
Sens-ation facilitates the development allowing developers to concentrate on the semantics of
their infrastructures, and to develop innovative concepts and implementations of context-aware
systems.

Keywords: service-oriented platform; sensor-based infrastructure; ubiquitous computing;
computer-supported cooperative work.

Reference to this paper should be made as follows: Gross, T., Egla, T. and Marquardt, N. (2006)
‘Sens-ation: a service-oriented platform for developing sensor-based infrastructures’, Int. J.
Internet Protocol Technology, Vol. 1, No. 3, pp.159–167.

Biographical notes: Dr. Tom Gross is an Associate Professor and Chair of Computer-Supported
Cooperative Work at the Faculty of Media at the Bauhaus-University Weimar, Germany. His
research interests include Computer-Supported Cooperative Work (CSCW), Human-Computer
Interaction (HCI, User-Centred Design), and ubiquitous computing environments. In these areas
he has published numerous papers in journals, conference proceedings, books and book chapters.
He has participated in and coordinated activities in various national and international research
projects. He has been teaching at various universities across Europe. He is the representative of
the Austrian Computer Society (OCG) in the IFIP Technical Committee ‘Human Computer
Interaction’ (TC.13).

Tareg Egla is a Research Assistant at the Computer-Supported Cooperative Work group.
He studied computer science at the Free University of Berlin, Germany, where he received his
MSc in 2003. He has worked for Fraunhofer Institute for Open Communication Systems, where
he developed and implemented applications in the area of security in open distributed platform
and technologies services.

Nicolai Marquardt is a graduate student of media systems at the Faculty of Media at the
Bauhaus-University Weimar, Germany.

1 Introduction
In today’s information society, the vast technical progress
and the sinking cost of information and communication
technology provide new opportunities for supplying
information anytime and anywhere, and new technical
potential for supporting communication and cooperation
among distributed persons.

These trends also entail challenges. Because of the
ubiquitous availability of computers, information
appliances, and gadgets there is the danger that users are

increasingly interrupted or even disrupted, by their personal
technology or by the technology in their vicinity.

A solution is to develop systems that adapt to
their current users and environments. In the research
fields of mobile and ubiquitous computing, and of
computer-supported cooperative work the concept of
context awareness was introduced to address these issues of
adaptation. In mobile and ubiquitous computing context
awareness basically refers to information about the
environment of a user that can be captured and analysed in

160 T. Gross, T. Egla and N. Marquardt

order to adapt technology accordingly (Dey, 2000).
For instance, a mobile personal digital assistant could scan
its environment for printers, and inform its user about
printing opportunities in the vicinity (Chalmers, 2004). In
computer-supported cooperative work context awareness
refers to the information that the members of distributed
workgroups need for successful coordination, communication,
and cooperation. Here, the motivation is to capture and
analyse the activities of each group member, and to inform
group members about each other, in order to provide a
framework for orientation in the group process (Gross and
Prinz, 2004).

The approaches of both areas rely on sensor-based
systems that are able to capture the situation, to analyse
the situation, and to react to this situation accordingly.
Today, many base technologies for sensing information
are available (e.g., RFID (Stanford, 2003), SmartCards
(Abrial et al., 2001)), and several systems (e.g., the
PARCTab (Schilit, 1995), the ActiveBadge (Want
et al., 1992)), as well as infrastructures have been developed
(e.g., Cooltown (HP, 2004), Oxygen (Mitchel, 2004)).
However, several challenges for the design of sensor-based
infrastructures remain. Particular examples are
technological challenges concerning dynamic configuration,
and architectures; social challenges concerning social
negotiations among users; and organisational challenges
concerning the social organisation of work, based on
these technologies (Banaver and Bernstein, 2002;
Lyytinen and Yoo, 2002).

In order to tackle these challenges, we have designed
and developed Sens-ation, an open and generic
service-oriented platform, which provides powerful, yet
easy-to-use, tools to software developers of sensor-based
infrastructures. Sens-ation provides the base functionality
for the iterative design, implementation, and evaluation of
sensor-based infrastructures that is needed for effectively
and efficiently personalising the user’s environment
(Abowd and Mynatt, 2000). The service-oriented paradigm
of Sens-ation enables standardised communication, as well
as flexible mechanisms for publishing, validating, and
invoking information about sensors, locations, and particular
sensor values. It provides platform-independent and
ease-to-use interfaces for other systems and infrastructures.
The integration of new sensors is easy and independent of
the sensor hardware properties; and it has a mechanism for
add-on inference engines to aggregate or interpret sensor
values. On a whole, Sens-ation aims to make the
development of ubiquitous computing and computer-supported
cooperative work infrastructures rapid and easy, thereby
allowing developers to concentrate on the semantics of their
infrastructures, and to develop innovative concepts and
implementations of context-aware systems.

