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Abstract

The real-time, interactive feedback system we developed, Sensei: The T'ai Chi Teacher, is

presented. This system provides a good platform on which to build a more sophisticated

teaching, training, and feedback tool for gestures or action. In this document, we hope

to substantiate that thesis by showing that Sensei does have the components necessary to

be a good foundation. First of all, it is capable of performing real-time, multiple user,

gesture recognition. Users of the system are free to practice T'ai Chi gestures, starting

anywhere in the sequence of moves, and the system recognizes their actions. In addition,

a complete teaching system must be able to give both positive and critical feedback to

the user. This ability implies a knowledge of the instants in the user's performance of a

gesture where the user was both least and most accurate in the movement. Both tasks

are accomplished through the use of Hidden Markov Models. Experiments testing these

abilities are presented. The work concludes with a discussion of future extensions.
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Chapter 1

Introduction

1.1 Statement of Thesis

The real-time, interactive feedback system we developed, Sensei: The T'ai Chi Teacher, is

a novel use of virtual reality: a teaching tool for T'ai Chi gestures. Furthermore, it provides

a platform on which to build a more sophisticated teaching, training, and feedback tool for

gestures or action.

In this document, we hope to substantiate this thesis by showing that Sensei does have

the components of a good foundation. First of all, it is capable of performing real-time,

multiple user, gesture recognition. Users of the system are free to practice T'ai Chi gestures,

starting anywhere in the sequence of moves, and the system recognizes their actions. In

addition, a complete teaching system must be able to give both positive and critical feedback

to the user. This ability implies a knowledge of the instants in the user's gesture where the

user was both least and most accurate in her movements 1.

1.2 Motivation

The system described in this document, Sensei: The T'ai Chi Teacher is one part of a larger

application called Staying Alive. A complete discussion of that applications falls outside

the scope of this thesis; however, as a general context and as motivation, it is necessary,

and so will be discussed here and in a later chapter directly about related work.

1For lack of a better term, we subsequently refer to these moments as the salient moments in the gesture.



1.2.1 Staying Alive

Growing evidence supports the idea that mental imagery can have a profound healing effect

on the human body. For example, numerous studies have shown that from imagery springs

forth directly measurable effects such as the cure of warts or the reduction of scarring from

burns [17, 37]. Furthermore, several studies have shown the efficacy of programs involving

imagery and relaxation in increasing the expected lifespans of cancer patients [24, 34].

While it is difficult to prove which particular aspects of such programs (imagery, relaxation,

expectation, or group meetings) account for the changes in prognoses, it is reasonable to

assume that imagery has some effect, given the types of studies described above.

While the use of imagery has been shown to directly correlate with healing, the "relax-

ation response" associated with relaxation methods has been shown to boost the immune

system's activity in general [8]. Stress seemingly shuts down the immune system, perhaps to

prepare for a "fight or flight" response to a perceived threat; relaxation allows the immune

system to flourish. For this reason, relaxation methods are commonly taught to cancer

patients. In addition to helping the besieged immune system, relaxation methods can help

cancer patients feel a sense of control at a time in their lives when cancer treatments cause

inordinate stress and anxiety. This sense of control itself, even if not directly correlated to

prognosis, certainly improves the quality of life.

Because imagery and relaxation promise so much benefit to both those with and without

cancer, Becker and Pentland are developing a virtual reality imagery and relaxation tool

called Staying Alive [7]. The long term goal of that project is to determine whether using

virtual reality as an imagery device is more beneficial than using the imagination alone. In

order to create the imagery, Becker and Pentland have developed a virtual environment of

a bloodstream. In Staying Alive, the user controls a white blood cell in the environment

and navigates through the blood stream, removing malignant cells. This immune system-

centered paradigm is a common imagery theme for cancer patients.

The other aspect of Staying Alive, relaxation, is currently in development. The goal is

to allow a user to control the virtual environment through the use of T'ai Chi gestures. T'ai

Chi is among the more popular forms of martial arts in China and the world. Though like

all martial arts, this exercise includes movements for attack and defense, there are several

forms of T'ai Chi which are slow and gentle, such as the Yang, Wu or Sun styles [41]. The

gestures for Staying Alive were chosen from the Yang style, which is meant for relaxation



and wholeness, not for fighting. T'ai Chi, like imagery techniques, is commonly taught at

cancer centers such as the Wellness Community both as a gentle way to exercise and as a

relaxation method. Its use in Staying Alive, then, is two-fold: both as a relaxation tool and

as the means by which to control the environment.

