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New theoretical and practical concepts are presented for consid-
erably enhancing the performance of magnetic resonance imag-
ing (MRI) by means of arrays of multiple receiver coils. Sensitiv-
ity encoding (SENSE) is based on the fact that receiver sensitivity
generally has an encoding effect complementary to Fourier
preparation by linear field gradients. Thus, by using multiple
receiver coils in parallel scan time in Fourier imaging can be
considerably reduced. The problem of image reconstruction
from sensitivity encoded data is formulated in a general fashion
and solved for arbitrary coil configurations and k-space sam-
pling patterns. Special attention is given to the currently most
practical case, namely, sampling a common Cartesian grid with
reduced density. For this case the feasibility of the proposed
methods was verified both in vitro and in vivo. Scan time was
reduced to one-half using a two-coil array in brain imaging. With
an array of five coils double-oblique heart images were obtained
in one-third of conventional scan time. Magn Reson Med
42:952–962, 1999. ! 1999 Wiley-Liss, Inc.
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Among today’s many medical imaging techniques, MRI
stands out by a rarely stated peculiarity: the size of the
details resolved with MRI is much smaller than the wave-
length of the radiation involved. The reason for this
surprising ability is that the origin of a resonance signal is
not determined by optical means such as focusing or
collimation but by spectral analysis. The idea of Lauterbur
(1) to encode object contrast in the resonance spectrum by a
magnetic field gradient forms the exclusive basis of signal
localization in Fourier imaging. However powerful, the
gradient-encoding concept implies a fundamental restric-
tion. Only one position in k-space can be sampled at a time,
making k-space speed the crucial determinant of scan time.
Accordingly, gradient performance has been greatly en-
hanced in the past, reducing minimum scan time drasti-
cally with respect to earlier stages of the technique. How-
ever, due to both physiological and technical concerns,
inherent limits of k-space speed have almost been reached.

An entirely different approach to sub-wavelength resolu-
tion in MRI is based on the fact that with a receiver placed
near the object the contribution of a signal source to the
induced voltage varies appreciably with its relative posi-
tion. That is, knowledge of spatial receiver sensitivity
implies information about the origin of detected MR sig-
nals, which may be utilized for image generation. Unlike
position in k-space, sensitivity is a receiver property and
does not refer to the state of the object under examination.

Therefore, samples of distinct information content can be
obtained at one time by using distinct receivers in parallel
(2), implying the possibility of reducing scan time in
Fourier imaging without having to travel faster in k-space.

In 1988 Hutchinson and Raff (3) suggested dispensing
entirely with phase encoding steps in Fourier imaging by
using a very large number of receivers. Kwiat et al. (4)
proposed a similar concept in 1991. In 1989 Kelton et al. (5)
suggested staying with phase encoding, yet reducing the
number of phase encoding steps by a power of 2 using a
corresponding number of receivers. In Kelton et al. (5), as
in all later concepts, phase encoding is reduced by increas-
ing the distance of readout lines in k-space such that the
sampled area remains unchanged. The Kelton approach
was modified by Ra et al. (6) in 1991, allowing the number
of coils to be any integer, yet still equal to the factor of scan
time reduction.

In all contributions procedures for image reconstruction
were derived. However, applications of the concepts noted
have not been reported, reflecting the considerable practi-
cal challenges of sensitivity based imaging, including the
signal-to-noise ratio (SNR) issue, sensitivity assessment,
and hardware requirements. Only in 1997 did Sodickson et
al. (7) report the first successful experiments using parallel
receivers for the purpose of scan time reduction, introduc-
ing the SMASH method (SiMultaneous Acquisition of
Spatial Harmonics). For image reconstruction SMASH
relies on the ability to approximate low-order harmonics of
the desired field of view (FOV) by linear combination of
sensitivity functions. The technique is therefore restricted
to appropriate combinations of coil arrangement, slice
geometry, and reduction factor.

To overcome the restrictions of previously proposed
methods, in this work we reformulate the problem of image
reconstruction from multiple receiver data. Using the
framework of linear algebra, two different reconstruction
strategies have been derived. In their general forms the
resulting formulae hold for arbitrary sampling patterns in
k-space. A detailed discussion is dedicated to the most
practical case, namely, sampling along a Cartesian grid in
k-space corresponding to standard Fourier imaging with
reduced FOV.

Owing to the underlying principle, the concepts out-
lined in this work have been named SENSE, short for
SENSitivity Encoding (8–10). Together with SENSE theory
and methods, a detailed SNR analysis is presented as well
as an experimental in vitro evaluation and a selection of in
vivo examples.

THEORY AND METHODS
In this section SENSE theory is presented and methods for
image reconstruction from sensitivity encoded data are
derived. The theory addresses the most general case of
combining gradient and sensitivity encoding. That is, no
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restrictions are made as to the coil configuration and the
sampling pattern in k-space. Two reconstruction strategies
are discussed. The first approach strictly aims at optimal
voxel shape and is called strong reconstruction for conve-
nience. In weak reconstruction, the voxel shape criterion is
weaker in favor of the SNR. With both strategies the
reconstruction algorithm is numerically demanding in the
general case. This is mainly because with hybrid encoding
the bulk of the work of reconstruction can usually not be
done by fast Fourier transform (FFT).