This paper first gives a brief overview of related work.
The concept and the implementation of the service-oriented
architecture of the Sens-ation platform are then presented.
Finally, some conclusions are drawn and some ideas for
further development of the Sens-ation concepts and
implementation sketched.

2 Background and related work

In this section, systems with concepts and technology
that are similar to Sens-ation are described. Since, the
Sens-ation platform is a combination of concepts from
service-oriented architectures and from sensor-based
systems and infrastructures, we first introduce
service-oriented architectures, as well as sensor-based
systems and infrastructures per se as background. Then,
related combinations of both are presented.

2.1 Service-oriented architectures

Service-oriented architectures in general are collections of
services plus some mechanisms for the communication
among these services, where a service refers to ‘a function
that is well-defined, self-contained, and does not depend on
the context or state of other services’ (Barry & Associates
Inc., 2005). Typically, a service consumer makes a service
request, and gets back a service response from a service
provider.

Earlier approaches, such as the Distributed Component
Object Model (Microsoft Corp., 2005), or Object Request
Brokering environments, based on the CORBA specification
(OMG, 2005), often were very elaborate, but entailed a
considerable overhead for the communication among and
the actual use of the services.

Newer approaches are often web-based; these Web
Services are based on principles and standards for
connection, communication, description, and discovery.
Web Services typically communicate with the eXtensible
Markup Language (XML) that is exchanged via the Simple
Object Access Protocol (SOAP). SOAP itself is based on
the HyperText Transfer Protocol (HTTP), the Simple Mail
Transfer Protocol (SMTP), and the Session Initiation
Protocol (SIP). The functions of the individual services are
typically described in the Web Service Description
Language (WSDL) and include function names, required
parameters, and results. Finally, directories and brokers
(often a Universal Description, Discovery, and Integration
(UDDI)) provide interested clients with information on the
available services. Based on this information the client or
service consumer can contact the service provider, and get
the service needed (Christensen et al., 2001; Singh and
Huhns, 2005).

Service-oriented architectures are an important design
approach for the Sens-ation platform.

2.2 Sensor-based systems and infrastructures

Sensor-based systems are systems supporting various
sensors, but being closed – with little or no interfaces to
other applications; sensor-based infrastructures also support
sensors, but additionally provide open communication
interfaces to other applications and infrastructures.

Early sensor-based systems from mobile and ubiquitous
computing featured mobile computers or devices that could
communicate with base stations – typically via

 Sens-ation: a service-oriented platform for developing sensor-based infrastructures 161

infrared – and that could thereby be positioned. The
PARCTab was one of the early sensor-based ubiquitous
systems (Schilit, 1995). PARCTab provided a mobile
palm-sized wireless computer, which could communicate
with other devices, such as the XEROX Liveboard
(Elrod et al., 1992) via infrared. The Active Badge system
provided users with badges that they wore outside of their
clothes, and which could communicate with base stations
(Want et al., 1992). The badges sensed the user
 positions, and adapted to the environment
(e.g., automatically forward phone calls to the nearest
public phone extension).

Newer sensor-based infrastructures, from ubiquitous
computing, offer flexible communication among the
devices of the infrastructure, and between the user and
the devices. Examples are the AwareHome, which is a home
environment with various sensors to perceive the users’
actions and assist users (AHRI, 2003); Cooltown, which
gives all real artefacts a connection to an electronic
document with information about the artefact (HP, 2004);
and Oxygen, which has audio and visual sensors in order to
provide natural interaction of the user with the system
(Mitchel, 2004).

Systems and infrastructures from computer-supported
cooperative work mainly provide software sensors, which
can capture user actions on computers, but no information
from the real world. Examples are the Khronika system
(Loevstrand, 1991), Elvin (Fitzpatrick et al., 2002), and ENI
(Gross and Prinz, 2004).

Sens-ation offers a more flexible approach by applying
the service-oriented architecture paradigm.