1.2.2 Sensei: the T'ai Chi Teacher

An application with T'ai Chi gestures as part of the user interface is only usable by those

who are familiar with T'ai Chi. Therefore, as part of the development of the Staying

Alive application, we were motivated to produce an application that could teach users the

gestures necessary to control the environment. The goal of this work centers directly on

that teaching application. Specifically, the long-term goal is to develop a system capable of

providing users with feedback and training as they practice T'ai Chi.

1.3 Approach

Embedded in the task of developing a system capable of giving useful training are two other

issues: the system must be capable of recognizing T'ai Chi gestures when performed and

then of comparing the user's movements to an ideal, or perfectly acted, gesture to provide

feedback.

The Sensei system tackles the first problem, that of gesture recognition, through a

Hidden Markov Model approach. The user's head and hands are tracked in 3-D via STIVE

(Stereo Interactive Video Environment) [4]. Cartesian (dx, dy, dz) velocities are used as

features, and and left-right, Bakis HMM's [26] for each gesture are trained with the Baum-

Welch algorithm. Recognition is achieved in real-time with the use of the Viterbi algorithm.

The five gestures used in the system can be seen in Figure 1-1. These five gestures were

chosen because they are the first five gestures in the short, Yang T'ai Chi sequence [41].

The probabilistic framework of Hidden Markov Models generalizes well for computing

the moment in the user's expression of a gesture that differs most from the ideal form. In

the course of using the Viterbi algorithm to compute the probability of each model, the

probability per frame during the course of the gesture is computed. This can be used not

only to do recognition, but also to identify the moment in the gesture sequence where the

user most differed from (or most approached) an expert.



Grab
Opening birds Wave Single Brush

form tail clouds whip knee

Figure 1-1: The five T'ai Chi gestures used in the T'ai Chi Teacher.



1.4 Other Applications

Imagery techniques are currently used in many applications. Imagery and hypnosis (which

is a focused way of doing imagery) are commonly used in such widely varying arenas as

pain control and athletics. An example imagery for someone coping with pain is to picture

a sailboat floating away on the ocean and to imagine the sailboat carrying away the pain

as it disappears on the horizon. An athlete might try to improve her free throw shooting

ability by picturing herself successfully making her shots. Little has helped both cancer

patients and several professional athletes with programs of imagery and relaxation [20].

Not all imagery systems would benefit from a gesture recognition interface. However,

as an application in itself, a system that watches a person perform some physical activity

and acts as a teacher could be applied in many areas. For example, such a system could

act as a tennis instructor, a golf pro, an aerobics instructor, or a dance teacher. In general,

the system presented in this document could be expanded into a general framework for

teaching physical movements of any kind. An expert would teach the system the correct

way to perform the movements. Users would have their movements recognized by the system

and then receive feedback as to where they can improve.

1.5 Outline of Thesis

The remainder of this document explores the details of our approach to building Sensei: The

T'ai Chi Teacher. Chapter 2 provides the context of the work in relationship to previous

work. Chapter 3 discusses the implementation and training of the gesture recognition

system. Chapter 4 contains a description of the recognition algorithm and the feedback

system. Experiments assessing the effectiveness of the system and the results of those

experiments are presented in Chapter 5. The final chapter is a summary, with a brief look

at future work.



Chapter 2

Related Work

The ideas motivating the Sensei system were inspired by work in several fields. Research

about the use of imagery and relaxation to bolster the immune system has occupied a

role in psychosomatic medicine for years. This work directly inspired the Staying Alive

application, of which the T'ai Chi Teacher is a part. The first section of this chapter will

discuss some of that work. The field of gesture recognition is a rapidly growing subset of

computer vision; some of the works inspiring the Hidden Markov Model approach used in

Sensei will be discussed in the second section.

2.1 Imagery and Relaxation

2.1.1 Early Work in Imagery, Visualization, and Hypnosis

For centuries, Tibetan monks have been using elaborate visualizations and meditations

to control parts of their physiology which are normally under autonomic control. For

example, Dr. Herbert Benson, a Harvard cardiologist, recorded monks raising their skin

temperature by as much as seventeen degrees above normal while sitting in near-freezing

temperatures, wrapped in wet sheets. "If an ordinary person were to try this, they would

shiver uncontrollably and perhaps even die. But here, within three to five minutes, the sheets

started to steam and within forty-five minutes were completely dry," says Dr. Benson [8].

