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Abstract 
 

This paper is an extension to our recent work in which we presented a heterogeneous 

sensing devices deployment problem on environment with differential surveillance 

requirements. In this paper, we introduce SensDep as software design tool that 

incorporates several solution strategies to optimize sensor networks cost and coverage. 

The tool helps the designer answer many “what- if” questions that usually arise in the 

design of surveillance operations networks. It helps the designer set parameters, 

experiment with alternative designs and component properties, and see the relevant 

results. Also, it considers several operation capabilities for the sensing devices including 

reliability, mobility, transfer cost, sensors’ cost, lifespan and power self-scheduling in 

addition to the environment parameters during the deployment process. Moreover, it 

provides the designer the optimal deployment scheme for small size design using 

mathematical programming. It also provides near optimal schemes for large scale designs  

using a set of heuristic solutions. A set of experiments is conducted to test the tool 

capabilities for different design settings. Several design scenarios are presented to 

illustrate how the tool can be utilized.  

 
1. Introduction 
 

Advances in wireless sensing technologies have significantly broadened their 

applications including defense, environment protection, homeland security, infrastructure 

management, and healthcare. In most of these applications, the goal is to maximize 

coverage in a given environment using limited surveillance devices. Given the wide 

range of existing sensing technologies, sensors used in one surveillance operation could 
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vary in their cost, reliability, lifespan, energy consumption, mobility and power self-

scheduling capabilities. They may also differ in their coverage and communication 

ranges. Integrating the capabilities of these heterogeneous sensors in one deployment 

scheme complicates the planning of most surveillance operations, especially if these 

sensors were to be deployed in dynamic environments with differential surveillance 

requirements.  

Early contribution to the problem of surveillance deployment was reported in [6], as a 

solution to the Art Gallery problem. In this problem, the goal is to determine the 

minimum number of observers required to secure an art gallery with a non-uniform 

geometry. Different versions of this problem have been studied to include mobile guard 

and guards with limited visib ility (e.g., [12]). In general, research in the area of 

surveillance devices deployment has rapidly advanced with the emergence of wireless 

sensors networks. Most of research work in this area has concentrated on studying the 

optimal formation of a wireless sensing network that can be used to collect data from a 

given field and to transmit this data to one or more sink points [4, 5,10].  The problem is 

studied considering different assumptions regarding configuration of the monitored field 

and characteristics of the used sensors. For instance, the problem of providing 

differentiated surveillance service in a field using homogenous device set is studied in [3] 

and [21]. Advanced device capabilities such as mobility and power self-scheduling are 

considered in [1,2,8]. In addition, Howard studied deploying surveillance devices that 

may operate cooperatively through sharing information and/or surveillance tasks [7].  

In this paper, we present SensDep: a decision support tool for the design of large-

scale automated surveillance operations. The tool considers the deployment of 

heterogeneous set of sensing devices with advanced capabilities such as mobility and 

power self-scheduling. Furthermore, monitored fields with dynamic differential 

surveillance requirements are considered. This tool is expected to help surveillance 

architects answer a variety of “what- if” questions that usually arise in the design of large-

scale surveillance operations. 

The tool incorporates multiple algorithms that are capable of generating near-optimal 

deployment schemes for problems with special structures in short running time. These 

algorithms are based on a modeling framework in which the monitoring filed is divided 

into a gird of cells (zones). Each zone is defined through its location along with a time-
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varying function representing surveillance requirements. A heterogeneous set of sensing 

devices is assumed. These sensors could vary in their operational characteristics 

including reliability, lifespan, mobility, movement cost, and power self-scheduling 

capabilities. The solution determines the optimal deployment pattern for each sensor. A 

deployment pattern for one sensor is described in terms of the zone to be covered in each 

time interval of the monitoring horizon.    

The rest of this paper is organized as follows. The problem definition is given in 

section 2. The tool and its algorithms are described in section 3. Performance evaluation 

and experiment results are presented in sections 4 and 5. Finally, we give our conclusion 

in section 6. 