2.3 Service-oriented sensor infrastructures for
surveillance

The application of service-oriented architectures for sensor
infrastructures has become a very recent trend – in fact, only
a few related approaches can be reported.

One particular application area is the remote
monitoring of nature. At the Geospatial Information and
Communication Technology Lab in Toronto, Canada, a
system called Sensor Web has been developed. Sensor
Web is a web-based network of sensors, which can be
used to capture and analyse geospatial data of earth
(Toa et al., 2003). The particular strengths of Sensor
Web are on-demand sensing of data with matchbox-sized
wireless sensor nodes, and timely distribution of observed
data for informed decision making (Liang et al., 2004).

Another, yet technologically very similar, application
area is warfare. At the MITRE research and development
centres in the USA in the context of the Intelligence,
Surveillance, Reconnaissance (ISR) a group called
Multi-sensor Aerospace-ground Joint ISR Interoperability
Coalition (MAJIIC) is working on a service-oriented
architecture on the Secret Internet Protocol Network
equipped with sensors (Kane, 2004).

These infrastructures are similar to Sens-ation from
a technical point of view, but operate in very different
application areas.

2.4 Service-oriented sensor infrastructures for
ubiquitous computing

Eric Lin has developed a sensor infrastructure based on
Sun Microsystems’s Jini Network Technology (2005)
called SensorJini (Lin, 2004). The SensorJini infrastructure
provides sophisticated technical support for software
sensors, and sensor communication, especially with a
LookupService for connection between sensors and clients
based on Jini network technology.

Martin Jonsson has developed a concept for a Ubiquitous
Service Environment (USE) framework (Jonsson, 2003a).
In a system called Context Shadow Infrastructure, he
developed a service-oriented infrastructure, in which
service providers can be asked for information about a
specific location, and in which the service consumers can
then adapt the behaviour of mobile devices accordingly
(Jonsson, 2003b).

On a whole, these latter infrastructures are
technologically very similar to Sens-ation and operate
in the same application domain. Yet, they are typically
specific instances of service-oriented architectures, whereas
Sens-ation offers a generic platform for developing such
infrastructures.

3 Towards service-oriented architectures for
sensor-based infrastructures

In this section the concept of the Sens-ation platform is
described: we begin with an application scenario to capture
the requirements for such a platform, then we give an
overview of the functionality, and describe the principles of
the architecture components. Details of the concrete
implementation will follow in the next section.

Please note that the main contribution of Sens-ation is
the elegant combination of service-oriented architectures
and sensor-based systems. The primary contribution is
neither the low-level extension of Web Service core
technology nor the extension of sensor networks and sensor
hardware. Although in both areas there are still open
challenges. For instance, the first lack from a huge overhead
in communication; in the latter there are still many
remaining challenges concerning storage and processing
power, but mainly concerning power consumption.

3.1 Application scenario

Imagine a typical industry scenario, where two or more
departments from different companies at different locations
cooperate closely. In order to facilitate the coordination
among the departments their employees need information
about each other (e.g., if employee A spontaneously needs
to talk to employee B from the other department, A needs
information about B’s presence in the office and availability
for communication).

From a technological perspective, for this little scenario
the following is needed: various sensors in each department
capture information about the employees (e.g., sensors

162 T. Gross, T. Egla and N. Marquardt

capturing the presence and availability); an infrastructure
supports the rapid and easy exchange of the captured data
and guarantees that privacy concerns are respected; and
indicators and actuators present the information to the
interested and authorised remote colleagues.

3.2 Requirements

This little scenario makes clear that in order to provide
adequate and convenient support for the employees of
company A and B a complex sensor-based infrastructure is
needed. In order to build such infrastructures, developers
need platforms that meet the following requirements:

• flexible mechanisms for publishing, validating, and
invoking information about sensors, sensor values, as
well as locations

• convenient integration of new sensors independent of
a specific connection interface (both hardware and
software sensors)

• loose and on-demand coupling of components

• platform-independent servers

• persist layers to enable access to past sensor events

• add-on inference engines to process event information
(e.g., aggregation or interpretation methods of sensor
values)

• flexible query mechanism amongst servers

• platform-independent and ease-to-use interface for
other systems and infrastructures (for both rich-clients
such as desktop applications, and thin-clients such as
mobile applications).

