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Abstract

The ability to learn from large unlabeled cor-

pora has allowed neural language models to

advance the frontier in natural language under-

standing. However, existing self-supervision

techniques operate at the word form level,

which serves as a surrogate for the underly-

ing semantic content. This paper proposes a

method to employ weak-supervision directly

at the word sense level. Our model, named

SenseBERT, is pre-trained to predict not only

the masked words but also their WordNet su-

persenses. Accordingly, we attain a lexical-

semantic level language model, without the use

of human annotation. SenseBERT achieves sig-

nificantly improved lexical understanding, as

we demonstrate by experimenting on SemEval

Word Sense Disambiguation, and by attaining

a state of the art result on the ‘Word in Context’

task.

1 Introduction

Neural language models have recently undergone

a qualitative leap forward, pushing the state of the

art on various NLP tasks. Together with advances

in network architecture (Vaswani et al., 2017), the

use of self-supervision has proven to be central

to these achievements, as it allows the network to

learn from massive amounts of unannotated text.

The self-supervision strategy employed in BERT

(Devlin et al., 2019) involves masking some of the

words in an input sentence, and then training the

model to predict them given their context. Other

proposed approaches for self-supervised objectives,

including unidirectional (Radford et al., 2019), per-

mutational (Yang et al., 2019), or word insertion-

based (Chan et al., 2019) methods, operate simi-

larly, over words. However, since a given word

form can possess multiple meanings (e.g., the word

‘bass’ can refer to a fish, a guitar, a type of singer,

etc.), the word itself is merely a surrogate of its

actual meaning in a given context, referred to as its

sense. Indeed, the word-form level is viewed as a

surface level which often introduces challenging

ambiguity (Navigli, 2009).

In this paper, we bring forth a novel method-

ology for applying weak-supervision directly on

the level of a word’s meaning. By infusing word-

sense information into BERT’s pre-training sig-

nal, we explicitely expose the model to lexical

semantics when learning from a large unanno-

tated corpus. We call the resultant sense-informed

model SenseBERT. Specifically, we add a masked-

word sense prediction task as an auxiliary task in

BERT’s pre-training. Thereby, jointly with the stan-

dard word-form level language model, we train a

semantic-level language model that predicts the

missing word’s meaning. Our method does not

require sense-annotated data; self-supervised learn-

ing from unannotated text is facilitated by using

WordNet (Miller, 1998), an expert constructed in-

ventory of word senses, as weak supervision.

We focus on a coarse-grained variant of a word’s

sense, referred to as its WordNet supersense, in

order to mitigate an identified brittleness of fine-

grained word-sense systems, caused by arbitrary

sense granularity, blurriness, and general subjec-

tiveness (Kilgarriff, 1997; Schneider, 2014). Word-

Net lexicographers organize all word senses into 45
supersense categories, 26 of which are for nouns,

15 for verbs, 3 for adjectives and 1 for adverbs (see

full supersense table in the supplementary materi-

als). Disambiguating a word’s supersense has been

widely studied as a fundamental lexical categoriza-

tion task (Ciaramita and Johnson, 2003; Basile,

2012; Schneider and Smith, 2015).

We employ the masked word’s allowed super-

senses list from WordNet as a set of possible labels

for the sense prediction task. The labeling of words

with a single supersense (e.g., ‘sword’ has only the

supersense noun.artifact) is straightforward: We
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train the network to predict this supersense given

the masked word’s context. As for words with mul-

tiple supersenses (e.g., ‘bass’ can be: noun.food,

noun.animal, noun.artifact, noun.person, etc.), we

train the model to predict any of these senses, lead-

ing to a simple yet effective soft-labeling scheme.

We show that SenseBERTBASE outscores both

BERTBASE and BERTLARGE by a large margin on

a supersense variant of the SemEval Word Sense

Disambiguation (WSD) data set standardized in Ra-

ganato et al. (2017). Notably, SenseBERT re-

ceives competitive results on this task without fune-

tuning, i.e., when training a linear classifier over

the pretrained embeddings, which serves as a tes-

tament for its self-acquisition of lexical semantics.