 
2. Deployment Problem  
 

Given is a field A to be monitored for a horizon of length T. The field is divided into 

small cells (zones) Ai ∈ . The surveillance requirement s for each zone are defined 

through a time-varying weight function t
iw , where Tt ∈ . This weight function defines the 

importance of the observations in this zone over the periodT . Also, given is a set of 

sensors S. These sensors differ in their operational characteristics as well as in their cost 

Cs. Each sensor Ss ∈  is described by its reliability t
sR , which might vary with time. In 

addition, a predefined lifespan sL  is attributed for each sensor. The lifespan of a sensor 

Ss ∈  is mainly based on its battery lifetime. Also, sensors could be stationary or mobile. 

Stationary sensors remain in the same zone from the time they are deployed to the end of 

the horizon T. On the contrary, mobile sensors are capable of moving among different 

zones to cover high weight observations in the different zones.  Each move is associated 

with a transfer cost t
sijE . All mobile sensors are assumed to have no restrictions on the 

start or the end locations of their deployment scheme.  

Sensors are assumed to have self-scheduling (state-switching) capabilities. Sensors 

could be active “on” to monitor weight observation t
iw  in zone i in interval t or inactive 

“off” otherwise (e.g., no observations). Thus, it saves the sensor’s lifespan to be used 

during other intervals with high observation weights. A maximum number of state-

switching sP is defined for each sensor. In this version of SensDep, all sensors are 
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assumed to have unlimited communication range and to cover exactly one zone at any 

given time. Given a limited set of heterogeneous sensing devices which are described in 

terms of t
sR , sL , sP , t

sijE , and Cs, the problem is to determine an efficient deployment 

scheme that integrates the capabilities of these sensors. The best deployment scheme 

maximizes the field coverage and minimize the overall sensors cost.  

 
3. SensDep Description 
 

As shown in Figure 1, the input to SensDep is a script which is supplied through 

the script editor component. The script is translated by the script translator component 

into a set of commands that are sequentially executed. These commands include calling 

the selected algorithms, reading the suitable input data, setting the required parameters, 

generating and displaying the solution. The solution module implements several 

algorithms that produce optimal and near optimal solutions. The optimal solution is 

provided by an integer mathematical program which is implemented using CPLEX-80. 

For problems with special structures, two heuristic  algorithms are provided: pattern-based 

algorithm and observation-based algorithm. These algorithms generate near optimal 

solut ion to large-size problems in very short running time compared to the time required 

to generate an exact optimal solution. In the following subsections, we describe the main 

properties of each of these sub-modules. 

 

3.1 Optimal Solution 

 
In this section, the optimal solution for the sensor deployment problem is presented. 

The problem is formulated using integer mathematical programming. A set of binary 

variables are defined as follows:  

1=t
six , if device s exists in active state on zone i  in time intervalt , and 0 otherwise. 

1=t
siy , if device s exists in inactive state on zone i  in time interval t , and 0 otherwise.  

1=t
sijm , if device s  is moved from zone i to zone j  at time interval t , and 0 otherwise.  

1=t
sion , if device s  is turned to active state by the end of time interval t on zone i , and  

  0 otherwise.  
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1=t
sioff , if device s  is deactivated by the end of time interval t on zone i , and 0  

 otherwise.      

1=sV , if sensor s is used on one of the zones and 0 otherwise. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: SensDep main modules 

 

The solution framework allows solving the following problem settings:  

A. Maximizing the field coverage consider the sensors’ time-dependent reliability 

as given in (1). In other words; the objective function is to cover zones with 

the highest observation weights with the most reliable sensors.  

Maximize : t
s

t
si

t i s

t
i Rxw ..∑∑∑       (1) 

Where 







=

Otherwise0
  t,interval  timeduring  i zoneon 

 state activein  deployed is s device ssensing If 1
t
six   

B. Maximizing the coverage based on sensors’ time-dependent reliability while 

limiting the overall sensors cost to a given budget B. The objective function 

will be the same as in (1). However, constraint (2) needs to be added which 

limits the overall sensors cost to B. 
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BCV s
s

s ≤∑ .                                           (2) 

Where 




=
Otherwise0

  used,  is s device sensing If 1
sV  and 

sxV
i t

t
sis ∀≤ ∑∑       (3) 

C. Maximizing the coverage considering the sensors’ time-dependent reliability 

and minimizing the sensors total cost as given in (4). Using the weight 

parameters ?1 and ?2, the system cost is subtracted from the sum of all 

collected observations as illustrated in the objective function given in (4). 