3.3 Service-oriented architecture

In order to meet these requirements, the Sens-ation platform
provides an interoperable service-oriented sensor platform,
which supports access, discovery, and use of real-time data
obtained directly from sensors over the wired or wireless
networks.

The service-oriented paradigm of Sens-ation based
on service providers, service consumers, and brokers
enables standardised communication within the platform,
and between the platform and the sensors. Each Sens-ation
server can act as a Web Service provider. These service
providers allow encapsulating and hiding of all specific
hardware implementation details of their attached sensors.
They provide a simple common interface for other
application to obtain real-time sensor data, or persistently
stored past sensor data. The service consumers are
independent of the Sens-ation service provider, so that a
service consumer does not depend on the implementation of
the service and communicates with it, according to a
well-defined interface. A Sens-ation broker contains
information about Sens-ation service providers, such as their
registered sensors and their location. A service consumer
can discover available sensors and their contact information
via a broker. The service consumer can then directly request
required sensor data from that service.

Since these service-oriented mechanisms are highly
standardised (cf. Christensen et al., 2001; Singh and
Huhns, 2005), we will subsequently focus on the concepts
of the individual service providers.

3.4 Structure of Sens-ation service providers

Figure 1 shows the conceptual overview of a Sens-ation
server acting as a service provider with the main layers
for communication and sensor value processing.

Figure 1 Layer structure of a Sens-ation service provider

 Sens-ation: a service-oriented platform for developing sensor-based infrastructures 163

The basic flow of information in the Sens-ation platform is
the following: various sensors capture data and send
them to the server via adapters; the handling layer manages
registered sensors and the persistence layer stores the data.
In the processing layer, we can use the inference engines
to process the raw sensor data (e.g., calculating average
values). Finally, the clients can retrieve data from the server
via various gateways.

3.4.1 Sensor and adapter layers

Sens-ation supports hardware and software sensors as well
as actuators. Hardware sensors deliver sensor values from
the real world (e.g., the temperature or light intensity).
Software sensors capture information from the electronic
world (e.g., the presence information of users of an instant
messaging system). Sensor descriptions include the sensor
type, availability, location, and so forth. Sensors are
categorised with the sensor type classification (e.g., noise,
light intensity, vibration). With the actuators, we also
distinguish between hardware and software modules: while
the hardware actuators can affect the real world
environment (e.g., activate light bulbs, play audio
messages), the software actuators use the graphical user
interface of computers for notification (e.g., RSS feed
or an instant messenger notification).

Sensor adapters facilitate the communication between
the sensors and the server, and abstract from the individual
communication interfaces of the sensors, which can be
highly specific. They also buffer and act as software
interface to provide simultaneous access to sensor data for
multiple clients. The adapters provide a push and pull
method. When using the push method, the sensor adapter
is actively sending the notification to the platform. When
the pull method is used, the handling layer has to call the
sensor adapter to submit the current value each time a client
requests this value.

3.4.2 Handling and persistence layers

The handling layer is responsible for the management of
sensors, locations, and sensor types. Furthermore, this
layer includes various discovery methods for all registered
sensors and locations. There is a set of lookup methods that
can be accessed via the gateways (e.g., to request all sensors
nearby a specified location, or to request all registered
sensors of a specific type).

The handling layer passes the received sensor values
further to the persistence layer. The persistence layer stores
the sensor data and allows the retrieval of historic sensor
values.

3.4.3 Processing layer

The processing layer provides inference engines to interpret
and aggregate sensor values from single sensors. These
engines can also combine and infer on values of different
sensors, or combine and infer on values over time.
For instance, if the average temperature is needed, a
inference module can gather the values of all registered
temperature sensors, and calculate the average temperature;
or, if an overview of the movement in various areas is
needed, a module can observe a collection of movement
sensors and generates an event if one of the sensors detects
movement above a specified threshold.

3.4.4 Discovery and request layer

At the discovery and request layer, gateways allow the
query of current or past sensor events for a variety of
clients. The gateways pass the incoming client requests
to the responsible layers of the server (e.g., the handling
layer for real-time sensor data or the persistence layer for
stored values in the past). Gateways provide functions
for requesting real-time sensor values; discovering locations
and sensors; subscribing to sensor events; and publishing
sensor events. Furthermore, the clients can also request
values from the persistence layer and access the active
service modules for data processing or request their current
values.