However, it is shown that in weak reconstruction FFT
can still be applied if k-space is sampled in a regular
Cartesian fashion. For this reason sensitivity encoding
with Cartesian sampling is particularly feasible. Moreover,
the reconstruction mechanism is relatively easily under-
stood in this case. Therefore, the first part of this section
gives a practical description of the Cartesian case. The
following parts are dedicated to general theory, SNR and
error considerations, and sensitivity assessment.

Sensitivity Encoding With Cartesian Sampling of k-Space
In two-dimensional (2D) Fourier imaging with common
Cartesian sampling of k-space, sensitivity encoding by
means of a receiver array permits reduction of the number
of Fourier encoding steps. This is achieved by increasing
the distance of sampling positions in k-space while main-
taining the maximum k-values. Thus scan time is reduced
at preserved spatial resolution. The factor by which the
number of k-space samples is reduced is referred to as the
reduction factor R. In standard Fourier imaging, reducing
the sampling density results in the reduction of the FOV,
causing aliasing. In fact, SENSE reconstruction in the
Cartesian case is efficiently performed by first creating one
such aliased image for each array element using discrete
Fourier transform (DFT).

The second step then is to create a full-FOV image from
the set of intermediate images. To achieve this one must
undo the signal superposition underlying the fold-over
effect. That is, for each pixel in the reduced FOV the signal
contributions from a number of positions in the full FOV
need to be separated. As depicted in Fig. 1, these positions
form a Cartesian grid corresponding to the size of the
reduced FOV.

The key to signal separation lies in the fact that in each
single-coil image signal superposition occurs with differ-
ent weights according to local coil sensitivities. Consider
one pixel in the reduced FOV and the corresponding set of
pixels in the full FOV (Fig. 1). Let nP denote the number of
pixels superimposed and nC the number of coils used.
Assemble in the vector a the complex image values the
chosen pixel has in the intermediate images. The complex
coil sensitivities at the nP superimposed positions form an
nC ! nP sensitivity matrix S:

S",# $ s" (r#), [1]

where the subscripts ", # count the coils and the super-
imposed pixels, respectively, r# denotes the position of
the pixel #, and s" is the spatial sensitivity of the coil ". The
sensitivity matrix is used to calculate the unfolding ma-

trix U:

U $ (SH%&1S)&1SH%&1 , [2]

where the superscript H indicates the transposed complex
conjugate, and % is the nC ! nC receiver noise matrix (see
Appendix A), which describes the levels and correlation of
noise in the receiver channels. Using the unfolding matrix,
signal separation is performed by

v $ Ua, [3]

where the resulting vector v has length nP and lists
separated pixel values for the originally superimposed
positions. By repeating this procedure for each pixel in the
reduced FOV a non-aliased full-FOV image is obtained.

Unfolding is possible as long as the inversions in Eq. [2]
can be performed. In particular, the number of pixels to be
separated, nP, must not exceed nC. In other words, the
reduction factor is bound by the number of coils used. Note
that nP does not need to be the same for all partial
unfolding steps. Upon non-integer reduction the number of
pixels actually superimposed may vary in the reduced
FOV. Generally, the degree of aliasing plays an important
role with respect to SNR. As a rule of thumb it can be said
that local SNR improves when the degree of aliasing is
reduced. Therefore it is beneficial to exclude a pixel from
reconstruction when the corresponding volume contrib-
utes no signal, e.g., because it lies outside of the object.
Formally this is done simply by removing the correspond-
ing column in the sensitivity matrix and setting the ex-
cluded pixel to zero in the final image. Knowledge of
which voxels may safely be excluded is obtained as a
by-product of sensitivity assessment.

In Eq. [2] receiver noise levels and correlation are
considered for the sake of SNR optimization. Optionally,
the assessment of receiver noise may be skipped and the

FIG. 1. Aliasing in 2D Cartesian sampling: the full FOV (solid box) is
reduced in both dimensions. A pixel in the reduced FOV (dotted box)
represents the superposition of pixels forming a Cartesian grid. In this
example four of these pixels are in the full FOV; thus the actual
degree of aliasing is four.
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matrix % replaced by identity. Then unfolding is still
ensured, yet at an SNR penalty, which generally will be the
more marked the less equivalent the receivers are with
respect to load, gain, and mutual coupling. Equation [2]
holds independently of whether foldover occurs in one or
two directions. Clearly, for the sake of scan time reduction
in 2D imaging, undersampling is reasonable only in the
phase encoding direction. However, in techniques using
two phase encoding directions the independent variation
of two reduction factors adds a valuable degree of freedom.

General Theory of Sensitivity Encoding

Consider an imaging experiment using an array of nC

receiver coils. Fourier encoding is described by a set of nK

sampling positions in k-space. Let the whole object be
within the volume of interest (VOI). Then a sample value m
obtained from the "-th coil at the '-th position in k-space is
given by

m",' $ !
VOI

c(r)e",'(r)dr [4]

where r denotes 3D position,

e",'(r) $ eik'rs"(r) [5]

is the net encoding function composed of harmonic modu-
lation and the complex spatial sensitivity s" of coil ", and c
results from tissue and sequence parameters. The effects of
non-uniform k-space weighting due to relaxation shall be
neglected in the scope of this work.