Benson termed this physiological response to this meditative state the Relaxation Re-

sponse. Essentially, when a person perceives stress, the brain enters into a "flight or fight"

response and releases hormones into the bloodstream to prepare the body. These hormones



are known to have a suppressing effect on the immune system. The Relaxation Response,

on the other hand, triggers the exact opposite reaction. The release of those hormones is

quelled and the immune system functions at its full capacity.

Can people use a similar technique to encourage the body to heal itself, rather than

raise the skin temperature? The most medically unequivocal cases of the mind healing

the body come from studies of warts. Warts, which are caused by a virus, appear to be

unusually susceptible to hypnotic suggestion. The imagery and meditations used by the

monks are similar to the hypnotic inductions used to treat warts. Both typically involve

a relaxation phase and a guided imagery. As early as 1927, the first scientific studies on

this issue were carried out by Block [9]. He used suggestion without hypnosis in his work,

blindfolding his patients and painting their warts with an inert dye. More than half his

patients lost their warts within three months (untreated, warts resolve spontaneously in

2.28 years on average [37]). Memmesheimer and Eisenlohr followed this study with a more

controlled experiment showing a similar connection between the cure of warts and suggestion

[22]. In the 1950's, another series of studies probed the issue of hypnotizability and warts

[21, 12, 2, 3, 38]. Though these studies focused on the relationship between hypnotizability

and efficacy of hypnotherapy, the idea that warts were susceptible to hypnotic suggestion

(which usually entails extensive use of imagery) was reinforced. In 1972, Surman, et. al.,

carried out a rigorously controlled study testing specifically whether warts were susceptible

to hypnotherapy. While the warts of 53% of their experimental group improved, not a

single member of the control group experienced any improvement. Surman concludes that

while hypnosis is clearly an effective treatment, one can only conjecture as to how hypnosis

encourages the mind to cure the body of warts.

2.1.2 Imagery as Applied to Cancer

Work such as that described above clearly established the mind's capability of influencing

the health of the body. Carl Simonton, et. al., was the originator of the idea of using these

techniques with cancer patients [30]. If imagery and relaxation had been effective in giving

control over parts of the body previously considered outside conscious control, they might

give the body a way to focus the attention of the immune system on the cancer.

Several researchers have investigated whether Simonton's hypothesis is correct. Simon-

ton reported a life span extension of over 60% for patients enrolled at his center during



its first four years [30]. Achterburg and Lawlis also studied a group of patients enrolled

in the Simonton's program and found consistently better results for patients that prac-

ticed imagery daily [1]. Achterburg argues, in fact, that the imagery itself is the important

therapeutic component in the healing program.

In a broader study, Spiegel, et. al., demonstrated that psychosocial interventions (which

included group therapy and self-hypnosis) almost doubled survival time in the experimental

group compared to the control group [34]. Several other researchers have shown relaxation

and imagery to be an effective means of reducing stress and anxiety in cancer patients,

without studying the specific effect on long-term survival [28, 15, 14, 18, 10, 31, 6]. Post-

white has not only shown the positive effects of imagery on emotion, immune function, and

cancer outcome, but has shown that it causes an increase in lymphokine activated killer

cells [24].

While the community studying the effect of imagery and relaxation on cancer patients

has demonstrated a correlation between the practice of such measures and outcome, the

hypnosis community has continued to refine its work on the treatment of warts. Spanos, et.

al., have shown that in their studies, the subjects who had the most success in curing warts

were those who reported having the most vivid imagery as opposed to those who were most

hypnotizable [32]. In fact, they found that hypnotizability did not correlate with results

at all. In a later study, Spanos, et. al., confirms again that vividness of imagery facilities

wart loss. They further hypothesize that it is the enhanced sense of cognitive involvement

in those patients that produce the most vivid imagery that is the true underlying cause of

the increased wart loss [33].

Finally, Baer and Surman demonstrated as early as 1985 that computers were effective

tools in inducing relaxation and focused attention. In their study, twenty adults used an

APPLE IIc program and rated their anxiety via the Spielberger State Anxiety Scale. They

found that the computer was an adequate tool for assisting adults in relaxation and stress-

reduction [5].