4 Implementation

This section describes the implementation of the Sens-ation
platform. We start with a description of the implementation
of the service-oriented architecture, before we describe the
implementation of individual Sens-ation service providers.

The Sens-ation platform offers various service
providers. Service consumers can either be clients that
request sensor-based information from Sens-ation from
outside, or Sens-ation servers that want to synchronise
with each other. In any case, the connections between
service providers and service consumers is organised via
Sens-ation brokers. Sens-ation brokers provide service
consumer with information such as the name, address,
interface description of the Sens-ation services and a brief
description of services’ functionality.

Figure 2 illustrates the implementation of Sens-ation
service providers with the main components. The right part
represents the sensor adapters; the central part represents the
server components; and the left part represents the
gateways. Subsequently we describe the technical
implementation aspects of the individual components.

164 T. Gross, T. Egla and N. Marquardt

Figure 2 Software architecture of a Sens-ation service provider

4.1 Adapters

Adapters control the access to the sensors and encapsulate
all communication details with it. They are multithreaded
and act as buffer between the server and the sensor
to provide simultaneous access to sensor data. Sens-ation
provides various sensor adapters – sensors can be connected
via Web Services, XML-RPC, Common Gateway Interface
(CGI), HTTP/HTML, or socket TCP/IP connections.

In the SensBase infrastructure, the reference
implementation of the Sens-ation platform, several specific
sensors and adapters for them were developed. Examples
are a light sensor and adapter, and email sensor and adapter,
as well as an Embedded Sensor Board (ESB) and adapter.
The latter provides integrated sensors for temperature,
movement, light intensity, noise and vibration. The ESB
can be connected to a computer using the serial interface.
An ESB sensor adapter was customised to encapsulate the
low level communication with ESB.

4.2 Server components

The central server component consists of the ServerKernel,
SensorHandler, InferenceEngineHandler, DatabaseManager,
and the GatewayHandler.

4.2.1 ServerKernel

At the core of the Sens-ation platform, there is a
multithreaded kernel. It is responsible for the initialisation
and management of the handlers. This ServerKernel also
provides a server console – a command line interface for
administrating the server. It gives feedback about the
state of the server via warnings, errors, and state
descriptions. It also offers essential functions needed by
system administrators, such as initialisation of gateways and
SensorHandler; registration, removing, and listing of
sensors, locations and services; and so forth.

4.2.2 SensorHandler

The SensorHandler is responsible for the registration and
the management of sensors as well as for locations and
hardware sensors in the platform. In addition, it provides
a set of methods for discovering sensors according to a
specified sensor type, location, hardware group, and so
forth.

In order to make a sensor available in the Sens-ation
platform, it has to be registered. Sens-ation offers three
options for registering sensors: the user can manually enter
the sensor data with a web-browser through the PHP
server administration tool; the user can add a sensor’s XML
description directly into the sensor description list on the
server; or a sensor can be added automatically by an
external application through the adapter interface (e.g., the
Web Service adapter).

Figure 3 shows an example of the XML sensor
description with two entries (a temperature hardware
sensor for measuring in a room, and a presence software
sensor for checking if a user is logged in).

Figure 3 Descriptions of a hardware sensor and a software
sensor

 Sens-ation: a service-oriented platform for developing sensor-based infrastructures 165

All information needed to access a sensor is wrapped in the
Sensor object, which includes information about the
associated sensor like the sensor’s ID, description, location,
owner, online time, and so forth, and provides a set of
exploration methods. Some parameters are mandatory
(e.g., sensor ID, sensor type, location), while others are
optional (e.g., call-back command, availability, comments).

4.2.3 InferenceEngineHandler

The classes of the inference engines are the executive
modules of the processing layer we introduced in Chapter 3.
The InferenceEngineHandler is responsible for registering
and managing engines and notifications to subscribers. The
inference engines publish their calculated interpretations as
sensor values back to the server.

4.2.4 DatabaseManager

The DatabaseManager is responsible for the persistent
storage of the acquired registered sensors and their location,
sensor’s values, users, and subscribers. The Database
Manager abstracts and encapsulates all access to the
database and provides other components an easy interface to
obtain and store data.

4.2.5 GatewayHandler

The GatewayHandler provides methods for subscribing to
certain sensor events and for notifying subscribers when
the event occurs. It is an XML-RPC server and it is placed
between the five public gateways of the platform and the
SensorHandler.