Maximize : ∑∑∑∑ −
s

ss
t
s

t
si

t i s

t
i CVRxw ..... 21 λλ     (4) 

 

The common set of constraints for these different problem settings could be described 

as follows (see our recent work in [13] for more details). 

• Deployment constraints to relate t
six  and t

siy  

 1≤+ t
si

t
si yx     sit ,,∀      (5) 

 ∑ ++ −≥
j

t
sj

t
si

t
si xxy 11    sit ,,∀      (6) 

           ∑ −− −≥
j

t
js

t
si

t
si xxy 11                                sit ,,∀      (7) 

           ∑ ++ −≥
j

t
js

t
si

t
si xyy 11    sit ,,∀      (8)  

           ∑ −− −≥
j

t
js

t
si

t
si xyy 11    sit ,,∀      (9)  

           Where 







=

Otherwise0
  t,interval  timeduring  i zoneon 

 state inactivein  deployed is s device sensing If 1
t
siy  

• Assignment constraints to ensure that each zone is covered by at most one sensing 

device in any time interval. Also, at each time interval, a sensing device is 

covering at most one zone. 

      ( )∑ ≤+
i

t
si

t
si yx 1    st,∀      (10) 

            ∑ ≤
s

t
six 1    it,∀       (11) 

• Mobility constraints which record sensors movement and limit number of moves 

to sM . 
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( ) ( )( ) 111 −+++≥ ++ t
si

t
si

t
sj

t
sj

t
sij yxyxm  sjijit ,,,, ≠∀     (12) 

11 ++ +≤ t
sj

t
sj

t
sij yxm    sjit ,,,∀     (13) 

t
si

t
si

t
sij yxm +≤     sjit ,,,∀     (14) 

∑∑∑ ≤
i

s
j t

t
sij Mm    s∀       (15) 

• State switching constraints which keep track of sensors switching and limit the 

number of switching to sP . 

( ) 11 −+≥ + t
si

t
si

t
si yxon    sit ,,∀      (16) 

1+≤ t
si

t
si xon     sit ,,∀      (17) 

t
si

t
si yon ≤     sit ,,∀       (18) 

( ) 11 −+≥ + t
si

t
si

t
si xyoff           sit ,,∀      (19) 

1+≤ t
si

t
si yoff                           sit ,,∀      (20) 

t
si

t
si xoff ≤                        sit ,,∀      (21) 

( )∑∑ ≤+
t i

s
t

si
t
si POffOn    s∀      (22) 

• Lifespan constraints to limit the number of times that the sensor is active to 

sensor’s lifespan sL . This used lifespan is computed using  t
six  while it is one and 

the mobility cost  t
sijE if the sensor is moved from zone i to zone j at time t. 

s
i j t

t
sij

t
sij

t i

t
si LmEx ≤+ ∑∑∑∑∑    s∀      (23) 

• Binary constraints  
},,,,{ t

si
t
si

t
sij

t
si

t
si offonmyx = 1 or 0 sit ,,∀                 (24) 

 

Due to the intractability of the problem, the optimal solution based on the formulation is 

obtained only for small-size problems. For large-scale problems, the following heuristics 

are developed.  

 

3.2 Pattern-Based Solution 

 
The idea of the pattern-based algorithm is to decompose the problem in terms of 

the available set of sensing devices. Observations are clustered in patterns. Each pattern 

is described in terms of its zones and time intervals in which these zones are visited. 

These patterns are generated for sensing devices with unlimited lifespan, unconstrained 

mobility, unlimited state switching capabilities, and sensor’s cost is assumed to be zero. 

Available sensing devices are then assigned to these patterns. An optimal matching 
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problem is then solved to ensure that available devices are optimally utilized and the 

sensors’ cost constraint is satisfied. Using this decomposition approach, a solution 

algorithm is developed. The algorithm consists of three main steps as follows. 

