
Chapter 1

SENSE: A WIRELESS SENSOR NETWORK

SIMULATOR

Gilbert Chen, Joel Branch, Michael J. Pflug, Lijuan Zhu, and Boleslaw
K. Szymanski
Department of Computer Science,
Rensselaer Polytechnic Institute

Abstract

A new network simulator, called SENSE, has been developed for

simulating wireless sensor networks. The primary design goal is to ad-

dress such factors as extensibility, reusability, and scalability, and to

take into account the needs of different users. The recent progresses

in component-based simulation, namely the component-port model and

the simulation component classification, provided a sound theoretical

foundation for the simulator. Practical issues, such as efficient mem-

ory usage, sensor network specific models, were also considered. Con-

sequently, SENSE becomes an ease-of-use and efficient simulator for

sensor network research.

Keywords: Wireless Sensor Networks, Network Simulation, Component-Based Sim-

ulation

Introduction

The emergence of wireless sensor networks created many open issues
in network design [?]. The three main traditional techniques for ana-
lyzing the performance of wired and wireless networks were analytical
methods, computer simulation, and physical measurement. However,
many constraints imposed on sensor networks, such as energy limita-
tion, decentralized collaboration, and fault tolerance necessitate the use
of complex algorithms for sensor networks that usually defy analytical
methods. Furthermore, few sensor networks have come into existence,
for there are still many unresolved research, design and implementation
problems, so measurements are virtually impossible. It appears that

Bolek
Text Box
Advances in Pervasive Computing and Networking, Springer, New York, NY, 2004, pp. 249-267



2

simulation is currently the primary feasible approach to the quantita-
tive analysis of sensor networks.

ns2 (http://www.isi.edu/nsnam/ns/), perhaps the most widely used
network simulator for research, has been extended to include some basic
facilities to simulate sensor networks. However, one of the problems of
ns2 is its object-oriented design that introduces much unnecessary inter-
dependence between modules. Such interdependence sometimes makes
the addition of new protocol models extremely difficult, which can only
be mastered by those who have intimate familiarity with the simulator.
The difficulties in extension are not a major problem for simulators tar-
geted at traditional networks, for there the set of popular protocols is
relatively small. For example, Ethernet is widely used for wired LAN,
IEEE 802.11 for wireless LAN, TCP for reliable transmission over unre-
liable channels, etc. For sensor networks, however, the situation is quite
different. There are no such dominant protocols or algorithms and there
will unlikely be any soon. A sensor network is often tailored to a par-
ticular application with specific features, so it is unlikely that a single
algorithm can always be the optimal one under various circumstances.

Many other publicly available network simulators, such as J-Sim [
?], SSFNet (http://www.ssfnet.org), Glomosim [?] and its commercial
descendant Qualnet, attempted to address problems that were left un-
solved by ns2. Among them, J-Sim developers realized the drawback
of object-oriented design and tried to attack this problem by inventing
a component-oriented architecture. However, they chose Java as the
simulation language, inevitably sacrificing the efficiency of simulation.
SSFNet and Glomosim focus on parallel simulation, with the latter tai-
lored specifically to wireless networks. They do not appear superior to
ns2 in the respects of design and extensibility.

SENSE (SEnsor Network Simulator and Emulator) aims to be an effi-
cient and powerful sensor network simulator that is also easy to use. We
identify three most critical factors in its design as extensibility, reusabil-
ity, and scalability. We distinguish also three types of users as high-level
users, network builders, and component designers. In the next section,
we explain what each factor implies and how SENSE meets the differ-
ent needs of all users. In the sections that follow, we present in details
the design decisions and implementation that are centered around these
design factors and that take full consideration of needs of all three types
of users. Finally, we will compare the performance of SENSE with that
of NS using the flooding simulation as a benchmark.



SENSE: A Wireless Sensor Network Simulator 3

1. Design Philosophy

1.1 Extensibility, Reusability and Scalability

The enabling force behind the fully extensible network simulation ar-
chitecture in SENSE is the recent progress in component-based simula-
tion [?]. A component-port model frees simulation models from interde-
pendence usually found in an object-oriented architecture, and a simu-
lation component classification naturally solves the problem of handling
simulated time. The component-port model makes simulation models
extensible: a new component can replace an old one if they have compat-
ible interfaces, and inheritance is not required. The simulation compo-
nent classification makes simulation engines extensible: advanced users
have an option of developing new simulation engines that meet their
special needs.