4.3 Gateways

The gateways are responsible for passing client’s messages
to the GatewayHandler and its responses to the client.
Gateways wrap complex messaging specific method calls
and provide an interface that considers the capabilities of
its clients.

The Sens-ation platform offers the following gateways:
Web Services, XML-RPC, TCP/IP Sockets, Common
Gateway Interface (CGI), and HTTP/HTML. The Apache’s
implementation of the Simple Object Access Protocol
(SOAP 1.1) (Box et al., 2004), namely Axis, is used to
implement the Web Services gateway. The Web Services
gateway runs as Web Service on an Apache Tomcat
application server. The XML-RPC gateway is a web server,
which is loosely coupled to the infrastructure and can be
run in the same or in another domain. The Socket gateway
is a multithreaded socket server implemented in Java.
The CGI gateway is a light-weighted interface, particularly
useful for mobile devices. The HTTP/HTML gateway is a
convenient interface to administrate the server using a
web-browser. It covers the following functions: registration
of new sensors and location; updating and deleting
registered locations and sensors; graphical visualisation of
sensor events for a certain period of time; and exporting

sensor values as MS Excel sheet in CSV format. The
recommended gateways for the varying devices are listed in
Table 1.

Table 1 Recommended gateways for various clients

 Gateways

Clients

Web Services
SOAP/AXIS XML-RPC

Sockets
TCP/IP

Common
gateway
interface

Web Service
requestor ++ O O O

Desktop
application,
rich client

++ O ++ O

Desktop
application,
web browser
based

++ + + O

Mobile device,
rich client O O ++ ++

Mobile device,
web browser
based

O O O ++

We mainly used Mac OS X (version 10.3) for developing
the Sens-ation platform. The Sens-ation platform was
developed using Java 2 on Mac OS X (Java Development
Kit version 1.4.2). It is based on the following packages:

• MySQL database version 4.1.x or above (MySQL.com.,
2004) used in the DatabaseManager

• Apache Tomcat server version 5.0.x (The Apache
Software Foundation, 2005b), Axis distribution
version 1.1 (The Apache Software Foundation, 2003),
required to run the Web Services gateway and adapter

• Apache server version 2.x (The Apache Software
Foundation, 2005a) and PHP version 4.3.x
(Liyanage, 2005), required to run the HTTP/HTML
gateway and adapter

• Java Communications API (Sun Microsystems Inc.,
2003), version 2.0, required for the communication
with the Embedded Sensor Board (ESB)

• Embedded Sensor Board (ESB, 2004), required as test
bed for hardware sensing.

Any package can easily be replaced by other packages
(e.g., if a different database is preferred) (He, 2003).
The above packages were used for implementing the
Sens-ation platform, and the reference implementation of
the SensBase infrastructure.

5 Conclusions and future work

In this paper, we have introduced the concepts of the
service-oriented platform Sens-ation. We have explained
details about the implementation of Sens-ation. The key
features of the Sens-ation platform are the variety of
interfaces for clients and sensors as well as the adaptability

166 T. Gross, T. Egla and N. Marquardt

of the components. Through the Web Service interface,
the Sens-ation platform allows the coupling of multiple
server instances, as well as the development of remote
components for the interpretation, and aggregation of sensor
values.

Developing service-oriented, sensor-based infrastructures
is made easy through the open architecture, the capsulation
of the data, and the abstraction of the peculiarities of the
hardware, and software sensors. It is also made possible
through the communication with the particular hardware
and software sensors as well as through the multifarious
connections of sensors via adapters, and accessing the
functionality and data via gateways.

Several extensions of the current release of the
Sens-ation platform are currently conceptualised, partly
under development. They concern technical extensions to
the basic functionality of the platform, as well as new
tools for developers using the Sens-ation platform to build
sensor-based infrastructures.

Amongst the technical extensions, so far vital aspects
such as scalability, fault-tolerance, and security have only
been partly addressed. Furthermore, new software sensors
for measuring the computer activity and determining
information from running applications are being developed.
Interesting aspects are the type of applications running
as well as the user focus and software running in the
background. The adapters can map this information to more
abstract values and send notifications to the platform.

Concerning the tools for developers, a more generic
description language for instantiating inference engines
would be useful. An easy-to-use editor with graphical
representation of the platform objects would make it easier
for developers to create new inference engines with a simple
drag and drop functionality. This editor then generates
descriptions of the new engine in XML format. These XML
data can later be used to instantiate the corresponding
inference engine in the server.