From the linearity of encoding it is clear that image
reconstruction must essentially be linear as well. That is,
each of nV image values is to be calculated as a linear
combination of sample values:

v# $ "
",'

F#,(",')m",', [6]

where # counts the voxels to be resolved. The transform F
shall be referred to as the reconstruction matrix. Its size is
nV ! nCnK. Assembling sample and image values in vectors,
image reconstruction may be rewritten in matrix notation:

v $ Fm. [7]

With such linear mapping the propagation of noise from
sample values into image values is conveniently described
by noise matrices. The #-th diagonal entry of the image
noise matrix X represents the noise variance in the #-th
image value while the off-diagonal entries reflect noise
correlation between image values. The sample noise ma-
trix %̃ is defined accordingly in Appendix A. As shown
there, these matrices fulfil the relation

X $ F %̃FH . [8]

The central objective in choosing a reconstruction matrix is
to make each image value selectively reflect signal from the
voxel it represents. To trace the origin of signal in image

values, insert Eq. [4] into Eq. [6], to find

(# $ !
VOI

c(r) ("
",'

F#,(",')e",'(r))dr. [9]

The term in brackets describes the spatial weighting of
signal in (#. It is therefore called the corresponding voxel
function:

f#(r) $ "
",'

F#,(",')e",'(r). [10]

Hence, the matrix F has to be chosen such that the resulting
voxel functions approximate the desired voxel shapes. Let
i#(r) denote an orthonormal set of ideal voxel shapes, e.g.,
box functions. The relation between ideal voxel shapes and
encoding functions is described by the nCnK ! nV encoding
matrix

E(",'),# $ !
VOI

i#*(r)e",'(r)dr. [11]

There are many possible ways of approximating ideal
voxels. Here we discuss two concepts. The first approach is
to choose those voxel functions that exhibit the least
square deviation from the ideal. This criterion entirely
determines reconstruction; the approach is therefore re-
ferred to as the strong one. In Appendix B it is shown that it
yields

F $ EHC&1 , [12]

where C denotes the correlation matrix of the encoding
functions. The image noise matrix [8] is then given by

X $ EHC&1%̃C&1E. [13]

The second approach, dubbed the weak one, uses a differ-
ent concept of similarity between real voxel functions and
ideal shapes. It requires that each voxel function fulfil the
orthonormality relations of its ideal counterpart:

!
VOI

i#*(r)f#"(r)dr $ )#,#" * #, #". [14]

Using Eqs. [10] and [11], Eq. [14] may be rewritten in
matrix form:

FE $ Idnv
, [15]

where Idnv
denotes nV ! nV identity. By this condition the

reconstruction matrix F is generally not yet entirely deter-
mined. It leaves nCnK - nV degrees of freedom per voxel,
which may be utilized for SNR optimization. To that end
each diagonal element of the image noise matrix X is
minimized under condition [15] by Lagrange calculus (see
Appendix C), yielding

F $ (EH %̃&1E )&1EH %̃&1. [16]
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In this case the image noise matrix reads

X $ (EH %̃&1E)&1. [17]

The reconstruction formulae [12] and [16] permit image
reconstruction from data obtained with hybrid gradient
and sensitivity encoding. Both are numerically challenging
as they imply the inversion of large matrices. However, the
two concepts also exhibit important differences. The weak
approach is more convenient in that it does not require the
calculation of the matrix C and poses the smaller inversion
problem when nV + nCnK. Furthermore, it yields optimized
SNR. On the other hand, the strong approach is always
applicable, whereas the second algorithm works only if
condition [15] can be fulfilled. In particular, for weak
reconstruction the rank of the matrix E must be equal to nV,
thus nV , nCnK must hold. Moreover, the weak approach is
less robust in terms of ensuring voxel quality.

The limitations of weak reconstruction may be under-
stood by considering Dirac distributions as ideal voxel
functions:

i# (r) $ )(r & r#), [18]

where r# denotes the center of the #-th voxel. The encoding
matrix then reduces to

E(",'),# $ e",' (r#). [19]

In this case the weak criterion [15] may be restated as
follows: each voxel function must be equal to one in the
center of the voxel it belongs to and equal to zero in all
other voxels’ centers. A voxel function with this property
will be acceptable only as long as it is well behaved
between voxel centers. In this view, the criterion becomes
unreliable when there are solutions that vary considerably
within voxels and at the same time yield favorably low
noise.

The Dirac choice in the weak approach also is of great
practical significance. It is with this choice that reconstruc-
tion in the Cartesian case can be performed in the practical
fashion described at the beginning of this section. For the
derivation see Appendix D.

Noise in SENSE Images
There are actually two kinds of noise that affect SENSE
images, i.e., noise in sample values and noise in sensitivity
data. The latter, however, can usually be reduced to a
negligible level by smoothing. Then Eq. [8] for the calcula-
tion of image noise holds. This equation illustrates two
important aspects of noise propagation in SENSE recon-
struction. First, with multiple channels the diagonal entries
in %̃ vary from channel to channel and there is noise
correlation between samples taken simultaneously, i.e., there
are non-zero cross-terms. Second, unlike a matrix represen-
tation of FFT, a SENSE reconstruction matrix generally is
not unitary. As a consequence, unlike standard Fourier
images the noise level in a SENSE image varies from pixel
to pixel and there is noise correlation between pixels.