Furthermore, we show that SenseBERTBASE sur-

passes BERTLARGE in the Word in Context (WiC)

task (Pilehvar and Camacho-Collados, 2019) from

the SuperGLUE benchmark (Wang et al., 2019),

which directly depends on word-supersense aware-

ness. A single SenseBERTLARGE model achieves

state of the art performance on WiC with a score of

72.14, improving the score of BERTLARGE by 2.5
points.

2 Related Work

Neural network based word embeddings first ap-

peared as a static mapping (non-contextualized),

where every word is represented by a constant pre-

trained embedding (Mikolov et al., 2013; Penning-

ton et al., 2014). Such embeddings were shown

to contain some amount of word-sense informa-

tion (Iacobacci et al., 2016; Yuan et al., 2016;

Arora et al., 2018; Le et al., 2018). Addition-

ally, sense embeddings computed for each word

sense in the word-sense inventory (e.g. WordNet)

have been employed, relying on hypernymity re-

lations (Rothe and Schütze, 2015) or the gloss for

each sense (Chen et al., 2014). These approaches

rely on static word embeddings and require a large

amount of annotated data per word sense.

The introduction of contextualized word embed-

dings (Peters et al., 2018), for which a given word’s

embedding is context-dependent rather than pre-

computed, has brought forth a promising prospect

for sense-aware word embeddings. Indeed, visual-

izations in Reif et al. (2019) show that sense sen-

sitive clusters form in BERT’s word embedding

space. Nevertheless, we identify a clear gap in

this abilty. We show that a vanilla BERT model

trained with the current word-level self-supervision,

burdened with the implicit task of disambiguat-

ing word meanings, often fails to grasp lexical

semantics, exhibiting high supersense misclassi-

fication rates. Our suggested weakly-supervised

word-sense signal allows SenseBERT to signifi-

cantly bridge this gap.

Moreover, SenseBERT exhibits an improvement

in lexical semantics ability (reflected by the Word

in Context task score) even when compared to mod-

els with WordNet infused linguistic knowledge.

Specifically we compare to Peters et al. (2019)

who re-contextualize word embeddings via a word-

to-entity attention mechanism (where entities are

WordNet lemmas and synsets), and to Loureiro and

Jorge (2019) which construct sense embeddings

from BERT’s word embeddings and use the Word-

Net graph to enhance coverage (see quantitative

comparison in table 3).

3 Incorporating Word-Supersense

Information in Pre-training

In this section, we present our proposed method for

integrating word sense-information within Sense-

BERT’s pre-training. We start by describing the

vanilla BERT architecture in subsection 3.1. We

conceptually divide it into an internal transformer

encoder and an external mapping W which trans-

lates the observed vocabulary space into and out of

the transformer encoder space [see illustration in

figure 1(a)].

In the subsequent subsections, we frame our con-

tribution to the vanilla BERT architecture as an ad-

dition of a parallel external mapping to the words

supersenses space, denoted S [see illustration in fig-

ure 1(b)]. Specifically, in section 3.2 we describe

the loss function used for learning S in parallel to

W , effectively implementing word-form and word-

sense multi-task learning in the pre-training stage.

Then, in section 3.3 we describe our methodology

for adding supersense information in S to the initial

Transformer embedding, in parallel to word-level

information added by W . In section 3.4 we ad-

dress the issue of supersense prediction for out-of-

vocabulary words, and in section 3.5 we describe

our modification of BERT’s masking strategy, pri-

oritizing single-supersensed words which carry a

clearer semantic signal.

3.1 Background

The input to BERT is a sequence of words {x(j) ∈
{0, 1}DW }Nj=1 where 15% of the words are re-
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Figure 1: SenseBERT includes a masked-word supersense prediction task, pre-trained jointly with BERT’s original

masked-word prediction task (Devlin et al., 2019) (see section 3.2). As in the original BERT, the mapping from the

Transformer dimension to the external dimension is the same both at input and at output (W for words and S for

supersenses), where M denotes a fixed mapping between word-forms and their allowed WordNet supersenses (see

section 3.3). The vectors p(j) denote positional embeddings. For clarity, we omit a reference to a sentence-level

Next Sentence Prediction task trained jointly with the above.

placed by a [MASK] token (see treatment of sub-

word tokanization in section 3.4). Here N is the

input sentence length, DW is the word vocabulary

size, and x(j) is a 1-hot vector corresponding to

the jth input word. For every masked word, the

output of the pretraining task is a word-score vec-

tor ywords ∈ R
DW containing the per-word score.