In summary, there is a wide range of work showing that imagery and relaxation are

beneficial to the function of the immune system. Furthermore, the vividness of the imagery

experienced by the practitioner correlates most strongly with how effective hypnosis and

imagery are in curing warts. Lastly, Baer and Surman demonstrated the feasibility of using

a computer to enhance relaxation. These issues all suggest that a virtual reality application,



in which the vividness of imagery is directly controlled, might be an effective tool against

cancer. That is the primary experimental question which Staying Alive attempts to answer.

2.2 Using HMM's for Gesture Recognition

The continuous speech recognition community has embraced the use of Hidden Markov

Models (HMM's) for years [27, 26, 19]. The ability of HMM's to use dynamic time warping to

provide time scale invariance while maintaining a probabilistic framework has more recently

made them attractive to the computer vision community. In addition, their ability to

automate segmentation and classification makes them well suited for gesture recognition.

Early work with HMM's in vision was done by He and Kundu [16], who used them

to classify planar shapes. Their work derives more closely from work in the handwriting

recognition community.

Yamato, et. al., used HMM's to recognize three different subjects performing six dif-

ferent tennis swings. As input features to the HMM's, they used a 25 x 25 quantized,

subsampled image. With thirty instances for each stroke used to train the models, success-

ful classification between them was achieved [40].

Schlenzig, et. al. [29], demonstrated the ability of HMM's to recognize continuous

gestures from image sequences, rather than from still frames. As an input feature vector,

Schlenzig uses a rotation invariant, binarized frame around the hand, processed by a neural

net. Their system is capable of distinguishing between "hello", "good-bye", and "rotate".

The recognition system of Sensei: The T'ai Chi Teacher is most directly influenced

by work done by Starner and Pentland [35]. Using hand velocities and orientations in

two dimensions, Starner was able to build an HMM system capable of recognizing forty

American Sign Language gestures in a real-time system. The features are computed using

a system that tracks hands wearing colored gloves. The system is capable of recognizing

gestures with an accuracy of 97%.

Wilson and Bobick [39] develop a state-based method of learning visual behavior of

gestures in an image sequence. Multiple representations are fed into an HMM and the

input's overall membership in a given state is determined by which representation best

describes the input.

Darrell and Pentland have explored a real-time wireless hand gesture recognition system



that does not use HMM's directly. Instead, their work is a view-based approach in which

matched filters are acquired for examples of different gestures and where a new filter is

learned whenever an example is displayed for which no previous filter is well suited [13].

The relationship to the T'ai Chi Teacher is in their use of dynamic time warping to assist in

recognition. The use of the Viterbi algorithm to achieve recognition in the T'ai Chi Teacher

uses a similar dynamic programming technique.

Finally, the gesture recognition system of the Sensei system was derived directly from

work done by Campbell, Becker, Azarbayejani, Bobick and Pentland [11]. In this work, we

test a set of seven different feature vectors, all of were which were functions of coordinates

of the hands and the head of a user, as input to an HMM system. The positions of the

hands and head are tracked in real-time in three dimensions with the use of a wide-baseline

stereo camera system. Our results showed that with invariances to user translation and

rotation as a goal, polar, body-centered velocity coordinates can achieve 93% recognition

accuracy on a vocabulary of 18 different T'ai Chi gestures.

The main difference between this previous work and the work done for the T'ai Chi

Teacher is in the recognition, rather than training, phase. In the earlier work, we hand-

segment gesture sequences into groups of six, and entire sequences are parsed at once. The

recognition routine utilizes the grammar of there being exactly six gestures in the sequence

when doing recognition. The desire to allow a user to practice a sequence of gestures,

starting at any point, and to give feedback in real-time necessitated a system that does no

segmentation at all. Instead, the Sensei system observes the user in real-time and performs

both gesture recognition and gesture spotting.



Chapter 3

Implementation of the

Recognition System

The previous chapter discussed several systems which utilized Hidden Markov Models to

perform gesture recognition. The work done by Starner in particular, in which significant

recognition success was achieved with a vocabulary of forty American Sign Language ges-

tures, suggests that this framework is appropriate for the recognition task of the Sensei

system [35]. In addition, and perhaps more importantly, Hidden Markov Models have the

attractive feature of placing the entire recognition task in a probabilistic framework. This

framework allows the T'ai Chi Teacher to easily pick out segments of the user's gesture

which most closely and least closely fit to the ideal version of the gesture, an aspect that

will be discussed in more detail in the next chapter.