 

Solution Algorithm 

Step 1: Generation of deployment patterns 

Step 2: Determining device-pattern performances   

Step 3: Device-Pattern Matching 

 

Step 1: Generation of deployment patterns 

The first step generates the deployment patterns for a set of hypothetical devices 

S ′  with unlimited capabilities. These deployment patterns are generated such that they 

include observations with the highest weights in the entire horizon. Generated patterns  

are not overlapping in the sense that two patterns cannot include the same observation. In 

this step, k patterns are generated. The value of k is equal to the number of given sensors 

|S| if |S| ≤  |A|, where |A| is the number of zones, otherwise k=|A|. Figure 2 illustrates a 

greedy algorithm that is used to generate these patterns. The highest k observations at 

each time interval are picked and sorted in a decreasing order. At each time, the highest 

observation is assigned to a specific pattern. The process continues until all patterns are 

filled with T observations, where T is the monitored horizon. Sorting the observations 

takes O(T |A| log |A|) operations. Appending the observations to the patterns requires 

O(Tk) operations. Since k can not be more than the |A|, the overall complexity of this step 

is O(T(|A| log |A|)).   

 

Algorithm 1: Patterns-Generation 
for t=1 to T do 

   List = Sort( t
iW ) 

     for l=1 to k  do 
       H_Patterns [t][l] = List [l]  
  l++ 
    end  for 
       end for 

Figure 2: Patterns Generation Algorithm 
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Step 2: Determining sensor-pattern performances.   

In step 1, different patterns are generated for a set of unrestricted sensors. In other 

words, these sensors are assumed to have no restriction on their operation characteristics 

( t
sR , sL , sM , sP and t

sijE ). Once the actual sensors are applied to these patterns, they are 

expected to result in less performance. Determining the performance of each sensor when 

assigned to any of the generated patterns is done through two different greedy algorithms: 

(1) Movement-based and (2) Observation-based.  Movement-based algorithm is suitable 

for problem structures where variations in the sensors transfer cost are large. On the other 

hand, the observation-based algorithm is suitable for problems where sensor’s transfer 

costs are relatively fixed.  

 

Movement-Based Greedy Algorithm:  

In any of the generated patterns 'A , assume two observations 'Ai ∈ and zone 'Aj ∈  with 

weights 't
iw and ''t

jw , respectively, where Ttt ∈'',' and ''' tt > . Also, assume that device 

Ss ∈  loses 't
sije  and 1'' −t

sije  lifespan time units to travel from link i  to link j  at intervals 't  

and ''t , respectively. Furthermore, reliability levels of 'tR and ''tR are estimated for this 

device at times 't  and ''t . The gain 't
sijg  associated with covering these two observations 

consecutively is computed as follows.  

'

''''''
'

2 t
sij

t
i

tt
i

t
t
sij e

wRwR
g

+
+

=         (25)  

     
As shown in equation (25), the numerator gives the gained observation weights 

considering the device’s variable reliability, while the denominator describes the device’s 

lifespan consumed in performing this task. This lifespan includes two time intervals plus 

the time lost in the move assuming that this move is performed at the end of interval 't . 

These gain values are computed for each feasible move and then sorted in a descending 

order.  Starting from the top of the list, a move is directly appended to the pattern under 

construction. The resulting pattern is then checked for feasibility against the sensor 

capabilities (lifespan, number of moves and number of switches). If feasible, the new 

pattern is accepted. Otherwise, the algorithm proceeds to the next element in the list of 

gain values until all elements are scanned or until one of the device’s limitations is 
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reached. As shown in Figure 3, the sorting of the gain values list could be conducted 

in )log( 22 TTO . This list is scannedT times to check the feasibility of each observation 

addition to the pattern. Thus, Step 2 has a worst case complexity of )log( 23 TTO .  