BERT’s architecture can be decomposed to (1) an

internal Transformer encoder architecture (Vaswani

et al., 2017) wrapped by (2) an external mapping

to the word vocabulary space, denoted by W .1

The Transformer encoder operates over a se-

quence of word embeddings v
(j)
input ∈ R

d, where

d is the Transformer encoder’s hidden dimension.

These are passed through multiple attention-based

Transformer layers, producing a new sequence

of contextualized embeddings at each layer. The

Transformer encoder output is the final sequence

of contextualized word embeddings v
(j)
output ∈ R

d.

The external mapping W ∈ R
d×DW is effec-

tively a translation between the external word vo-

cabulary dimension and the internal Transformer

dimension. Original words in the input sentence

are translated into the Transformer block by apply-

ing this mapping (and adding positional encoding

vectors p(j) ∈ R
d):

v
(j)
input = Wx(j) + p(j) (1)

1For clarity, we omit a description of the Next Sentence
Prediction task which we employ as in Devlin et al. (2019).

The word-score vector for a masked word at po-

sition j is extracted from the Transformer en-

coder output by applying the transpose: ywords =

W⊤v
(j)
output [see illustration in figure 1(a)]. The

use of the same matrix W as the mapping in and

out of the transformer encoder space is referred to

as weight tying (Inan et al., 2017; Press and Wolf,

2017).

Given a masked word in position j, BERT’s

original masked-word prediction pre-training task

is to have the softmax of the word-score vector

ywords = W⊤v
(j)
output get as close as possible to a

1-hot vector corresponding to the masked word.

This is done by minimizing the cross-entropy loss

between the softmax of the word-score vector and

a 1-hot vector corresponding to the masked word:

LLM = − log p(w|context), (2)

where w is the masked word, the context is com-

posed of the rest of the input sequence, and the

probability is computed by:

p(w|context) =
exp

(

ywords
w

)

∑

w′ exp
(

ywords
w′

) , (3)

where ywords
w denotes the wth entry of the word-

score vector.
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3.2 Weakly-Supervised Supersense

Prediction Task

Jointly with the above procedure for training the

word-level language model of SenseBERT, we

train the model to predict the supersense of every

masked word, thereby training a semantic-level lan-

guage model. This is done by adding a parallel ex-

ternal mapping to the words supersenses space, de-

noted S ∈ R
d×DS [see illustration in figure 1(b)],

where DS = 45 is the size of supersenses vocabu-

lary. Ideally, the objective is to have the softmax of

the sense-score vector ysenses ∈ R
DS := S⊤v

(j)
output

get as close as possible to a 1-hot vector correspond-

ing to the word’s supersense in the given context.

For each word w in our vocabulary, we employ

the WordNet word-sense inventory for constructing

A(w), the set of its “allowed” supersenses. Specifi-

cally, we apply a WordNet Lemmatizer on w, ex-

tract the different synsets that are mapped to the

lemmatized word in WordNet, and define A(w) as

the union of supersenses coupled to each of these

synsets. As exceptions, we set A(w) = ∅ for

the following: (i) short words (up to 3 characters),

since they are often treated as abbreviations, (ii)

stop words, as WordNet does not contain their main

synset (e.g. ‘he’ is either the element helium or the

hebrew language according to WordNet), and (iii)

tokens that represent part-of-word (see section 3.4

for further discussion on these tokens).

Given the above construction, we employ a com-

bination of two loss terms for the supersense-level

language model. The following allowed-senses

term maximizes the probability that the predicted

sense is in the set of allowed supersenses of the

masked word w:

Lallowed
SLM = − log p (s ∈ A(w)|context)

= − log
∑

s∈A(w)

p(s|context), (4)

where the probability for a supersense s is given

by:

p(s|context) =
exp(ysenses

s )
∑

s′ exp(y
senses
s′ )

. (5)

The soft-labeling scheme given above, which

treats all the allowed supersenses of the masked

word equally, introduces noise to the supersense la-

bels. We expect that encountering many contexts in

a sufficiently large corpus will reinforce the correct

labels whereas the signal of incorrect labels will

diminish. To illustrate this, consider the following

examples for the food context:

1. “This bass is delicious”

(supersenses: noun.food, noun.artifact, etc.)