3.1 Description of Hidden Markov Models

Hidden Markov Models are based on the assumption that the process being modeled can be

described as a first-order Markov process. Such a process is one in which the system can be

expected to jump from state to state over time. The system's parameters at any given time

are described by the state in which the system currently resides. As the system changes in

time, its parameters might change and be better described by a different state. The change

from one state to another is a stochastic process. The Markovian property states that for

a first-order Markov process, the probabilities of transitions between states depend only

on the current state (a second-order Markov process would be one in which the transitions



between states depend only on the last two states, etc.).

The difference between a first-order Markov process and a Hidden Markov Model is

that in the HMM framework, the current state of the system is not observable. Instead, the

system outputs a symbol at each time step, where the symbol is generated stochastically

by whichever (unobservable) state in which the system currently resides. That is, there is

a stochastic process governing which state the system is in and another stochastic process,

characteristic of the current state, which determines which observable symbol the system

outputs. The system, then, is doubly stochastic.

As such, a Hidden Markov Model with n states can be described completely by the

following quantities:

* initial probabilities, 7r: an n-vector where 7r; is the probability of starting in state i

* transition probabilities, A: an n x n matrix where aij is the probability of jumping

from state i to state j

* output probabilities, B: HMM's can be either discrete or continuous. Discrete HMM's

have output that is one of m possible symbols. In this case, B is an n x m matrix, and

bik describes the probability of state j outputting symbol k. In the continuous case,

the observable symbol output by the system is a continuous random vector. B now

describes parameters for a set of probability density functions (typically a mixture of

Gaussians) which give probabilities for different observable vectors.

Thus, an HMM can be fully described by A = (7r, A, B).

3.2 Implementation of HMM's

3.2.1 Topology

To use HMM's as a recognition tool, then, several steps must be taken. First of all, each

HMM must be given a topology. In general, knowledge of the physical properties of the

system to be modeled can be used to create an appropriate topology. For example, consider

a traffic light that during the day outputs either green, yellow, or red. At night, the light

enters a different mode in which it outputs a blinking yellow. An HMM that models this

traffic light might, then, have two states, each with a quite different output probability

function.



In practice, of course, real systems are rarely as simple. In general when designing a

system, one starts with a topology which is suspected to be more complicated (i.e. has

more states and more paths between the states) than the system being modeled. While

training the model, it is then possible to prune the topology by removing states and links

which are seldom used. Stolcke and Omohundro have attempted to automate this process.

See [36] for details.

3.2.2 Choosing the observation vectors

Another question to be answered when developing an HMM system is the choice of what

to use as the observation vector. Consider the traffic light system again. The observation

is of the color lit by the traffic light. In this case, the HMM would be a discrete system;

the observations are simply one of three different colors. The state remains hidden in that

there is no directly observable quantity which immediately specifies the state. Only by

analyzing the pattern of an observation sequence can the state be deduced. In practice, of

course, it would be simple to discern which state the light was in by observing the pattern

of lights and noting the presence or absence of the repeating yellow. This step is exactly

what the HMM recognition system will eventually do - determine the most likely state from

the observation sequence.

The choice of observation vectors when implementing real systems is affected by issues

such as available sensors, desired invariances (e.g. speaker independence, view indepen-

dence, etc.), and amount of available training.

3.2.3 Training the model

The next task to accomplish is training the system, using example data to learn appropriate

transition and output probabilities. The goal is to take an observation sequence known to

have come from a certain model and change A such that the probability that the given model

produced the observation sequence is maximized. In general, this is accomplished through

the use of the Baum-Welch algorithm. This algorithm is an iterative re-estimation routine,

guaranteed to find a local maximum of the probability. While the probability surface is

likely to be quite complex, in practice, the Baum-Welch algorithm is effective at quickly

arriving at adequate models.



3.2.4 Performing the recognition

Finally, once models have been trained for all of the atoms to be identified (i.e. gestures in a

gesture recognition system, words in a speech recognition system), the Viterbi algorithm can

be used to perform recognition. The Viterbi algorithm is based on dynamic programming

techniques and bears close resemblance to dynamic time warping. The task of recognition

in the HMM framework is to take a given observation sequence and determine which of the

HMM's was most likely to have emitted it.