For similar reasons the noise level does not have the
common square-root dependence on the number of samples

taken. In the case of Cartesian sampling with reconstruc-
tion as initially explained, this can be made yet clearer. For
one particular voxel we compare the noise levels as
obtained with full and reduced Cartesian Fourier encod-
ing. According to Appendix D the partial image noise
matrix for the relevant unfolding step is

X $
1

nK
(SH %&1S)&1. [20]

Let # denote the index of the voxel under consideration
within the set of voxels to be separated. With full Fourier
encoding no aliasing occurs and the matrix S has only one
column. Note that this single column is identical to the #-th
column of S in the case of reduced Fourier encoding. Thus,
the ratio of the noise levels obtained in that voxel is
given by

#X #,#
red

#X #,#
full

$ #R #[(SH %&1S)&1]#,# (SH %&1S)#,# , [21]

where S corresponds to reduced Fourier encoding and R
denotes the factor by which the number of samples is
reduced with respect to full Fourier encoding:

R $
nK

full

nK
red

. [22]

The rightmost square-root expression in Eq. [21] strongly
depends on coil geometry and is thus called the local
geometry factor g, which is always at least equal to one:

g# $ #[(SH %&1S)&1]#,# (SH %&1S)#,# - 1. [23]

Note that by virtue of condition [15] the voxel functions in
the two reconstructions compared are both scaled to one in
the voxel center. Therefore, the noise ratio in Eq. [21]
reflects just the inverse of the SNR ratio, thus:

SNR #
red $

SNR #
full

g##R
. [24]

This relation confirms an upper bound for SNR character-
ized by the square root of the number of samples acquired.
The geometry factor describes the ability with the used coil
configuration to separate pixels superimposed by aliasing.
In practice it allows a priori SNR estimates and provides an
important criterion for the design of dedicated coil arrays.

Propagation of Systematic Error in SENSE Reconstruction
In addition to noise a SENSE reconstructed image may be
impaired by errors of systematic nature. Errors in sample
values may be due, e.g., to tissue motion, main field
inhomogeneity, eddy currents, or gradient non-linearity.
The related artifacts are well known in standard imaging. A
potential problem specific to sensitivity encoded imaging
arises from errors in sensitivity values.

The nature of artifacts in SENSE images generally is
governed by error propagation in the reconstruction formu-
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lae. More specific statements are possible in the case of
Cartesian sampling with unfolding reconstruction. Here
errors in sample values are first reflected in the intermedi-
ate images and then undergo mapping by the unfolding
matrices U. These cause error cross-talk within sets of
equidistant voxels, as depicted in Fig. 1. Therefore, the
artifacts resulting in the final image basically have the
same appearance as in the single coil images, yet occur
periodically with varying intensity. In the determination of
coil sensitivities the most typical systematic error is re-
gional over- or underestimation. Upon unfolding such
deviations give rise to periodical artifacts depicting parts of
the object. Generally, the severity of both types of artifacts
crucially depends on the condition of U.

Determination of Sensitivity Maps
Sensitivity based reconstruction requires highly accurate
sensitivity assessment. To this end concepts known from
methods for intensity correction (11–13) have been ex-
tended (14). Reliable sensitivity information is obtained by
reference measurements with the definitive set-up in addi-
tion to actual imaging. With this strategy it is not possible
to assess absolute sensitivity values. However, according to
Eq. [4], a spatial scaling of sensitivity values, as long as it is
the same for all coils, is mapped onto the final image
without further interference with reconstruction. There-
fore it is sufficient to determine sensitivity maps with
equal and appropriately homogeneous scaling.

The first step in generating such maps is to acquire and
reconstruct single-coil, full-FOV images of the slice of
interest in a conventional manner. Division of each of these
images by the ‘‘sum-of-squares’’ of the set yields sensitivity
maps with scaling clear of modulus object contrast but still
modulated by the ‘‘sum-of-squares’’ of absolute sensitivi-
ties. More homogeneous scaling is achieved by dividing by
a body coil image. The ‘‘sum-of-squares’’ denominator is
applicable only if the object phase is sufficiently smooth so
as to endure map refinement largely unaltered. On the
other hand, it offers the advantage of being more reliable in
clearing modulus object contrast from raw maps. This is
because a body coil reference cannot be acquired quite
simultaneously with the array reference.

In either case the raw maps obtained are impaired by
noise (Fig. 2a–c). Straightforward elimination of noise by

low-pass filtering results in errors at object edges (15). To
overcome this problem, smoothing is accomplished by a
polynomial fit procedure. For each pixel of a raw map a 2D
polynomial is locally fit to the noisy data. A fitting
polynomial for the pixel x0, y0 is given by

s(x, y) $ "
l,m$0

P

cl,m (x & x0)l(y & y0)m, [25]

where x, y are pixel indices, and P denotes the order of the
polynomial. Minimizing the weighted square deviation
from raw sensitivity values yields a set of (P . 1)2

equations:

"
l", m"$0

P

cl"m" All"mm" $ blm , [26]

where

All "mm" $ "
x,y

w(x, y) (x & x0)l.l" (y & y0)m.m", [27]

blm $ "
x,y

w(x, y) sx,y (x & x0)l (y & y0)m, [28]

sx,y denotes raw sensitivity values and w is the weighting
function. Solving Eq. [26] yields the desired refined sensi-
tivity value for the pixel x0, y0. The weighting function
reflects the relative significance of sx,y for the refinement of
the sensitivity value at x0, y0. It is the product of a distance
Gaussian and reliability terms derived from analysis of
error propagation in creating the raw map:

w(x, y) $ e&[(x&x0)2 . (y&y0)2]//2 0dx,y

sx,y
0 0x,y , [29]

where / is a parameter reflecting the degree of smoothing,
dx,y denotes the pixel value at position x,y of the denomina-
tor image used for preparing the raw map, and 0x,y is an
‘‘object indicator’’ map: 0x,y $ 1 where object signal
dominates noise in the denominator image, 0x,y $ 0
elsewhere. 0 is determined from the denominator image by
pixel-wise modulus discrimination with a threshold on the

FIG. 2. Determination of sensitivity maps.
Division of a surface coil image (a) and a
body coil image (b) of the same slice yields a
raw sensitivity map (c). Regions exhibiting
pure noise are identified by thresholding
(d) and subsequent density filtering (e). The
extrapolation zone is determined by region
growing (f). Local polynomial fitting yields the
refined map (g).
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order of the noise level and further exclusion of pixels with
then sparse neighborhood (Fig. 2d,e). In addition to the use
in Eq. [29] the function 0 can serve as the basis for
excluding voxels from reconstruction.

Besides improved accuracy at object edges, the fitting
approach has the advantage of not being restricted to
regions yielding immediate sensitivity information. It per-
mits extrapolation over a limited range necessary for
dealing with slightly varying tissue configurations. Re-
fined sensitivity values are calculated for all ‘‘object’’
pixels according to 0, plus an extrapolation zone (Fig. 2f).
For efficient implementation note that the sums in Eqs.
[27] and [28] are dominated by the pixels near x0, y0, the
number of considerable contributions depending on /. In
terms of complexity it is advantageous to consider only the
significant terms in Eqs. [27] and [28] and restrict higher
order fitting to border regions.

RESULTS
Sensitivity encoding using common Cartesian sampling of
k-space and DFT-based reconstruction was performed in
vitro and in vivo on a Philips Gyroscan ACS-NT15 at 1.5 T.

Phantom Experiments
A five-coil array was used in the set-up depicted in Fig. 3a,
surrounding a cylindrical quality phantom. A fast gradient-
field echo (FFE) sequence was used with a full FOV of 210
mm. SENSE imaging was performed varying the reduction
factor from R $ 1.0 (no reduction) up to R $ 4.0 and
switching the phase encoding direction between vertical
and horizontal. The results are displayed in Figs. 4 and 5,
showing conventional ‘‘sum-of-squares’’ and SENSE recon-
struction. Throughout, images without appreciable arti-
facts were obtained, except for noise inhomogeneity visible
at higher reduction factors. Maps of the relative noise level
as predicted by theory are displayed next to the correspond-
ing images. The maps are in good agreement with visual
noise perception and illustrate the benefit of voxel exclu-
sion, as reflected by contours corresponding to object
shape. The difference in noise between the two orienta-
tions is due to different geometry factors. Obviously, in
terms of geometry the vertical phase encoding is the
superior choice for the given arrangement of coils and
imaged slice.

To illustrate the need for advanced sensitivity assess-
ment, the fitting order P was varied in sensitivity map
refinement. Images obtained at R $ 3.0 with P $ 0, P $ 1,
and P $ 2 are shown in Fig. 6. With zero-order fitting,
which is essentially equivalent to low-pass filtering, severe
displacement artifacts are observed. In the image obtained
with first-order fitting, slight artifacts are still appreciable.
By second-order fitting, artifacts were reduced to a negli-
gible level.

In Vivo Experiments
The elements of a two-coil array were placed laterally on
opposite sides of a healthy volunteer’s head as depicted in
Fig. 3b. Transverse brain images were obtained with full
Fourier encoding (R $ 1.0) and with scan time reduced to
one-half (R $ 2.0) using an inversion recovery turbo
spin-echo (IR-TSE) sequence (matrix 256 ! 208, FOV 210
mm, TI 150 msec, TE 11 msec, TR 3.5 sec, flip angle 90°, 17
echoes per echo train, slice thickness 5 mm, NSA 4).

FIG. 3. Experimental set-ups. a:Afive-coil array positioned around a
cylindrical phantom (two overlapping circular elements, Ø 20 cm,
three overlapping rectangular elements, 13 ! 19 cm). b: Two circular
coils (Ø 20 cm) placed laterally for brain imaging. c: Cardiac imaging
in prone position with the same array as in a. Arrows indicate the
fold-over direction y.

FIG. 4. SENSE imaging of a quality phantom with increasing
reduction factor R indicated on the left. Phase encoding in vertical
direction. Left: conventional sum-of-squares images. Middle: SENSE
reconstruction from the same data. Right: maps of the relative noise
level as predicted by SENSE theory, colored according to the
gray-scale on the far right (arbitrary units).
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References of the same FOV were acquired with an FFE
sequence. The resulting SENSE images are displayed in
Fig. 7 together with one of the intermediate single coil
images. Except for the inevitable drawback in SNR, no loss
of quality whatsoever is observed in the image acquired in
85 sec instead of 170 sec.