The removal of interdependence between models also promotes reusabil-
ity. A component developed for one simulation can be used in another
if it satisfies the latter’s requirements on the interface and semantics. In
SENSE, another form of reusability is made possible by the extensive
use of C++ template. A SENSE component is usually declared as a
template class so that it can handle different types of data, depending
on the type parameters used to instantiate the component.

Unlike many other parallel network simulators, especially SSFNet
(http://www.ssfnet.org) and Glomosim [?], parallelization will be pro-
vided as an option to the users of SENSE. This decision was based on
our belief that completely automated parallelization of sequential dis-
crete event models, however tempting it may seem, is impossible. Even
if it were possible, it would be doomed to be inefficient as compared to
hand-tuned parallel code. Therefore, parallelizable models must require
much more effort and time than sequential models, while many users are
not interested in parallel simulation at all. In SENSE, a parallel simu-
lation engine will be capable of executing an assemblage of compatible
components. If a user is content with the default sequential simulation
engine, then every component in the model repository can be reused.

1.2 High-Level Users, Network Builders and
Components Designers

High-level users solely rely on the model repository and network tem-
plate library from where they can retrieve various network models and
configurations to construct a sensor network simulation. For them, the
process of building a simulation merely consists of selecting appropri-
ate models and templates and perhaps changing some parameters. Such



4

users may not need any programming skills. Extensibility and reusabil-
ity are not their concerns, but they may want the simulations to be
scalable.

The network builders are not satisfied with the available network tem-
plates, but they still rely on the model repository to obtain network
models. They may need to create new network topologies and traffic
patterns. These users may not have immediate or knowledge of popular
programming languages, such as c/c++, Java. Extensibility is not an
issue for them, since they are not interested in modifying the existing
models. However, models must be reusable so that they can be plugged
into many simulations.

The component designer often intend to modify available models or
even build new ones from scratch. For example, they can develop a
proprietary MAC layer protocol which replaces the standard one. Their
main concern is the extensibility; how easily existing models can be
extended or replaced determines the willingness of these users to use
the simulator. Reusability may or may not be an issue, depending on
whether the new model is intended to be used in other simulations. The
biggest challenge of the design for these users is to make the modeling
process smoother, faster, and more reliable. The simulator should pro-
vide facilities to speed up checking, debugging, and verification of the
models; there must be visualization tools to help identify any problems
quickly; there must be standards that these users can follow in order for
the models to be more accessible by others.

2. Component-Based Design

SENSE is built on top of COST [?], a general purpose discrete event
simulator. The design of COST was largely influenced by the new under-
standings of both component-based software architecture and component-
based simulation. Specifically, a component-port model was proposed to
allow complex software systems to be built as a composition of compo-
nents. Later, it was extended to the simulation domain where compo-
nents are categorized into different types, based on how simulated time
is dealt with.

2.1 Component-Port Model

In the component-port model, a component communicates with others
only via inports and outports. An inport implements a certain function-
ality, so it is similar to a function. In contrast, an outport serves as
an abstraction of a function pointer: it defines what a functionality it
expects of others.



SENSE: A Wireless Sensor Network Simulator 5

The fundamental difference between an object and a component in
the component-port model is that the interactions of a component with
others can be fully captured by the interface, while this is not the case for
an object. For instance, an object is allowed to call member functions of
any other object if it keeps a pointer or a reference to that object. Such
communication, however, is not reflected in the interface or declaration
of the object, and becomes manifest only when the implementation code
is being examined. The resulting problem is that any function call to
external objects will introduce implicit interdependence between objects,
preventing the object from being reusable.

The existence of outports distinguishes components from objects. Out-
ports impose constraints on the dynamic runtime interaction between
components. The important consequence of their existence is that the
development of a component can now be completely separated from the
application context in which the component will be used, leading to
truly reusable components. Besides, components become more extensi-
ble, because there are fewer constraints on a component that provides
the desired functionality. For instance, in an object-oriented environ-
ment, if an object A is to be replaced by another object B, object B has
to be derived from A. In the component-port model, this constraint is no
longer necessary. Any component providing the satisfied functionality
can be used, regardless of its component type.

2.1.1 Implementing Components. The subsequent task for
us is to implement the component-port model with C++, a programming
language that is usually regarded as object-oriented. Fortunately, we
found template-based techniques can be utilized to archive this goal,
although there are certain limitations due to the object-oriented features
of the language.