2. “This chocolate is delicious”

(supersenses: noun.food, noun.attribute, etc.)

3. “This pickle is delicious”

(supersenses: noun.food, noun.state, etc.)

Masking the marked word in each of the examples

results in three identical input sequences, each with

a different sets of labels. The ground truth label,

noun.food, appears in all cases, so that its probabil-

ity in contexts indicating food is increased whereas

the signals supporting other labels cancel out.

While Lallowed
SLM pushes the network in the right

direction, minimizing this loss could result in the

network becoming overconfident in predicting a

strict subset of the allowed senses for a given word,

i.e., a collapse of the prediction distribution. This

is especially acute in the early stages of the training

procedure, when the network could converge to the

noisy signal of the soft-labeling scheme.

To mitigate this issue, the following regulariza-

tion term is added to the loss, which encourages

a uniform prediction distribution over the allowed

supersenses:

L
reg
SLM = −

∑

s∈A(w)

1

|A(w)|
log p(s|context), (6)

i.e., a cross-entropy loss with a uniform distribution

over the allowed supersenses.

Overall, jointly with the regular word level lan-

guage model trained with the loss in eq. 2, we train

the semantic level language model with a combined

loss of the form:

LSLM = Lallowed
SLM + L

reg
SLM . (7)

3.3 Supersense Aware Input Embeddings

Though in principle two different matrices could

have been used for converting in and out of the

Tranformer encoder, the BERT architecture em-

ploys the same mapping W . This approach, re-

ferred to as weight tying, was shown to yield the-

oretical and pracrical benefits (Inan et al., 2017;

Press and Wolf, 2017). Intuitively, constructing the

Transformer encoder’s input embeddings from the

same mapping with which the scores are computed

improves their quality as it makes the input more

sensitive to the training signal.
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Verb Supersenses Noun Supersenses Other (adv./adj.) Abstract Concrete Concrete - Entities

(a)  All Supersenses

noun.object

noun.substance

noun.body

noun.plant

(b)  Noun Supersenses

noun.person

noun.feeling

noun.shape

noun.attribute

noun.location

noun.group

noun.animal

noun.artifact

noun.food

Figure 2: UMAP visualization of supersense vectors (rows of the classifier S) learned by SenseBERT at pre-training.

(a) Clustering by the supersense’s part-of speech. (b) Within noun supersenses, semantically similar supersenses

are clustered together (see more details in the supplementary materials).

We follow this approach, and insert our newly

proposed semantic-level language model matrix

S in the input in addition to W [as depicted in

figure 1(b)], such that the input vector to the Trans-

former encoder (eq. 1) is modified to obey:

v
(j)
input = (W + SM)x(j) + p(j), (8)

where p(j) are the regular positional embeddings

as used in BERT, and M ∈ R
DS×DW is a static 0/1

matrix converting between words and their allowed

WordNet supersenses A(w) (see construction de-

tails above).

The above strategy for constructing v
(j)
input allows

for the semantic level vectors in S to come into play

and shape the input embeddings even for words

which are rarely observed in the training corpus.

For such a word, the corresponding row in W is

potentially less informative, since due to the low

word frequency the model did not have sufficient

chance to adequately learn it. However, since the

model learns a representation of its supersense, the

corresponding row in S is informative of the se-

mantic category of the word. Therefore, the input

embedding in eq. 8 can potentially help the model

to elicit meaningful information even when the

masked word is rare, allowing for better exploita-

tion of the training corpus.

3.4 Rare Words Supersense Prediction

At the pre-processing stage, when an out-of-

vocabulary (OOV) word is encountered in the cor-

pus, it is divided into several in-vocabulary sub-

word tokens. For the self-supervised word pre-

diction task (eq. 2) masked sub-word tokens are

straightforwardly predicted as described in sec-

tion 3.1. In contrast, word-sense supervision is

only meaningful at the word level. We compare

two alternatives for dealing with tokenized OOV

words for the supersense prediction task (eq. 7).