Finally, the existing service classes are just the
beginning of more comprehensive context determination
algorithms. Various service and platform extensions are
envisioned for computer-supported cooperative work.
They could calculate presence and availability information
of users based on the information that is available from
the software and hardware sensors. This inferred user state
could be used to help the coordination and communication
of remote working groups.

Acknowledgements

We thank our colleague Christoph Oemig, and the
Cooperative Media Lab (CML) students Andre Kunert,
Kai Riege, Robert Gerling, Yunlu Ai, Andrea Lahn,
Christian Semisch, and Matthias Pfaff for contributing
to the concepts and implementing the Sens-ation platform.
We also thank the anonymous reviewers for their
comments.

References
Abowd, G.D. and Mynatt, E. (2000) ‘Charting past, present, and

future research in ubiquitous computing’, ACM Transactions
on Computer-Human Interaction, Vol. 7, No. 1, September,
pp.29–58.

Abrial, A., Bouvier, J., Renaudin, M., Senn, P. and Vivet, P.
(2001) ‘A new contactless smartcard IC using an on-chip
antenna and an asynchronous microcontroller’, IEEE Journal
of Solid-State Circuits, Vol. 36, No. 7, July, pp.1101–1107.

AHRI (2003) Aware Home Research Initiative, Georgia Institute
of Technology, http://www.cc.gatech.edu/fce/ahri/, Accessed
18/2/2005.

Banaver, G. and Bernstein, A. (2002) ‘Software infrastructure
and design challenges for ubiquitous computing applications’,
Communications of the ACM, Vol. 45, No. 12, December,
pp.92–96.

Barry & Associates Inc. (2005) Service-Oriented Architecture
(SOA) Definition, http://www.service-architecture.com/
web-services/articles/service-oriented_architecture_soa_
definition.html, Accessed 18/2/2005.

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn,
N., Nielsen, H.F., Thatte, S. and Winer, D. (2004)
Simple Object Access Protocol (SOAP) 1.1., W3C, http://
www.w3.org/TR/2000/NOTE-SOAP-20000508/, Accessed
28/2/2005.

Chalmers, M. (2004) ‘A historical view of context’, Computer
Supported Cooperative Work: The Journal of Collaborative
Computing, Vol. 13, Nos. 3–4, August, pp.223–247.

Christensen, E., Curbera, F., Meredith, G. and Weerawarana, S.
(2001) Web Service Definition Language (WSDL), W3C,
http://www.w3.org/TR/wsdl, Accessed 18/2/2005.

Dey, A.K. (2000) Providing Architectural Support for Building
Context-Aware Applications, PhD Thesis, Georgia Institute
of Technology, November.

Elrod, S., Pier, K., Tang, J.C., Welch, B., Bruce, R., Gold, R.,
Goldberg, D., Halasz, F., Janssen, W., Lee, D., McCall, K.
and Pedersen, E.R. (1992) ‘Liveboard: a large interactive
display supporting group meetings, presentations and remote
collaboration’, Proceedings of the Conference on Human
Factors in Computing Systems – CHI'92, Monterey, CA, 3–7
May, pp.599–607.

ESB (2004) Sensorboards Documentation, Freie Universitaet
Berlin, Germany, http://www.inf.fu-berlin.de/inst/ag-tech/
scatterweb_net/ESB/sensorboards/doc/html/index.html,
Accessed 28/2/2005.

Fitzpatrick, G., Kaplan, S., Mansfield, T., Arnold, D.
and Segall, B. (2002) ‘Supporting public availability and
accessibility with elvin: experiences and reflections’,
Computer Supported Cooperative Work: The Journal of
Collaborative Computing, Vol. 11, Nos. 3–4, pp.447–474.

Gross, T. and Prinz, W. (2004) ‘Modelling shared contexts in
cooperative environments: concept, implementation, and
evaluation’, Computer Supported Cooperative Work: The
Journal of Collaborative Computing, Vol. 13, Nos. 3–4,
August, pp.283–303.

He, H. (2003) What is Service-Oriented Architecture?, O’Reilly
Media, http://webservices.xml.com/pub/a/ws/2003/09/30/soa.
html, Accessed 28/2/2005.