First, we declare an mfunctor class that represents function objects for
member functions of class TypeII. TypeII is the main component class,
and we will explain why it is so called later in this section. The mfunctor
class overrides the operator() function, so it can be called the same way
as a normal function. Since it keeps a pointer to the component, it can
be used to call the member function of any object derived from TypeII,
if initialized correctly.

template <class T>

class mfunctor

{

public:

typedef void (TypeII::*funct_t)(T&);

mfunctor(TypeII* _obj, funct_t _f)



6

:obj(_obj),f(_f) {}

void operator() (T& t) { (obj->*f)(t); }

private:

TypeII* obj;

funct_t f;

};

The inport class is just a wrapper class that extends mfunctor so that
the latter can be more conveniently initialized and invoked. To initialize
an inport, a pointer to the component and a member function must be
provided.

template <class T>

class inport

{

public:

void Setup(TypeII * c, mfunctor<T>::funct_t f)

{

functor = new mfunctor<T>(c,f);

}

void Write(T& t) { (*functor)(t); }

private:

mfunctor<T> * functor;

};

The outport class maintains a pointer to the inport to which it is con-
nected. The Connect() function can be called to initialize this pointer.
When the Write() function of outport is called, the Write() function of
inport will be called, which in turn will invoke the member function of
the component that was used to initialize the inport.

template <class T>

class outport

{

public:

void Connect(inport<T>&_in) { in=&_in;}

void Write(T& t) { in->Write(t); }

private:

inport<T>* in;

};

One drawback of implementing components as stated above is that the
inter-component communication may become quite costly, as the C++



SENSE: A Wireless Sensor Network Simulator 7

compiler cannot completely optimize away the overhead of these func-
tion calls. However, it is possible to develop an optimization technique
which can eliminate such communication overhead by merging compo-
nents together so that the function to be called can be directly embedded
into the code that makes the call, much the same as how inline functions
work.

Another problem with the above implementation is that member func-
tions are limited to take only one argument, as in standard C++ tem-
plate classes with different numbers of template parameters cannot be
given the same name. This problem can be solved by the use of wrap-
per classes around several arguments to make them appear as a single
argument.

2.1.2 Components for Sensor Network Simulation. The
component-port model gives the users a great deal of freedom in con-
figuring sensor nodes. Figure 1.1 shows the internals of a typical sensor
node. The sensor node is a composite component. It consists of a
number of smaller primitive components, each implementing a certain
functionality. Normally a sensor node has some layered network proto-
col components, a power component and a battery component both of
which are related to power management, and others such as mobility
and sensor. The inports and outports of the sensor node component are
directly connected to the corresponding inports and outports of internal
components.

This structure, however, is by no means the only one that users must
strictly follow when they are building their own nodes. The user can
freely remove or add a component, as demanded by the particular goal
of the simulation. For instance, the network protocol stack can be either
simplified by removing the net component, or tuned up by adding a
new transport layer without affecting any other components. A queue
component can be easily added between the network layer and the mac
layer to prevent packets from being dropped when the mac layer is busy
transmitting other packets.

In theory many programming languages can be used to configure sen-
sor nodes into a network. Configuration is as simple as setting the pa-
rameters of all components and then interconnecting their inports and
outports. In this phase, components do not communicate with each
other, so any object-oriented language is sufficient to perform the task.
Currently, C++ is chosen to be the only configuration language, since it
is also the implementation language for components. The simplicity of
the configuration does allow such languages as TCL or XML to be used.



8

net

app

mac

mobility

to_channel from_channel pos_out

sensor
Sensor Node

data_in

battery

power phy

Figure 1.1. The internal structure of a typical sensor node

In addition, it is quite natural to develop a simple scripting language
specifically for the network configuration phase.

2.2 Simulation Component Classification

The component-port model clarifies the role of components in the de-
velopment of general software systems. It still remains unknown, how-
ever, how the component-port model can be applied to simulation. The
answer lies in a simulation component classification that naturally ex-
tends the component-port model to the simulation domain [?].

According to this classification, based on the way how simulated time
is handled, simulation components are grouped into time-independent,
time-aware and autonomous classes, also named Type I, Type II and
Type III classes, respectively.

A Type I component does not have the notion of simulated time. It
is passive, as it never generates events without first having received an
event. A Type I component, when processing an event received from
other components, may generate new events that are required to have
the same timestamp as the incoming event that triggered it. Yet, the
component itself is unaware of the time semantics. Neither does it know
whether it is running as a part of a simulation program or a part of a non-
simulation program. For this reason, a time-independent component is
said to be time-unaware.