In the first alternative, called 60K vocabulary, we

augment BERT’s original 30K-token vocabulary

(which roughly contained the most frequent words)

with additional 30K new words, chosen according

to their frequency in Wikipedia. This vocabulary

increase allows us to see more of the corpus as

whole words for which supersense prediction is a

meaningful operation. Additionally, in accordance

with the discussion in the previous subsection, our

sense-aware input embedding mechanism can help

the model extract more information from lower-

frequency words. For the cases where a sub-word

token is chosen for masking, we only propagate

the regular word level loss and do not train the

supersense prediction task.

The above addition to the vocabulary results in

an increase of approximately 23M parameters over

the 110M parameters of BERTBASE and an increase

of approximately 30M parameters over the 340M

parameters of BERTLARGE (due to different embed-

ding dimensions d = 768 and d = 1024, respec-

tively). It is worth noting that similar vocabulary

sizes in leading models have not resulted in in-

creased sense awareness, as reflected for example

in the WiC task results (Liu et al., 2019).

As a second alternative, referred to as average

embedding, we employ BERT’s regular 30K-token
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(a) (b)

Dan cooked a bass on the grill. 

The  [MASK]  fell to the floor.

The bass player was exceptional. 

noun.artifactverb.creation

noun.foodnoun.person

noun.person

adj.allnoun.artifact

noun.artifact (sword, chair, ...)

noun.person (man, girl, ...)

52%

17%

Gill  [MASK]  the bread.

verb.contact (cut, buttered, ...)

verb.consumption (ate, chewed, ...)

verb.change (heated, baked, ...)

verb.possession (took, bought, ...)

33%

20%

11%

6%

Figure 3: (a) A demonstration of supersense probabilities assigned to a masked position within context, as given

by SenseBERT’s word-supersense level semantic language model (capped at 5%). Example words corresponding

to each supersense are presented in parentheses. (b) Examples of SenseBERT’s prediction on raw text, when the

unmasked input sentence is given to the model. This beyond word-form abstraction ability facilitates a more natural

elicitation of semantic content at pre-training.

vocabulary and employ a whole-word-masking

strategy. Accordingly, all of the tokens of a to-

kenized OOV word are masked together. In this

case, we train the supersense prediction task to pre-

dict the WordNet supersenses of this word from the

average of the output embeddings at the location

of the masked sub-words tokens.

3.5 Single-Supersensed Word Masking

Words that have a single supersense are good an-

chors for obtaining an unambiguous semantic sig-

nal. These words teach the model to accurately

map contexts to supersenses, such that it is then

able to make correct context-based predictions even

when a masked word has several supersenses. We

therefore favor such words in the masking strategy,

choosing 50% of the single-supersensed words in

each input sequence to be masked. We stop if

40% of the overall 15% masking budget is filled

with single-supersensed words (this rarly happens),

and in any case we randomize the choice of the

remaining words to complete this budget. As in

the original BERT, 1 out of 10 words chosen for

masking is shown to the model as itself rather than

replaced with [MASK].

4 Semantic Language Model

Visualization

A SenseBERT pretrained as described in section 3

(with training hyperparameters as in Devlin et al.

(2019)), has an immediate non-trivial bi-product.

The pre-trained mapping to the supersenses space,

denoted S, acts as an additional head predicting a

word’s supersense given context [see figure 1(b)].

We thereby effectively attain a semantic-level lan-

SenseBERTBASE SemEval-SS Fine-tuned

30K no OOV 81.9

30K average OOV 82.7

60K no OOV 83

Table 1: Testing variants for predicting supersenses

of rare words during SenseBERT’s pretraining, as de-

scribed in section 5.1. Results are reported on the

SemEval-SS task (see section 5.2). 30K/60K stand for

vocabulary size, and no/average OOV stand for not pre-

dicting senses for OOV words or predicting senses from

the average of the sub-word token embeddings, respec-

tively.

guage model that predicts the missing word’s mean-

ing jointly with the standard word-form level lan-

guage model.