For a cardiac application the five-coil array was posi-
tioned around a volunteer’s chest in the fashion depicted
in Fig. 3c. An electrocardiographically triggered echopla-
nar imaging (EPI) sequence (matrix 128 !128, FOV 270
mm, slice thickness 10 mm, flip angle 30°, 6 echoes per

excitation, half-Fourier acquisition) was used to acquire 24
heart phases in a double-oblique short-axis view. Reduc-
tion factors of R $ 1.0 and R $ 2.9 lead to breath-holds of
15 HB and 5 HB, respectively. All heart phases were
reconstructed using the same sensitivity maps. Systolic
sample images are shown in Fig. 8. Again, loss in SNR is
the only appreciable drawback in the image acquired in
one-third of full scan time. In the liver region, noise is
particularly enhanced due to unfavorable sensitivity rela-
tions.

DISCUSSION
SENSE imaging has been successfully performed in combi-
nation with FFE, TSE, and half-Fourier EPI. Generally, the
concept should apply to any mode of Cartesian sampling
of k-space. However, since coil phases are vital for recon-
struction, care must be taken with phase fidelity in all
applications, especially using EPI and half-Fourier tech-
niques. SENSE reconstruction from non-Cartesian sam-
pling patterns (16) is still inconvenient due to high compu-
tation complexity. However, numerical optimization and
foreseeable increases in CPU power may render this op-
tion practical in the future. In addition to these general
remarks, several issues deserve more detailed discussion.

Signal-to-Noise Ratio
In SENSE the SNR concern is considered in several ways.
The propagation of noise from sensitivity maps into the
final image is avoided by map smoothing. In weak recon-
struction, including the practical Cartesian case, the image
with pixel-wise maximum SNR is selected in the domain
of images fulfilling the voxel shape criterion. Furthermore,
the exclusion of empty voxels from reconstruction accord-
ing to the references has proved to be an efficient means of
enhancing regional SNR. At first glance, the beneficial
effect of excluding voxels may seem surprising. It may be
understood, though, by considering that excluding a voxel
reduces the number of scalar conditions in [15] and thus
increases the degrees of freedom available for SNR optimi-
zation.

The SNR penalty for reducing scan time by sensitivity
encoding has been derived explicitly for the Cartesian case.
Not surprisingly, it has been found that local SNR is
essentially bound by the square root of acquisition time.
This limitation is equivalent to that faced if scan time is
reduced by increasing speed in k-space with enhanced
gradient systems. However, the local SNR in a SENSE
image generally falls short of this bound to a degree that

FIG. 5. SENSE imaging of a quality phantom with increasing reduction
factor R indicated on the left. Phase encoding in horizontal direction.
Left: conventional sum-of-squares images. Middle: SENSE recon-
struction from the same data. Right: maps of relative noise level as
predicted by SENSE theory, using the same gray-scale as in Fig. 4.

FIG. 6. The accuracy of sensitivity maps
depends on the fitting order P. SENSE
images based on sensivity maps obtained
with (a) P $ 0, (b) P $ 1, and (c) P $ 2.
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depends on coil geometry. This effect inherent to sensitiv-
ity encoding is quantitatively described by the geometry
factor introduced in this work. The geometry factor is a
function of coil configuration and the reduction factor. In
terms of SNR an optimal coil set-up is characterized by
trade-offs among absolute sensitivity, single-channel noise
levels, coil coupling, and geometrical sensitivity relations.
Due to the specific role of coil geometry, dedicated sensitiv-
ity encoding arrays are called for, presenting coil making
with a new design criterion.

Sensitivity Maps
For the determination of sensitivity maps, full-FOV refer-
ence images are required in addition to actual imaging.
However, a sensitivity map obtained from one reference
scan permits multiple SENSE imaging of the respective
slice. In particular, map refinement includes short-range
extrapolation; thus a single reference scan is sufficient
even for handling multiple data sets of changing tissue
configurations, as is encountered in cardiac imaging. The
resolution of references in most cases may be lower than

that of the final images. Full-resolution maps are then
obtained by standard interpolation.

Comparison With Previously Developed Techniques
Among the methods summarized in the introduction the
closest links to the SENSE concepts are found in the
contribution by Ra et al. (6), which proposes a reconstruc-
tion algorithm exclusively for the case of Cartesian sam-
pling. This technique is similar to the procedure derived in
this work for the Cartesian case in that it combines DFT
with an unfolding step. Major differences, however, consist
in the application range of the reconstruction formulae, in
the reference concepts, and in the fact that in Ref. 6 no
means of SNR optimization are suggested. The technique
described in Ref. 6 considers maximum reduction only,
i.e., a reduction factor equal to the number of coils used.
This requirement has been found to restrict application
seriously, since geometry related noise enhancement in
practical cases grows rapidly when the reduction factor
approaches the maximum value (Figs. 4 and 5). As to
sensitivity assessment, in Ref. 6 the use of images of a
homogeneous phantom is suggested as estimates of coil
sensitivity. This approach is hampered by the fact that coil
sensitivity to a certain extent depends on load configura-
tion.

A work published in 1993 by the same authors (17)
suggests a related approach to image reconstruction, which,
however, differs from both Ref. 6 and SENSE in that object
contrast is kept in reference images, preventing sensitivity
smoothing and extrapolation refinement.