In contrast, Type II components are time-aware components. They
cannot advance the simulated time themselves, but they can make a time
advance request via a special object called a timer. Timers provide a
mechanism for Type II components to generate events whose timestamp
is greater than the current simulated time. To schedule such a future
event, a timer is set with a time increment representing the difference



SENSE: A Wireless Sensor Network Simulator 9

between the current simulated time and the timestamp of the future
event. As soon as the specified simulated time increment elapses, the
component where the timer resides will be notified and then forced to
process the activated event.

Type III components are named autonomous components because
they maintain their own simulation clock themselves. A clock indicates
the simulated time throughout the simulation. A sequential simulation is
a Type III component by itself, which does not communicate with other
Type III components. In parallel simulation, there are usually several
Type III components, each mapping to a process or thread. These Type
III components have to be synchronized by certain algorithms so that
they can interact with each other correctly by exchanging events.

The simulation component classification leads to a hierarchical mod-
eling process in SENSE. Because of the composability of components, a
number of components can be combined into a single component. How-
ever, this kind of composition does not change the component type. If
every individual component is of Type I, so will the composite compo-
nent. If at least one of them is of Type II, then the composite compo-
nent will also be of Type II. A simulation engine changes the type of the
component. A simulation has to be a Type III component, so usually
building a simulation involves deployment of one or several simulation
engines.

This hierarchical modeling process distinguishes SENSE from many
other parallel network simulators. There, the simulation engines are of-
ten built-in, and therefore users are forced to use the simulation engines
provided by the simulator designers. Advanced SENSE users are given
the option of building their own simulation engines, as the particular
application they are investigating may call for a specific simulation algo-
rithm (as of the time of this writing the parallelization of the simulator
is still in progress).

3. Packet Management

A network simulation is composed of two types of entities: one are
the static components that simulate various network devices and the
other the dynamic packets that are created, transmitted, and received
by components. The previous sections all dealt with only the simula-
tion models, and we still need a good packet management scheme to
effectively manipulate the packets. It turns out that this is not a trivial
problem.

Our main consideration for the packet management is that it must be
memory-efficient. Memory has become the most serious bottleneck that



10

prevents large simulation programs from running on computers equipped
with limited memory. Because of the extremely slow disk access speed,
programs that rely on virtual memory are often an order of magnitude
slower than those that can fit into the physical memory. For this reason,
we decided to design a packet management scheme that consumes as
little memory as possible.

This consideration makes the packet management scheme in ns2 un-
suitable. In an ns2 simulation, every packet, no matter which protocol
layer it belongs to, has to occupy the same amount of memory. It works
well when protocol layers (other than the top one) do not create new
packets, for instance, when each protocol simply appends its header to
the packet and then forwards it to the lower layer. This is often not
the case, however. A lower layer protocol may break a large packet into
many smaller ones, as in fragmentation; it may also create new control
packets, not including the original packet from the higher layer, as in
handshake. In these cases, a considerable amount of memory would be
wasted if we treated all packets as if they were of the same size.

Therefore, we came up with a layered packet structure, as shown in
Figure 1.2. Each layer maintains its own packets, which usually consist
of a header (denoted by H) and a payload field (denoted by P). The
payload field contains either a pointer to, or a copy of, the packet at the
intermediate upper layer. If the size of the upper layer packet is much
larger than the size of a pointer, then a pointer instead of the packet
itself can be kept, represented by dotted arrows; otherwise an actual
copy of the packet, represented by solid arrows, will be more convenient.

app

net

mac

phy

H

data

P

P

P

H

H

Figure 1.2. The Layered Packet Structure

Another decision we made regarding the packet management is that
a packet sent by one node will be shared by all receiving nodes. This



SENSE: A Wireless Sensor Network Simulator 11

is possible because it is usually meaningless to ‘modify’ the receiving
packet. Wireless nodes always share the communication medium with
neighbors, so it is expected that one packet will often be received by
many nodes. Consequently, the amount of memory saved by this ap-
proach will be considerable.

A standard programming technique, reference counting, is adopted to
keep track of packets. When a node receives a packet, it must increment
the reference count of the packet to indicate that it now partly owns
the packet. When a packet is to be released, its reference count will be
decremented. Only when the reference count goes to zero can the packet
be actually deleted.