The procedure works by maintaining a lattice structure of probabilities. Each column

in the lattice, og, has n nodes, each of which represents the probability of being in a given

state. There are as many columns in the lattice as there are observations in the sequence.

The lattice gets filled in recursively, starting with the first observation. The initial nodes

are given a probability of:

6i = 7ribi(01)

Then, nodes at time t are filled in with:

bt(j) = Max;[6t_1(i)aZgjbg(0t)

The lattice gets filled in until the last observation, at which point the node with the maxi-

mum final probability is chosen, and the sequence can be recovered by back-tracing through

the lattice1 .

3.3 Implementing the T'ai Chi Teacher's HMM's

3.3.1 Observation vectors

We now turn to a description of the particular implementation used in developing Sensei.

The first implementation question is the choice of what to use as the observation vector.

Starner's American Sign Language recognition system was based on the 2-D mean coordi-

'This method chooses the most likely state sequence for the observation data. The procedure can be mod-

ified to maximize the most likely state at each time step, as well. Typically the choice of the appropriate

version is predicated by the problem. Ergodic models, in which every state is reachable from every other

state (i.e. ai2 > 0 for all ij) use the latter version. Bakis, left-right models (i.e. ai1 = 0 for 3j < i) use

the former to enforce that the final sequence chosen is valid.
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Figure 3-1: Real-time estimation of the position of moving human head and hands. The top images
are the video and tracking from the two cameras and the bottom image is the result of triangulating.

nates of both hands, as well as a description of the hands' orientations [35]. For the T'ai

Chi Teacher, we felt that the use of functions based on the 3-D coordinates of the hands

and head would be more appropriate. First of all, in previous work, we have demonstrated

the effectiveness of several different such functions, using T'ai Chi gestures [11]. Perhaps

more importantly, to build a platform for a more general teaching tool, one which is capable

of distinguishing between gestures from an arbitrarily complex vocabulary, it is reasonable

to assume that 3-D data might be necessary. The T'ai Chi Teacher, as a testbed for future,

more sophisticated teachers, must demonstrate the ability to recognize complicated gestures

using the 3-D data.

To gather this 3-D tracking data for the hands and head, we utilize the STIVE (Stereo

Interactive Video Environment) system developed by Azarbayejani and Pentland. In the

smart desk environment of STIVE, two wide-baseline cameras are positioned at the top of a

large display screen in front of which sits the user. The video from each camera is separately

analyzed to find two-dimensional blob features [4]. Essentially, this task is accomplished by

searching the video input stream for flesh chrominance and then using a geometry model to

decide which blob corresponds to the left hand, the right hand, and the head. Once these

labeled, two-dimensional blobs are known (along with the calibration of the cameras), a
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Figure 3-2: Hypothetical PDF's for an "Opening Form" gesture in (x, y, z). Notice that states 1

and 3 overlap.

recursive, nonlinear estimation is used to extract an estimate of the three-dimensional blob

features of the hands and head as in Figure 3-1. STIVE is capable of tracking head and

hand positions with an accuracy of approximately 2cm at almost 30 frames/sec. Although

the system estimates the full blob features (which include orientation as well as location),

for the purposes of the Sensei system, we use the mean location of the blobs as the locations

of the hands and heads.

One possibility for the choice of observation vectors would be to simply use the position

data as provided by STIVE. The models learned in that case, would have states correspond-

ing to the presence of the hands and head in a specific area of space. For example, consider

the T'ai Chi gesture, "Opening Form". This gesture (see Figure 1-1) consists of raising

both hands up, holding briefly, and then bringing both hands back down. If positions are

used as feature vectors, the states of the model would correspond to probability density

functions in (x, y, z) along the trajectory of the hands, as in Figure 3-2.