We illustrate the resultant mapping in fig-

ure 2, showing a UMAP dimensionality reduc-

tion (McInnes et al., 2018) of the rows of S,

which corresponds to the different supersenses. A

clear clustering according to the supersense part-

of-speech is apparent in figure 2(a). We further

identify finer-grained semantic clusters, as shown

for example in figure 2(b) and given in more detail

in the supplementary materials.

SenseBERT’s semantic language model allows

predicting a distribution over supersenses rather

than over words in a masked position. Figure 3(a)

shows the supersense probabilities assigned by

SenseBERT in several contexts, demonstrating the

model’s ability to assign semantically meaningful

categories to the masked position.

Finally, we demonstrate that SenseBERT enjoys
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(a)

SemEval-SS

(b)

WiC

The team used a battery of the newly developed “gene probes”

BERT SenseBERT

noun.artifact noun.group

noun.quantity noun.body

Same Different

Ten shirt-sleeved ringers stand in a circle, one foot ahead of the 
other in a prize-fighter's stance

Sent. A: 

The kick must be synchronized 
with the arm movements.

Sent. B:

A sidecar is a smooth drink 
but it has a powerful kick.

Different Same
Sent. A: 

Plant bugs in the dissident’s 
apartment.

Sent. B:

Plant a spy in Moscow.

Figure 4: Example entries of (a) the SemEval-SS task, where a model is to predict the supersense of the marked

word, and (b) the Word in Context (WiC) task where a model must determine whether the underlined word is used

in the same/different supersense within sentences A and B. In all displayed examples, taken from the corresponding

development sets, SenseBERT predicted the correct label while BERT failed to do so. A quantitative comparison

between models is presented in table 2.

an ability to view raw text at a lexical semantic

level. Figure 3(b) shows example sentences and

their supersense prediction by the pretrained model.

Where a vanilla BERT would see only the words

of the sentence “Dan cooked a bass on the grill”,

SenseBERT would also have access to the super-

sense abstraction: “[Person] [created] [food] on the

[artifact]”. This sense-level perspective can help

the model extract more knowledge from every train-

ing example, and to generalize semantically similar

notions which do not share the same phrasing.

5 Lexical Semantics Experiments

In this section, we present quantitative evaluations

of SenseBERT, pre-trained as described in sec-

tion 3. We test the model’s performance on a

supersense-based variant of the SemEval WSD test

sets standardized in Raganato et al. (2017), and

on the Word in Context (WiC) task (Pilehvar and

Camacho-Collados, 2019) (included in the recently

introduced SuperGLUE benchmark (Wang et al.,

2019)), both directly relying on the network’s abil-

ity to perform lexical semantic categorization.

5.1 Comparing Rare Words Supersense

Prediction Methods

We first report a comparison of the two methods de-

scribed in section 3.4 for predicting the supersenses

of rare words which do not appear in BERT’s origi-

nal vocabulary. The first 60K vocabulary method

enriches the vocabulary and the second average

embedding method predicts a supersense from the

average embeddings of the sub-word tokens com-

prising an OOV word. During fine-tuning, when

encountering an OOV word we predict the super-

senses from the rightmost sub-word token in the

60K vocabulary method and from the average of

the sub-word tokens in the average embedding

method.

As shown in table 1, both methods perform com-

parably on the SemEval supersense disambigua-

tion task (see following subsection), yielding an

improvement over the baseline of learning super-

sense information only for whole words in BERT’s

original 30K-token vocabulary. We continue with

the 60K-token vocabulary for the rest of the ex-

periments, but note the average embedding option

as a viable competitor for predicting word-level

semantics.

5.2 SemEval-SS: Supersense Disambiguation

We test SenseBERT on a Word Supersense Dis-

ambiguation task, a coarse grained variant of the

common WSD task. We use SemCor (Miller

et al., 1993) as our training dataset (226, 036 an-

notated examples), and the SenseEval (Edmonds

and Cotton, 2001; Snyder and Palmer, 2004) / Se-

mEval (Pradhan et al., 2007; Navigli et al., 2013;

Moro and Navigli, 2015) suite for evaluation (over-

all 7253 annotated examples), following Raganato

et al. (2017). For each word in both training and test

sets, we change its fine-grained sense label to its

corresponding WordNet supersense, and therefore

train the network to predict a given word’s super-

sense. We name this Supersense disambiguation

task SemEval-SS. See figure 4(a) for an example
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SemEval-SS Frozen SemEval-SS Fine-tuned Word in Context