However, such a packet structure results in an inevitable problem.
Assume a scenario in which a certain layer asks the physical layer to
transmit a packet by pointer. The physical layer may successfully trans-
mit the packet out, in which case the pointer will be forwarded to other
node. However, the problem arises when the transmission fails, for in-
stance, if there are no other nodes within the transmission range. The
packet has to be destroyed by the physical layer.

This implies that the lower layer may need to be responsible for releas-
ing the pointer to the packet sent from any higher layer, and this problem
is not limited to the physical layer, since other layers may attempt to
drop packets under special circumstances. In general, no reliable trans-
mission can be guaranteed.

On the other hand, if the payload field contains not the pointer to, but
a copy of the packet from the upper layer, then no operation is needed
when the packet is to be dropped. For any intermediate layer, packets
from the higher layer could be in the form of either pointers or plain
structures. It seems that we would have to implement two components
for each layer, one accepting pointers and the other copies.

Fortunately, this problem can be elegantly solved by a C++ template
technique referred to as trait. According to Bjarne Stroustrup, a trait
is “a small policy object typically used to describe aspects of a type”
(http://www.research.att.com/ bs/glossary.html). In SENSE, a special
packet trait class is declared which can tell if a certain template param-
eter is a packet structure or a packet pointer.

The declaration of this packet trait class is shown below. Basically it
means that for general packets, nothing needs to be done with regard to
packet deallocation.

template <class T>

class packet_trait

{

public:



12

static void free(const T&) {};

};

The smart packet t class is the main SENSE packet class defined for
layers other than the top one. It consists of a header and a payload field,
as well as a reference count.

template <class H, class P>

class smart_packet_t

{

public:

...

inline void free();

H hdr;

P pld;

private:

int refcount;

};

In the free() function of the smart packet t class, it first calls the free()
function of the payload via the packet trait class. It then decrements the
reference count, and if the reference count is zero, both the header and
itself will be freed.

template <class H, class P>

void smart_packet_t<H,P>::free()

{

packet_trait<P>::free(pld);

refcount--;

if(refcount==0)

{

packet_trait<H>::free(hdr);

delete this;

}

}

Below is the partial specialization of packet trait for pointers to smart packet t.
As a result, in the free() function given above, if the payload contains a
pointer to a smart packet, the smart packet will be freed; for all other
cases nothing happens. If users are to define their own packet types and
keep track of them by pointers, they should specialize the packet trait
class in a similar way.

template <class H, class P>



SENSE: A Wireless Sensor Network Simulator 13

class packet_trait< smart_packet_t<H,P>* >

{

public:

typedef smart_packet_t<H,P> nonpointer_t;

static void free(nonpointer_t* const &p)

{

if(p!=NULL) p->free();

}

};

4. Component Repository

As the core design of SENSE has been finalized, we built an exten-
sive set of components ranging from application layer to physical layer,
as well as energy and mobility models that are specifically targeted at
sensor networks.

4.1 IEEE 802.11

The IEEE 802.11 component in SENSE implemented the distributed
coordination function (DCF) described in the IEEE 802.11 standard. To
transmit a data packet, this MAC component first checks the size of the
data packet. If the size is smaller than a predefined threshold given by
a parameter named RTSThreshold, or if the data packet is to be broad-
cast, the data packet will be transmitted directly, with a proper header
added. If the size is greater than RTSThreshold, an RTS/CTS exchange
mechanism will be invoked prior to the actual data transmission, in or-
der to reserve the medium for a period of time that is just sufficient for
the entire transmission. A unicast data packet must be accompanied by
an acknowledgment, but not a broadcast data packet. A transmission is
deemed successful only if the acknowledgment packet has been correctly
received. Each failed transmission will double the content window until
it reaches the preset maximum value.

The IEEE 802.11 implementation in SENSE has the same detail level
as that of ns2 (http://www.isi.edu/nsnam/ns/). However, the source
code in SENSE is twice as short as that in ns2, which can be attributed
to the simplicity and effectiveness of the SENSE API. For example,
timers are implemented as a template class that takes the type of event
as a parameter. Defining a timer in SENSE is as simple as writing a
statement to instantiate the timer. On the contrary, in ns2 each timer
instance needs a unique implementation of a class derived from the base
timer class, which greatly degrades the efficiency and readability.