The first successful experiments using parallel receivers
for the purpose of scan time reduction were reported in
1997 by Sodickson et al., introducing the SMASH tech-
nique (7). SMASH uses Cartesian sampling with integer
reduction and differs from the corresponding SENSE proce-
dure in that it uses DFT in the last reconstruction step
rather than in the first. The basic idea of SMASH reconstruc-
tion is to approximate full k-space data by linear combina-

FIG. 7. Transverse brain images obtained with TSE using two coils. a, b: Reduction factor R $ 2.0, conventional single-coil image and
SENSE reconstruction. c: SENSE image from fully Fourier encoded data.

FIG. 8. Cardiac short-axis SENSE images acquired with half-Fourier
EPI using five coils. The phase encoding direction is horizontal. a:
Full Fourier encoding, 15 heartbeats. b: Reduction factor R $ 2.9, 5
heartbeats.
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tion of multiple-coil sample values obtained in a reduced
number of phase encoding steps. The weighting coeffi-
cients are determined by fitting linear combinations of coil
sensitivities to harmonic functions of the desired FOV. In
doing so it is crucial that low-order harmonics of the FOV
can indeed well be approximated. Difficulty in fitting
results in residual fold-over. Therefore, SMASH imaging
requires particular coil arrays (18) and is restricted to
suitable slice orientation (19). In SENSE the coil configura-
tion can freely be optimized with respect to SNR, in
particular with respect to the geometry factor. Note that
geometry related noise enhancement is inherent to the coil
arrangement and occurs in any linear reconstruction
method, including SMASH.

As a consequence of the different degrees of freedom in
choosing coil and slice geometry, the two methods differ in
their reference strategies. SENSE requires full sensitivity
maps, whereas in SMASH the reference demands are
substantially less and can be fulfilled even by a little extra
acquisition together with the aliased data (20).

CONCLUSIONS
Sensitivity encoding forms a valuable complement to
gradient encoding. It permits considerable scan-time reduc-
tion with respect to standard Fourier imaging. The feasibil-
ity of SENSE imaging has been demonstrated in vitro and
in vivo. In terms of practical value the most relevant
characteristic of the technique is flexibility. Independently
of coil and slice geometry, images free of specific artifacts
are obtained. Nevertheless, the experimental set-up is a
major determinant of SNR.

It has been shown that the SNR in SENSE images is
governed by a fundamental limitation characterized by the
square root of acquisition time. Hence the method is
appropriate only when the need for scan speed outweighs
SNR concerns. Therefore, rapid and real-time imaging is a
promising application, as are all examinations that require
breath-holding. In brain imaging, single-shot techniques
are expected to benefit from shorter echo trains. Yielding
high SNR at long scan times, 3D imaging with potentially
2D undersampling is another promising field of applica-
tion.

At this stage it appears fair to say that sensitivity
encoding is a promising concept in view of physiological
and technical speed limits in k-space. However, the poten-
tial of the method to reduce scan time drastically in
reasonable applications by factors of, say, 10 or more,
remains to be investigated. According to SENSE theory, the
major critical issue is SNR. Basic SNR can be enhanced to a
certain degree by increasing the number of receiver coils.
However, the joint effect of geometry factor and square-root-
of-time penalty may ultimately prevent reduction factors
much larger than those achieved in this work.
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APPENDIX A
Derivation of the Noise Matrices

Assume that noise in acquisition channels arises from an
arbitrarily large number of common, mutually indepen-
dent noise sources 12(t), each with Gaussian statistics.
Noise in the "-th channel, 3"(t), is modeled as an individu-
ally weighted sum of the sources:

3"(t) $ "
2

4",212(t), [A1]

where 4",2 denotes time-independent, complex weighting
coefficients. According to Eq. [6], the variance 5#

2 of noise
in the #–th voxel value is then given by

5#
2 $ "

2

52
2 0"

",'
F#,(",')4",2 02 , [A2]

where 52 denotes the standard deviation of the 2-th noise
source. Expanding the right square term and rearranging
yields

5#
2 $ "

","",','"

F#,("",'") %",""F*#,(",') [A3]

with the nC ! nC receiver noise matrix % defined by

%","" $ "
2

52
2 4",2 4*"",2 . [A4]

Thus, 5#
2 may be considered the #-th diagonal element of

the image noise matrix X

X $ F %̃FH, [A5]

where

%̃ $ % ! IdnK
[A6]

is referred to as the sample noise matrix. % can be
determined experimentally in the following fashion. Con-
sider the variance of the sum of two channels ", "’ with a
phase shift of 6:

52(3" . ei63"") $ "
2

52
2 0 4",2 . ei64"",2 02. [A7]

Expanding the square term and rearranging using Eq. [A4]
yields

2Re(ei6 %","") $ 52(3" . ei63"") & 52(3") & 52(3""). [A8]
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With 6 $ 0 for the real part and 6 $ -7/2 for the imaginary
part of %"," we obtain

%","# $
1

2
552(3" . 3"") . i52(3" & i3"")

& (1 . i)[52(3") . 52(3"")]6. [A9]

Using this expression, the receiver noise matrix is readily
determined from a reasonably large set of samples reflect-
ing mere noise.