BERTBASE 65.1 79.2 –

BERTLARGE 67.3 81.1 69.6

SenseBERTBASE 75.6 83.0 70.3

SenseBERTLARGE 79.5 83.7 72.1

Table 2: Results on a supersense variant of the SemEval WSD test set standardized in Raganato et al. (2017), which

we denote SemEval-SS, and on the Word in Context (WiC) dataset (Pilehvar and Camacho-Collados, 2019) included

in the recently introduced SuperGLUE benchmark (Wang et al., 2019). These tasks require a high level of lexical

semantic understanding, as can be seen in the examples in figure 4. For both tasks, SenseBERT demonstrates a

clear improvement over BERT in the regular fine-tuning setup, where network weights are modified during training

on the task. Notably, SenseBERTLARGE achieves state of the art performance on the WiC task. In the SemEval-SS

Frozen setting, we train a linear classifier over pretrained embeddings, without changing the network weights. The

results show that SenseBERT introduces a dramatic improvement in this setting, implying that its word-sense aware

pre-training (section 3) yields embeddings that carries lexical semantic information which is easily extractable

for the benefits of downstream tasks. Results for BERT on the SemEval-SS task are attained by employing the

published pre-trained BERT models, and the BERTLARGE result on WiC is taken from the baseline scores published

on the SuperGLUE benchmark (Wang et al., 2019) (no result has been published for BERTBASE).

Word in Context

ELMo† 57.7

BERT sense embeddings †† 67.7

BERTLARGE
‡ 69.6

RoBERTa‡‡ 69.9

KnowBERT-W+W⋄ 70.9

SenseBERT 72.1

Table 3: Test set results for the WiC dataset.
†Pilehvar and Camacho-Collados (2019)
††Loureiro and Jorge (2019)
‡Wang et al. (2019)
‡‡Liu et al. (2019)
⋄Peters et al. (2019)

from this modified data set.

We show results on the SemEval-SS task for

two different training schemes. In the first, we

trained a linear classifier over the ‘frozen’ output

embeddings of the examined model – we do not

change the the trained SenseBERT’s parameters in

this scheme. This Frozen setting is a test for the

amount of basic lexical semantics readily present

in the pre-trained model, easily extricable by fur-

ther downstream tasks (reminiscent of the semantic

probes employed in Hewitt and Manning (2019);

Reif et al. (2019).

In the second training scheme we fine-tuned the

examined model on the task, allowing its param-

eters to change during training (see full training

details in the supplementary materials). Results

attained by employing this training method reflect

the model’s potential to acquire word-supersense

information given its pre-training.

Table 2 shows a comparison between vanilla

BERT and SenseBERT on the supersense dis-

ambiguation task. Our semantic level pre-

training signal clearly yields embeddings with

enhanced word-meaning awareness, relative to

embeddings trained with BERT’s vanilla word-

level signal. SenseBERTBASE improves the score

of BERTBASE in the Frozen setting by over 10
points and SenseBERTLARGE improves that of

BERTLARGE by over 12 points, demonstrating com-

petitive results even without fine-tuning. In the

setting of model fine-tuning, we see a clear demon-

stration of the model’s ability to learn word-level

semantics, as SenseBERTBASE surpasses the score

of BERTLARGE by 2 points.

5.3 Word in Context (WiC) Task

We test our model on the recently introduced WiC

binary classification task. Each instance in WiC

has a target word w for which two contexts are

provided, each invoking a specific meaning of w.

The task is to determine whether the occurrences

of w in the two contexts share the same meaning

or not, clearly requiring an ability to identify the

word’s semantic category. The WiC task is defined

over supersenses (Pilehvar and Camacho-Collados,

2019) – the negative examples include a word used

in two different supersenses and the positive ones

include a word used in the same supersense. See

figure 4(b) for an example from this data set.
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Score CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE

BERTBASE (OURS) 77.5 50.1 92.6 88.7/84.3 85.7/84.6 71.0/88.9 83.6 89.4 67.9
SenseBERTBASE 77.9 54.6 92.2 89.2/85.2 83.5/82.3 70.3/88.8 83.6 90.6 67.5

Table 4: Results on the GLUE benchmark test set.