14

4.2 AODV

Ad-hoc on demand distance vector routing (AODV) has been well-
received as a routing protocol for wireless networks. AODV’s route
discovery consists of setting up a forward and reverse data transmis-
sion path between two mobile nodes. After route discovery is complete,
each node belonging to the established path maintains a routing table
via sequenced requests and response messages. A table entry primarily
consists of two IDs: one denoting the destination node and the other
denoting the next-hop node along the path to the destination. The se-
quence numbers included in the request/response packets ensure that
these routes are loop-free. Other table entry information is used to
maintain route freshness, so that outdated route entries may be properly
replaced. AODV’s route maintenance also provides facilities for replac-
ing damaged routes (e.g., those with broken links). Each node maintains
only partial (local) route information, so full path information is never
transmitted between nodes. A seminal document [?] provides more
details about AODV.

The AODV implementation in SENSE is based on the most current
AODV internet draft [?]. We have implemented the operative compo-
nents essential to AODV’s basic operation. This set includes all steps
required to actually build routes. However, selected route maintenance
functions have not been included in the current simulation. For exam-
ple, provisions noted in section 6.8 of [?] for handling of unidirectional
links have not been implemented. This is primarily because we only
assume bi-directional links in our simulation. We have not yet included
full facilities for maintaining local connectivity, processing route error
packets, or implementing local repair functions. All these are expected
to be completed in the near future.

4.3 DSR

Dynamic Source Routing (DSR) [?] is another widely used on-demand
routing protocol for wireless networks. Similar to AODV, DSR provides
a mechanism of route discovery if the route from the source to the desti-
nation is unknown. But unlike AODV, after the route has been discov-
ered, the entire route is included in the packet header, and intermediate
nodes will determine the next hop by looking at the routing information
contained in the packet.

An initial version of the DSR Component for SENSE has been com-
pleted which makes certain restrictive assumptions within DSR specifi-
cations. Specifically, all nodes are assumed to be bi-directional, without
support for promiscuous communications, and running in a homoge-



SENSE: A Wireless Sensor Network Simulator 15

neous link layer environment. Moreover, we assume that all communi-
cation links, once established, are not subject to damages, and hence
error handling and route recovery are not necessary. Our testing en-
vironment currently consists of DSR running on top of the 802.11 link
level component, for which all of these assumptions are valid.

As DSR matures, and new upper-level and lower-level networking
components are created, a number of the current limitations will be
removed. An Immediate plan is to include route error packets so that
the network can recover from faulty nodes or communication obstacles.
Other plans include support for the promiscuous mode operation, the
optional DSR flow state extension, uni-directional links, and a data link
layer which does not provide acknowledgment information for unicast
packets.

4.4 Battery Models

Two battery components have been implemented in SENSE. In the
SimpleBattery component, the discharge rate is always proportional to
the power drawn from the battery, and is not dependent on the current.
Its capacity is a constant defined by the simulation parameter. Let E′

be the previous remaining energy and P the power consumed in the
time unit, the energy remaining after a consumption period of t can be
expressed as:

E = E′
− Pt (1.1)

In the more complex RealBattery component, the discharge rate be-
comes dependent on the current: larger current usually renders the bat-
tery discharge quicker, thus resulting in less actual capacity at the end
of the usage period than the smaller current would do [?]. A discharge
rate dependence parameter, k, determines how the value of the current
affects the discharge rate. More specifically, Equation 1.1 becomes:

E =
E′

1 + kI
− Pt (1.2)

The RealBattery component also models relaxation [?], which refers to
the phenomenon that a battery may gradually recover some of its lost
capacity if the discharge current undergoes a sudden drop to become
very small. For simplicity, we assume that relaxation only occurs if the
current first sustains for a fast discharge period of at least TR with a
current larger than IR, and then suddenly drops from above IR to 0.
Let λ be the recovery rate, g the growth ratio that can be eventually



16

reached, then during the relaxation period the capacity is governed by
the following equation:

E = gE′(1 − e−λt) (1.3)

A restriction is imposed to ensure that the capacity after the relax-
ation period would not exceed the capacity right before the fast discharge
period.

In this component, another parameter is provided to turn the relax-
ation off. If there is not relaxation, and if k, the discharge rate depen-
dence parameter, is zero, the component regresses to the SimpleBattery
component.

4.5 Power Model

In SENSE, the power component is responsible for power manage-
ment. Currently, a SimplePower component has been implemented,
which can operate on any of 5 modes: TRANSMIT, RECEIVE, IDLE,
SLEEP, and OFF. 4 parameters specify the energy consumption rate
under each of the first 4 modes, while in the OFF mode there is no
energy consumption.