This choice of features, however, has limitations. If a new user performs a gesture

without being in the exact same location as the training data, it will prove to be a poor

match because there is no invariance to user translation. To avoid this problem, we use

velocity features as our observation vectors. In this case, the probability density functions

of the HMM states are not tied into specific locations in space, but instead to magnitudes of

velocity. For "Opening Form", this means that the model would have state(s) representing
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Figure 3-3: Hypothetical PDF's for an "Opening Form" gesture in velocity space.

an initial positive vertical velocity, then a state(s) representing a rest at the zenith, and

then state(s) representing a negative vertical velocity as in Figure 3-3. This set of features

is shift invariant; users in different locations performing the same gesture would have the

same data. It is not rotation invariant, however; users which are rotated relative to one

another will have different non-vertical velocities. In the case of the T'ai Chi Teacher, we

can assume that the user is facing the view screen, so rotation invariance is not a goal. For

a more complete discussion of the issues surrounding feature vector selection, see [11].

3.3.2 Choosing a Topology for the T'ai Chi Teacher

The motion of T'ai Chi gestures proceeds in a time-ordered manner. That is, gestures

proceed from a beginning to an end. To model signals with that property, a Bakis model

in which

1 i=l1

0 i 1

and aij = 0 for j < i (so transitions may only proceed in a forward manner through the

states) is most appropriate. The next issue is to define the number of states for each model.

What if all the gestures are not equally complicated, however? Perhaps some would be

suitably described with a fewer number of states than others. In order to avoid developing



Figure 3-4: An example HMM topology illustrating skip states

a different model for each gesture, skip transitions may be utilized, as in Figure 3-4. These

transitions allow the same topology to accommodate a different effective number of states.

To produce the actual topologies used in Sensei, we considered the physical properties

of the five gestures. Three of the gestures, "Opening Form", "Single Whip," and "Brush

Knee" all consist grossly of three different movement segments. For example, consider the

gesture "Opening Form." This gesture begins with an upward motion of the hands, then a

pause while the palms are brought from a horizontal to a vertical position, and then finally

a drop of the hands. "Grab the Bird's Tail" and "Wave Hands Like Clouds", on the other

hand, have more motion segments.

Given this physical scenario, we began by using a five state model with three skip states,

as in Figure 3-4, effectively allowing the training to generate models with three, four, or

five states. After completing the training, we found that the three simpler gestures all had

high skip probabilities. Therefore, we pruned their models down to three states with no

skip states, leaving the other models as is, and retrained.

3.3.3 Training the Models

In order for the system to be capable of recognizing multiple users, it is necessary to train

the system on a variety of experts. This way, when learning the models, the training data

will contain the types of variations that occur across different performers. To accomplish

this goal, 15 examples of each gesture were collected from four different performers in a

random sequence of five moves at a time, for a total of 60 examples of each gesture. A

commercial program, Hidden Markov Model Toolkit, by Entropics, was used to run the

Baum-Welch training algorithm.

As a result, five different HMM's were developed to represent the five different T'ai Chi

gestures to be recognized. To understand the physical meaning of these models, consider

the model for the gesture "Single Whip". In order to visualize this model, we will consider
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only the motion of the right hand (the left hand is motionless in this gesture, anyway)2 .

The right hand starts to the left of the head, held slightly out from the chest. Next, the

hand moves across the chest to the right, pauses, and returns. In velocity space, this is

a negative horizontal velocity in y, followed by a pause with no velocity, and completed

with a positive horizontal velocity in y. Figure 3-5 shows the topology for the model with

transition probabilities, while Figure 3-6 shows the probability density functions for each of

the states. In general, then, the five models learned during training represent the gestures

by these blobs in velocity space and the transition probabilities.

2
We do not use full covariance matrices for the output probabilities, so it is valid to separate the probability

density functions into separate 3-D blobs for left and right hands.



Chapter 4

Recognition of Gestures and

Feedback

4.1 Gesture Recognition

In the previous chapter, we briefly discussed how the Viterbi algorithm takes a Hidden

Markov Model and an observation sequence and determines the probability that the model

produced the sequence, Pr(OIA). In order to use the Viterbi algorithm to perform recog-

nition in real-time, however, two obstacles must be overcome.

Segmentation: The previous discussion of the Viterbi algorithm assumed that the

data was previously segmented. That is, the algorithm returns a probability for the

most likely state sequence traversing the entire observation sequence. In the real-time

environment of the T'ai Chi Teacher, the goal is to track a user doing a series of T'ai

Chi gestures and recognize whenever they have completed any of the gestures.