Algorithm 2:  Movement-Based Greedy 
  Table = GeneratMovementTable(K_List) 
  S_table = Sort (table) 
   for l=1 to S_Table.size 
    Feasible = CheckFeasibility(S_Table[l])     
       if  (Feasible) 
       Current_Pattern+= S_Sorted[l]  
     end if  
     if (sensor is saturated) 
      Stop 
    end if 

    end for  

Figure 3: Movement-based greedy  algorithm 

 

Observation-Based Greedy Algorithm: 

Given a pattern p, observations in this pattern are sorted based on the product of their 

weights and the sensor reliability in the corresponding time intervals. Observations in this 

sorted list are sequentially appended to the pattern while ensuring that each added 

observation is not violating the capability of the sensor. In other words, an observation is 

added to the pattern only if the sensor’s lifespan, maximum allowed number of moves, 

and maximum allowed number of state switches are not violated. Figure 4 illustrates the 

observation-based algorithm used to determine near optimal pattern for each sensor. 

Sorting the pattern observations requires O(TlogT) operations, where T is monitored 

horizon. The feasibility checking requires O(T). Therefore, the worst case complexity of 

this algorithm is O(TlogT) operations per pattern. 

 Algorithm 3: Observation-Based Greedy 

List = Sort ( t
iw , tR ) 

for l=1 to T 
observation= List[l]  
checkFeasibility(observation) 

    if (feasible) addToPattern(observation) 
end for  

Figure 4: Observation-Based Greedy Algorithm 
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Step 3: Device-Pattern Matching 

Step 2 gives the total observation weights spO that could be collected by assigning 

sensing device Ss ∈  to deployment pattern Kp ∈ considering the limited capability of 

this device. Now, assume that this value is determined for all device-pattern 

combinations. The problem is to find the optimal match between available devices and 

the deployment patterns such that: a) available devices are optimally utilized, b) the total 

cost is minimized and c) the given budget B is not violated. A similarity between this 

optimal matching problem and 0/1 knapsack problem [14] can be made. 0/1 knapsack 

problem is informally defined as; we are given a set of n items from which we are to 

select some number of items to be carried in a knapsack. Each item has both a weight and 

a profit. The objective is to choose the set of items that minimize the weights, maximize 

the profit and fits the knapsack limit. This problem is extensively investigated and 

already has many solutions; see [9,15,20]. Our solution to the optimal matching problems 

is inspired by the 0/1 knapsack solutions.  

 Given a list of four tuples <k, s, o, c>; where k is a pattern, s is a sensor, and o is 

the objective  resulted from using sensor s with pattern k, and c is the sensor’s cost.  

Objective cost ratio Roc is computed by dividing the resulted objective o and the sensors 

cost c. This list is sorted in decreasing order based on the Roc. The top element in the list 

is selected and added to the final assignment list named F_list. Then, every entry contains 

the selected pattern Kk ∈  and sensor Ss∈ is deleted from the sorted list. This is 

repeated until there is no element in the list or the given budget B is reached. As shown in 

Figure 5, sorting the list requires O(K|S| log K|S|) and scanning it requires  O(K|S|). 

Thus, the overall complexity is O(K|S|). 

Algorithm 4: Device-Pattern Matching 
List = Sort (SPRoc _List) 
while (List is not empty or the budget B is not violated)   

      F_List = Select(List) 
      DeleteEntries (selected sensor and/or pattern) 
  end while 

Figure 5: Device-pattern matching 

 
3.3 Global Observation-Based  
 

Global observation-based algorithm is more suitable for cases where sensors 

transfer cost among the different zones is relatively fixed. Following this algorithm, 
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observations are sorted in descending order based on their weights. In addition, sensors 

are sorted in descending order based on their capabilities. Equation (26) illustrates an 

example of how each sensor is evaluated in terms of the sensor’s lifespan ls, number of 

switching ps, and number of moves ms, respectively.  We use g1, g2, and g3 to weigh the 

importance of the different operational parameters for this sensor. For instance, TRAMA 

[17], T-MAC [16], and S-MAC [18] routing protocols require more switching 

capabilities to reduce sensors’ power consumption. Thus, it gives higher value to g2. 