The power component accepts control from networking components.
In response to the control signal, it can switch from one mode to another.
Depending on its operating mode it also draws corresponding current
from the battery.

5. Performance Comparison

To test the performance of SENSE in terms of execution speed and
memory efficiency, we carried out a set of experiments that compared
SENSE with ns2.

All simulations were conducted using a Dell Latitude D600 with an
Intel 1.6 Ghz Pentium-M processor and 512MB 266MHz DDR SDRAM.
The flooding simulation was used as the benchmark for comparison.
The flooding implementation in the ns2 distribution was modified to
minimize the memory usage. In the original implementation, each node
maintained a hash table that stored every packet that has been received.
After the modification was applied, each node would only store the lat-
est sequence number for each source. Any packet that comes from a
source with a sequence number smaller than the latest sequence number
known for this source is deemed as having been received before. This
modification greatly reduced memory consumption, and is in accordance
with the flooding implementation in SENSE.



SENSE: A Wireless Sensor Network Simulator 17

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

0 5000 10000 15000 20000 25000 30000 35000

E
ve

nt
 P

ro
ce

ss
in

g 
R

at
e 

(e
ve

nt
s/

se
c)

Simulation Time (seconds)

NS
SENSE

Figure 1.3. Event Processing Rate of NS and SENSE

For the comparison, TCL and C++ scripts were written to randomly
generate traffic and topology files, and both simulators were modified to
read from the same input files. All nodes are running the IEEE 802.11
protocol, but using only the broadcast functionality due to the nature
of flooding. Simulations were conducted to compare the two simulators
execution times and memory usage under various conditions.

All NS-2 simulations were conducted using NS-2 version 2.26. A few
changes were made to the flooding TCL script that comes with the ns2
distribution to disable the simulator from producing the trace file. The
heap scheduler was used in both, because it is less sensitive to different
time increment distributions. Unnecessary headers were also removed
to minimize the size of each packet.

We compared the execution speeds of both simulators. We created
a wireless sensor network containing 60 nodes, with the same random
placement and a 1000m by 1000m terrain. 12 sources were randomly
chosen to send packets with a length of 1000 bytes, at fixed intervals of
10 seconds. Figure 1.3 shows that SENSE is consistently twice as fast
as ns2. In both simulators the number of events were roughly the same.

The dramatic performance difference between ns2 and SENSE can be
largely attributed to the ways they allocate and release packets. In ns2,
when a packet is being broadcast, every neighboring node will receive
a copy, so the number of packet allocations is equal to the number of
received packets. In SENSE, a packet is always shared by all receivers, so
the number of packet allocations is equal to the number of sent packets.
In a dense wireless network, a node can usually communicate with dozens
of neighbors. Consequently the number of received packets is far greater
than the number of sent packets. Figure 1.4 confirms this explanation.



18

10000

100000

1e+06

1e+07

1e+08

1e+09

0 5000 10000 15000 20000 25000 30000 35000

N
um

be
r 

of
 P

ac
ke

t A
llo

ca
tio

ns
 in

 th
e 

M
A

C
 la

ye
r

Simulation Time (seconds)

NS
SENSE

Figure 1.4. Frequency of Packet Allocation in ns2 and SENSE

6. Related Work

As stated in the introduction section, the development of SENSE
was largely motivated by the realization of the fundamental drawback
in the object-oriented designed of ns2 (http://www.isi.edu/nsnam/ns/).
Compared with ns2, SENSE is not only more efficient, as shown by last
section, but also more advanced in the architecture design since SENSE
greatly promotes the reusability and composability of network models.

J-Sim [?] is also claimed to be a wireless network simulation with
a component- oriented architecture. However, the inter-communication
efficiency was not taken as a principal design factor, and as a result the
overhead is larger than in the current version of SENSE. More specifi-
cally, in every J-Sim component, a process() function handles incoming
events for all ports, which involves dynamic dispatch of events based
on the ports that they come from. However, this mechanism incurs un-
necessary run-time overhead, since communication between components
can be largely deduced statically from their connections.

Several other simulators devoted to wireless sensor networks have been
in progress. Among them, TOSSIM [?] and Emstar [?] are similar
to each other in that both are a combination of a simulator and an
emulator that can facilitate the development and deployment of sensor
nodes. SensorSim [?] is basically a sensor network extension of ns2,
while SensorSimII [?] has been rewritten in Java but still inherited the
object-oriented design. SENS [?], being developed at UIUC, is another
object-oriented sensor network simulator.