HP (2004) Cooltown/Making Cooltown Real, Hewlett-Packard
Development Company, http://www.cooltown.com/cooltown/
index.asp, Accessed 18/2/2005.

 Sens-ation: a service-oriented platform for developing sensor-based infrastructures 167

Jonsson, M. (2003a) Supporting Context Awareness in Ubiquitous
Environments, Master’s Thesis, Department of Computer
and Systems Sciences, Stockholm University.

Jonsson, M. (2003b) ‘Supporting context awareness with the
context shadow infrastructure’, 1st Annual Workshop on
Affordable Wireless Services and Infrastructure – AWSI 2003,
3–4 June.

Kane, J. (2004) ‘The path from concept to reality: getting
information to the warfighter in the field’, The EDGE –
MITR’s Advanced Technology Newsletter, Vol. 8, No. 2, Fall,
pp.12, 13.

Liang, S., Toa, V. and Croitoru, A. (2004) ‘Sensor web and
GeoSWIFT – an open geospatial sensing service’,
International Society for Photogrammetry and Remote
Sensing XXth Congress – Geo-Imagery Bridging Continents,
12–23 July, Istambul, Turkey.

Lin, E.W. (2004) Software Sensors: Design and Implementation of
a Programming Model and Middleware for Sensor Networks,
Master’s Thesis, University of California, San Diego.

Liyanage, M. (2005) PHP Apache Module, http://www.entropy.ch/
software/macosx/php/, Accessed 28/2/2005.

Loevstrand, L. (1991) ‘Being selectively aware with the khronika
system’, Proceedings of the Second European Conference on
Computer-Supported Cooperative Work – ECSCW'91,
24–27th September, Amsterdam, NL, Kluwer Academic
Publishers, Dortrecht, NL, pp.265–278.

Lyytinen, K. and Yoo, Y. (2002) ‘Issues and challenges in
ubiquitous computing’, Communications of the ACM,
Vol. 45, No. 12, December, pp.63–65.

Microsoft Corp. (2005) COM: Component Object Model
Technologies, http://www.microsoft.com/com/default.mspx,
Accessed 18/2/2005.

Mitchel, K. (2004) MIT Project Oxygen, Computer Science and
Artificial Intelligence Laboratory, http://oxygen.lcs.mit.edu/,
Accessed 18/2/2005.

MySQL.com (2004) MySQL Documentation, http://dev.mysql.
com/doc/, Accessed 28/2/2005.

OMG (2005) Welcome to the OMG’s CORBA Website,
http://www.omg.org/corba/, Accessed 18/2/2005.

Schilit, B. (1995) The ParcTab Ubiquitous Computing Experiment,
http://www.ubiq.com/parctab/csl9501/paper.html, Accessed
18/4/2005.

Singh, M.P. and Huhns, M.N. (2005) Service-Oriented Computing:
Semantics, Processes, Agents, Wiley, NY.

Stanford, V. (2003) ‘Pervasive computing goes the last
hundred feet with RFID systems’, IEEE Pervasive
Computing – Journal on Mobile and Ubiquitous Systems,
Vol. 2, No. 2, April–June, pp.9–14.

Sun Microsystems Inc. (2003) Java(tm) Communications
API Users Guide, http://java.sun.com/products/javacomm/
javadocs/API_users_guide.html, Accessed 28/2/2005.

Sun Microsystems, I. Jini Network Technology (2005)
White Papers, http://www.sun.com/software/jini/whitepapers/
index.html, Accessed 18/2/2005.

The Apache Software Foundation (2003) The Apache Jakarta
Tomcat 5 Servlet/JSP Container, http://jakarta.apache.org/
tomcat/tomcat-5.0-doc/index.html, Accessed 20/2/2005.

The Apache Software Foundation (2005a) The Apache
HTTP Server Project, http://httpd.apache.org/, Accessed
28/2/2005.

The Apache Software Foundation (2005b) WebServices – Axis,
http://ws.apache.org/axis/, Accessed 28/2/2005.

Toa, V., Liang, S., Croitoru, A., Haider, Z.M. and Wang, C. (2003)
‘GeoSWIFT: an open geospatial sensing services for sensor
web’, GeoSensor Network Workshop, November, Portland,
OR.

Want, R., Hopper, A., Falcao, V. and Gibbons, J. (1992) ‘The
active badge location system’, ACM Transactions on Office
Information Systems, Vol. 10, No. 1, January, pp.91–102.