APPENDIX B
Least-Squares Approximation of Ideal Voxel Functions
Each voxel function must be a linear combination of
encoding functions:

f#(r) $ "
",'

F#,(",')e",'(r). [B1]

The best approximation of the ideal counterpart is charac-
terized by

8# $ !VOI
0 f#(r) & i#(r) 02 dr $ min, [B2]

implying

98#

9F#,(",')
$ 0 *#, ", '. [B3]

Calculating derivatives and rearranging terms yields

"
"",'"
1F#,("",'") !VOI

e*",'(r)e"",'"(r) dr2$!VOI
e*",'(r)i#(r) dr. [B4]

Using definition [11] this equation can be rewritten in
matrix form:

FC $ EH, [B5]

where

C(",'),("",'") $ !VOI
e*"",'"(r)e",'(r) dr. [B6]

APPENDIX C
Minimization of Final Image Noise Under the Weak Voxel
Condition
The minimum of X#,# under the weak voxel condition [15]
is characterized by a corresponding absolute minimum of
the Lagrange function

L# $ X#,# . "
#"

:#,#"(FE & Id)#,#", [C1]

where :#,#" are Lagrange multiplicators. Using expression
[A5] for X and requiring that all partial derivatives of L# be

equal to zero we obtain

2 "
""

F#,("",') %""," . "
#"

:*#,#" E(",'),#" $ 0 *#, ", ' [C2]

"
",'

F#,(",')E(",'),#" $ )#,#" *#, #" . [C3]

In matrix form Eqs. [C2] and [C3] read

12%̃ E

EH 0 2 1
FH

:H2 $ 1
0

Id2 , [C4]

where %̃ is defined according to Eq. [A6]. If E and %̃ have
maximal rank the inverse of the square matrix on the left
exists and is given by

12%̃ E

EH 02
&1

$ 1
1

2
%̃&1(Id & E(EH %̃&1E)&1EH %̃&1) %̃&1E(EH %̃&1E)&1

(EH%̃ &1E)&1EH %̃&1 &2(EH %̃&1E)&1
2 .

[C5]

Right multiplication with Eq. [C4] yields

F $ (EH %̃&1E)&1EH %̃&1. [C6]

APPENDIX D
Derivation of DFT Based Reconstruction in the Cartesian
Case
Here the practical procedure described at the beginning of
the Theory and Methods section is derived from the weak
reconstruction formula [16], assuming Dirac distributions
as ideal voxel functions. Consider sampling and voxel
positions forming regular grids in 2D k-space and image
domain, respectively. The grid constants shall be chosen
such as to yield a resolution of 8x, 8y. Let the numbers of
sampling positions and voxels be given independently by
nK $ nKx ! nKy and nV $ nVx ! nVy, respectively. Then the
grids are given by

k' $ 27 1 18x 1
'x

nKx
&

1

22 ,
1

8y 1
'y

nKy
&

1

222
T

[D1]

r# $ 18x 1#x &
nVx

2 2 , 8y 1#y &
nVy

2 22
T

, [D2]

where 2D indices are used for convenience:

' $ ('x , 'y), 'x $ 0,..., nKx & 1, 'y $ 0,..., nKy & 1 [D3]

# $ (#x, #y), #x $ 0,...., nVx & 1, #y $ 0,..., nVy & 1. [D4]
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Decompose E as given by Eqs. [19] and [5] into the
harmonic and the sensitivity component:

E $ #nK H̃HS̃, [D5]

where S̃ is a sparse, banded (nCnK) ! nV matrix of sensitiv-
ity values:

S̃(",;),# $ s"(r#));x, #x mod nKx
);y , #y mod nKy

,

; $ (;x, ;y), ;x $ 0, ..., nKx & 1, ;y $ 0, ..., nKy & 1 [D6]

and H̃ is a unitary block-diagonal matrix with one Fourier
block for each coil,

H̃ $ IdnC
! H. [D7]

Here the nK ! nK Fourier matrix H is defined by

H#, ; $
e ik; r#

#nK

, [D8]

where, as opposed to Eqs. [D1] and [D2], the subscripts
have the same ranges,

;x, #x $ 0, . . . , nKx & 1 ;y , #y $ 0, . . . , nKy & 1. [D9]

Using the above decomposition and considering that %̃, H̃
commute according to their definitions, the reconstruction
matrix [16] is rewritten as

F $
1

#nK

Ũ H̃, [D10]

where

Ũ $ ( S̃H %̃&1 S̃ )&1 S̃H %̃&1 . [D11]

In Eq. [D10] H̃ is a matrix representation of coil-wise DFT,
the first step in the practical procedure. The 2D index ; of
the matrix S̃ counts the voxels in the reduced FOV
resulting from DFT. Due to its banded structure the matrix
S̃ disintegrates into nK partial matrices, which operate
independently. The ;-th partial matrix comprises the nC

row indices (", ;), with " varied, and the column indices
# $ (#x , #y), which fulfil

#x mod nKx $ ;x and #y mod nKy $ ;y . [D12]

These column indices correspond to the voxels superim-
posed in the voxel ; of the reduced FOV. According to its
definition %̃ obviously also acts independently upon each
set of indices belonging to one ;. Thus, for every ; formula
[D11] can be evaluated separately, yielding the ;-th partial
unfolding matrix

U $ (SH %&1S)&1SH %&1, [D13]

where the transition to partial matrices is indicated by
removing the tildes. The remaining scalar factor in Eq.
[D10] is not important for image reconstruction but plays a
role in noise considerations. Combining Eqs. [A5] and
[D10], we find the partial image noise matrix for the ;-th
unfolding step,

X $
1

nK
(SH %&1S)&1. [D14]
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