Results on the WiC task comparing Sense-

BERT to vanilla BERT are shown in table 2.

SenseBERTBASE surpasses a larger vanilla model,

BERTLARGE. As shown in table 3, a single

SenseBERTLARGE model achieves the state of the

art score in this task, demonstrating unprecedented

lexical semantic awareness.

5.4 GLUE

The General Language Understanding Evaluation

(GLUE; Wang et al. (2018)) benchmark is a popu-

lar testbed for language understanding models. It

consists of 9 different NLP tasks, covering different

linguistic phenomena. We evaluate our model on

GLUE, in order to verify that SenseBERT gains its

lexical semantic knowledge without compromising

performance on other downstream tasks. Due to

slight differences in the data used for pretraining

BERT and SenseBERT (BookCorpus is not pub-

licly available), we trained a BERTBASE model with

the same data used for our models. BERTBASE and

SenseBERTBASE were both finetuned using the ex-

act same procedures and hyperparameters. The

results are presented in table 4. Indeed, Sense-

BERT performs on par with BERT, achieving an

overall score of 77.9, compared to 77.5 achieved

by BERTBASE.

6 Conclusion

We introduce lexical semantic information into

a neural language model’s pre-training objective.

This results in a boosted word-level semantic aware-

ness of the resultant model, named SenseBERT,

which considerably outperforms a vanilla BERT on

a SemEval based Supersense Disambiguation task

and achieves state of the art results on the Word

in Context task. This improvement was obtained

without human annotation, but rather by harnessing

an external linguistic knowledge source. Our work

indicates that semantic signals extending beyond

the lexical level can be similarly introduced at the

pre-training stage, allowing the network to elicit

further insight without human supervision.
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Figure 5: Dendrogram visualization of an Agglomerative hierarchical clustering over the supersense vectors (rows

of the classifier S) learned by SenseBERT.

Name Content Name Content

adj.all All adjective clusters noun.quantity Nouns denoting quantities and units
of measure

adj.pert Relational adjectives (pertainyms) noun.relation Nouns denoting relations between
people or things or ideas

adv.all All adverbs noun.shape Nouns denoting two and three
dimensional shapes

noun.Tops Unique beginner for nouns noun.state Nouns denoting stable states of affairs

noun.act Nouns denoting acts or actions noun.substance Nouns denoting substances

noun.animal Nouns denoting animals noun.time Nouns denoting time and temporal
relations

noun.artifact Nouns denoting man-made objects verb.body Verbs of grooming, dressing
and bodily care

noun.attribute Nouns denoting attributes of people verb.change Verbs of size, temperature change,
and objects intensifying, etc.

noun.body Nouns denoting body parts verb.cognition Verbs of thinking, judging, analyzing,
doubting

noun.cognition Nouns denoting cognitive verb.communication Verbs of telling, asking, ordering,
processes and contents singing

noun.communication Nouns denoting communicative verb.competition Verbs of fighting, athletic activities
processes and contents

noun.event Nouns denoting natural events verb.consumption Verbs of eating and drinking

noun.feeling Nouns denoting feelings verb.contact Verbs of touching, hitting, tying,
and emotions digging

noun.food Nouns denoting foods and drinks verb.creation Verbs of sewing, baking, painting,
performing

noun.group Nouns denoting groupings of people verb.emotion Verbs of feeling
or objects

noun.location Nouns denoting spatial position verb.motion Verbs of walking, flying, swimming

noun.motive Nouns denoting goals verb.perception Verbs of seeing, hearing, feeling

noun.object Nouns denoting natural objects verb.possession Verbs of buying, selling, owning
(not man-made)

noun.person Nouns denoting people verb.social Verbs of political and social
activities and events

noun.phenomenon Nouns denoting natural phenomena verb.stative Verbs of being, having, spatial relations

noun.plant Nouns denoting plants verb.weather Verbs of raining, snowing, thawing,
thundering

noun.possession Nouns denoting possession adj.ppl Participial adjectives
and transfer of possession

noun.process Nouns denoting natural processes

Table 5: A list of supersense categories from WordNet lexicographer.