7. Conclusion and Future Work

The most significant feature of SENSE is its balanced consideration of
modeling methodology and simulation efficiency. In designing SENSE,



SENSE: A Wireless Sensor Network Simulator 19

we attempt to convey a belief that it is possible to build a very user-
friendly simulator that is also very fast. Unlike object-oriented network
simulators, SENSE is based on a novel component-oriented simulation
methodology that promotes extensibility and reusability to the maxi-
mum degree. At the same time, the simulation efficiency and the issue
of scalability are not overlooked. We observed that memory is the major
factor that limits the size of simulation that can be actually performed,
and that many other simulators contain too much overhead with respect
to memory usage. The simulator is therefore memory-efficient, fast, ex-
tensible, and reusable.

SENSE is still in its active development phase. Although the core
of the simulator has been gradually stabilized, it still lacks a compre-
hensive set of models and a wide variety of configuration templates for
wireless sensor networks. Besides, a visualization tool is desirable which
can quickly track down what goes wrong during the simulation. Without
such a tool, the output of the simulation is hard to interpret. Visualiza-
tion can also facilitate the configuration phase by allowing networks to
be constructed graphically.

The problem of inefficient inter-component communication can be
completely solved very soon. We have designed a component exten-
sion to the C++ language. The new language extension introduces only
four keywords and four syntactic rules, with simple semantics that are
easy to understand. It will not only improve the simulation speed, but
also free SENSE users from the constraint that limits the number and
granularity of components that can be used when efficiency is the main
concern, since the inter-component communication overhead will be en-
tirely eliminated with this new language extension.





References

Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cyirci, E. (2002).
Wireless sensor networks: A survey. Computer Networks, 38(4):393–
422.

Chen, Gilbert and Szymanski, Boleslaw K. (2002). COST: Component-
oriented simulation toolkit. In Proceedings of the 2002 Winter Simu-
lation Conference.

Girod, L., Elson, J., Cerpa, A., Stathopoulos, T., Ramanathan, N., and
Estrin, D. (2004). Emstar: a software environment for developing and
deploying wireless sensor networks. In the Proceedings of USENIX
General Track 2004.

Hou, Jennifer, ying Tyan, Hung, et al. J-sim. http://www.j-sim.org/.
Johnson, D., Maltz, D., and Broch, J. (2001). Ad Hoc Networking, chap-

ter DSR The Dynamic Source Routing Protocol for Multihop Wireless
Ad Hoc Networks, pages 139–172. Addison-Wesley.

Levis, Philip, Lee, Nelson, Welsh, Matt, and Culler, David (2003). Tossim:
Accurate and scalable simulation of entire tinyos applications. In Pro-
ceedings of the First ACM Conference on Embedded Networked Sensor
Systems.

Park, Sung, Savvides, Andreas, and Srivastava, Mani (2001). Battery
capacity measurement and analysis using lithium coin cell battery.
In Proceedings of the 2001 international symposium on Low power
electronics and design, pages 382–387. ACM Press.

Perkins, C. (1997). Ad hoc on demand distance vector (AODV) routing.
Perkins, C., Belding-Royer, E., and Das, S. (2003). Rfc 3561 - ad hoc

on-demand distance vector (AODV) routing.
S. Park, A. Savvides and Srivastava, M. B. (2000). Sensorsim : A simu-

lation framework for sensor networks. In the Proceedings of MSWiM
2000.

Sundresh, Sameer, Kim, WooYoung, and Agha, Gul (2004). Sens: A
sensor, environment and network simulator. In The 37th Annual Sim-
ulation Symposium (ANSS37).



22

Szymanski, Boleslaw K. and Chen, Gilbert (2002). Lecture Notes in
Computer Science, Parallel Processing and Applied Mathematics: 4th
International Conference, chapter A Component Model for Discrete
Event Simulation, pages 580–594. Springer-Verlag.

Ulmer, Craig. Wireless sensor probe networks - SensorSimII.
http://www.craigulmer.com/research/sensorsimii/.

Xiang Zeng, Rajive Bagrodia, Mario Gerla (1998). Glomosim: a library
for parallel simulation of large-scale wireless networks. In Proceedings
of the 12th Workshop on Parallel and Distributed Simulations.