Also, SPIN [11] might need sensors to be “on” all the time. Therefore, g1 will be the 

factor the designer needs to emphasize more.  

s

t
sss

C

TRmgpglsg
sP

∑++
=

)/)).((...(
)(

321

     (26)  

An observation is selected from the top of the list and its feasibility is checked 

against the top sensor. If feasible, the observation is added to the sensor’s final pattern. If 

not, the observation feasibility is checked against the next sensor in the list. If the 

observation turned to be infeasible for all sensors; the observation is discarded. This is 

repeated until no more observations available or sensors are saturated.  

 

4. Performance Evaluation 
 

In this section, a set of experiments are conducted to measure the performance of 

the algorithms compared to the optimal solution. We specifically study the effect of 

changing the problem size (number of zones, number of sensors, and the size of the 

horizon) on the time it takes to obtain an optimal solution. Three different sets of 

experiments are conducted.  In all experiments, the time-varying observations on the 

different zones were generated randomly following a uniform distribution U(0,200). In 

addition, a heterogeneous set of sensors is assumed. Sensors’ operational 

characteristics sL , sM , t
sijE and sP are generated randomly as function of the length of 

monitoring period using the uniform distribution U(1, T ). Sensors reliability is assumed 

to be fixed all the time.  

As shown in Table 1, the two heuristics are generally able to achieve reasonable  

average coverage performance. The coverage performance of movement-based greedy 

algorithm ranges form 82% (experiment 1) to 98% (experiment 5). The coverage 
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performance of observation-based greedy Algorithm ranges form 81% (experiment 1) to 

98% (experiment 9).  Global observation-based coverage performance ranges from 91% 

(experiment 1) to 100% (Experiment 5).  In addition, all of the heuristics are running in 

much less time compared to the running time required to obtain optimal solution. For 

example, the required time to run the global observation-based algorithm on a field with 

20 zones and 10 sensors for 12 units of time is .0000014 % from the required time of the 

optimal solution.  
 

Table 1: Optimal and near optimal solutions comparison 
Movement-Based 
Greedy Algorithm 

Observation-Based 
Greedy Algorithm 

Global 
Observation-Based 

 
Exp. 
No. 

 
No. of 
Zones 

 
No. of 
Sensors Horizon 

 
Objective  

(%) 
Running 
Time (%) 

Objective 
(%) 

Running 
Time (%) 

Objective 
(%) 

Running 
Time (%) 

1 10 5 12 82 .1 81 .005 91 .002 
2 20 5 12 82 .03 94 .002 94 .0003 
3 25 5 12 80 .03 94 .003 94.5 .0004 
4 30 5 12 87 .02 89 .001 94.6 .0002 

 
5 20 3 12 98 .12 95 .3 100 .002 
6 20 5 12 82 .03 94 .002 94 .0003 
7 20 10 12 82 .01 86 .0001 98 .0000014 

 
8 20 5 3 89 .09 92 .03 99 .006 
9 20 5 6 87 .04 98 .006 99 .001 
10 20 5 12 82 .03 94 .002 94 .0003 

 
 
5. Experimental Design Scenarios  
 

In this section, we illustrate part of SensDep capabilities by showing how the tool 

can be used in answering questions that frequently face architects while planning 

surveillance operations. Three scenarios are presented. In the first scenario, the tool 

provides surveillance architects with the relationship between the maximum achievable 

coverage performance and the corresponding cost of the surveillance operation. A 

homogenous set of sensors is assumed in this scenario.  

In the second scenario, the assumption of having homogenous set of sensors is 

relaxed. The coverage performance and corresponding surveillance cost are given for 

different sets of sensors. Each set consists of a combination of three different sensor 

types. The last scenario illustrates how the architects can evaluate the effect of the 
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sensors attributes on overall coverage performance. It also enables measuring the trade-

off among the different attributes.  

 

Scenario 1 

In this design scenario, the tool provides the overall coverage performance for 

different surveillance budgets. Given is a field of 20 zones, which is monitored for twelve  

time intervals. The field is covered by a homogenous set of sensors. A hypothetical cost 

value of $100 per sensor is assumed. Figure 6 illustrates the maximum achieved coverage 

performance and the correspond ing cost resulting from using different number of sensors. 

As expected, increasing number of sensors results in better coverage performance. For 

instance, if only five sensors are available, an objective function of about 2000 units is 

achieved. This value jumped to more than 6000 units when 30 sensors are used.    
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Figure 6: Objective -Cost and number of sensors 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

(5-5-15) (5-10-10) (5-15-5) (10-5-10) (10-10-5) (15-5-5)

Number of sensors from each type (S1-S2-S3)

O
b

je
ct

iv
e/

C
o

st

Objective Cost

Figure 7: Multi-type sensors 

 

Scenario 2 

   Now assume the availability of three types of sensors. These sensors differ in their 

capabilities as well as in their cost per unit. Without loss of generality, sensors with 

longer lifespan, more reliable and higher self-scheduling and mobile capabilities are 

assumed to be more expensive. We also assume that no more than fifteen sensors can be 

used from any of the three available senor types. A field of 20 zones that is monitored for 

15 time intervals is used in this experiment. Figure 7 illustrates the coverage performance 

and the corresponding surveillance cost when different set of sensors are used. These sets 

consist of different combinations of the three available sensor types.  The most expensive 

combination contains 5 sensors from S1, 5 sensors from S2, and 15 sensors from S3; (5-
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5-15). On the contrary, the set (15-5-5) is the least expensive, which costs $4000, results 

in a coverage performance of about 7000 units.  

 

Scenario 3 

In this scenario, the tradeoff between the sensors’ different attributes is examined. 

Figures 8 to 11 illustrate the impact of the sensors’ reliability, lifespan, mobility and state 

switching capabilities on the coverage performance. In these experiments, a homogenous 

set of sensors are used to cover a filed of 20 zones for 12 time intervals.  

 Figure 8 illustrates the relationship between the number of sensors and overall 

coverage performance for different levels of the sensors reliability. As illustrated in the 

figure, achieving the same coverage performance using less reliable sensors can only be 

achieved through using more of these sensors. For instance, five sensors with 100% 

reliability give the same coverage performance of 30 sensors with 25% reliability. The 

same pattern could also be observed when sensors with different lifespan are examined. 

As the sensors’ lifespan decreases, more sensors will be needed to achieve a certain 

required coverage performance. As illustrated in Figure 9, to achieve a coverage 

performance of 3100 units, 15 sensors are needed if the sensors lifespan is equal to the 

monitoring horizon. This number jumps to about 30 sensors if the sensors lifespan is only 

25% of the monitoring horizon.  

In Figure 10, the coverage performance for sensors with different mobile 

capability is examined. As the sensor’s maximum number of allowed moves decrease, 

more sensors are needed to achieve the same coverage performance. Similarly, in Figure 

11, using sensors with high state-switching capabilities reduces the number of required 

sensors to achieve the same coverage performance.  
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Figure 8: Sensors Reliability 
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Figure 9: Sensors Lifespan 
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Figure 10: Sensors Mobi lity 

0

500

1000

1500

2000

2500

3000

3500

4000

5 10 15 25 30
Number of sensors

O
b

je
ct

iv
e

25% 50% 75% 100%

Figure 11: Sensors State S witching 
 
 
6. Conclusions  

 

In this paper, we presented SensDep which is a decision support tool for the 

design of large-scale automated surveillance operations. The new tool considers the 

deployment of heterogeneous set of sensing devices in environments with differential 

surveillance requirements. The tool works in interactive mode to help surveillance 

architects answer wide variety of “what-if” questions that usually arise in the design of 

large-scale surveillance operations. The tool consists of two main modules: script and 

solution. In script module, the designer requirements are edited and translated. In the 

solution module, the solution for the deployment problem could be obtained optimally 

using integer mathematical program that is formulated and implemented using CPLEX-

80, or through using two heuristic algorithms which provide near-optimal solutions for 

problems with special structures. To illustrate the different capabilities of the tool, several 

experimental design scenarios are presented. In these scenarios, the tool provides 

surveillance architects with the relationship between the maximum achievable coverage 

performance and the corresponding surveillance cost assuming the use of homogenous 

and heterogeneous sets of sensors. In addition, the experiments illustrate how the 

architects can evaluate the effect of the sensors attributes on overall coverage 

performance and also to measure the trade-off among the different attributes.  
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