To accomplish this goal, we check for the presence of the gesture in the observation

sequence ending with the current frame, but beginning anywhere over a range of times

in the past, as in Figure 4-1. In this way, we hope to be able to find gestures which

can be of varying lengths, either due to inherent differences in their structures or due

to user variability. We define two parameters: a minimum time allowed for a gesture,

Tmin and a maximum time allowed for a gesture, Tma. Frames of tracking data

are stored until they are older than Tma, at which point they are discarded. With

each new frame, the Viterbi algorithm is run for each gesture on all the observation
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Figure 4-1: With time proceeding to the right, this plot illustrates the numerous windows fed to

the Viterbi algorithm. The lengths of the windows varies from Tma, to Tmin.

sequences starting from Tma, through Tmin and ending with the current frame1 . The

probability for each gesture is then

Pr(A) = MaxTmzn<t<Tmax[Pr(Ot|A)]

In order to compare probabilities between sequences of differing lengths, the average

probability per frame is used.

* Thresholding: The other issue which the real-time constraint imposes is the issue

of thresholding the probabilities. When data is presegmented into gesture sequences,

recognition is simply a matter of determining the maximum probability of the obser-

vation sequence over the models. When tracking a user in real-time, who may or may

not be doing a gesture at any moment, it is necessary to redefine the "recognition"

of a gesture to be only a moment in time when the probability for a certain gesture

exceeds some threshold value. In this way, the gesture recognition acts as a "word

spotting" tool as well. The value of the threshold for the T'ai Chi Teacher was derived

empirically for each gesture by experimentation.

1Actually, it is computationally expensive to change the beginning frame in the Viterbi probability lattice.

To avoid this problem, we time reverse the data and effectively vary the ending frame of the observation.

See Appendix A for details.



4.2 Localizing Salient Moments in the Gesture

In order for a more sophisticated teacher to give appropriate feedback to a user, it must

be able to locate points in the user's actions where the gesture was particularly "good" or

"bad." The final task of the Sensei system, then, is to analyze an observation sequence

which has been recognized as a particular gesture and identify these points. Later, fully

developed teachers can then use this knowledge to provide feedback.

Before building a tool to locate these salient moments, we must first define what makes

such a moment. To ground the definition, we consider the user's motion in relationship to

an "ideal" version of the gesture. To develop this ideal version of each gesture, we use the

training data used to build the HMM's, which was gathered by tracking experts performing

the gestures. To develop the ideal gestures, these expert examples are linearly resampled

in time and averaged.

Given the ideal versions of the gestures, the simplest definition of the salient moments

in the user's action is to consider the points in the user's motion where the hands were

closest or furthest (in a Mahalanobis distance sense) from where the hands were in the

corresponding time in the ideal gesture. Among the drawbacks to this definition are that

this leaves no shift invariance - a user must perform the gesture in the same position relative

to the tracking system as the experts did - and it has no size invariance - people of different

height and arm length must move their hands through the exact points in space that the

experts did.

A more suitable definition that does provide shift and position invariance is to consider

the same distance metric, difference from the ideal version of the gesture, but in velocity

(dx, dy, dz) space. This means that gestures are compared on the basis of whether they

involved movements in the correct directions and magnitudes as compared to the ideal

version.

Furthermore, there should be some flexibility in the rate at which users proceed through

the gesture. That is, it might take some people less time to complete a motion than others

because of different heights or arm lengths. In general, in T'ai Chi, the speed of the motion

should be consistent across practitioners - different users should not move their hands at

different speeds through space. However, it might take more or less time for different people

to move their hands through the proper trajectories while traveling at the same speed. For



larger people, the trajectories are simply longer in space. In summary, then, according to

this definition, salient moments in the gesture occur when a user was most and least aligned

to the ideal version of the gesture in velocity space, with some flexibility for how long each

motion segment is.

The Viterbi algorithm, already being employed in the Sensei system to perform recogni-

tion, can also be used to locate these salient moments in the user's gesture. Once recognition

has been achieved, the observation sequence has been successfully segmented. In computing

the probability lattice described in the previous chapter, the Viterbi algorithm computes

Pr(OA) at each point in the observation sequence. In effect, the observation sequence is

mapped in velocity (dx, dy, dz) space to the probability density functions of the states of

the HMM. If the hands move at a higher or lower speed than the experts, the observations

will fall to the edges of the PDF's. However, the dynamic time warping capability of the

Viterbi algorithm allows the hands to move at the proper speed for a variable period, with-

out penalty. In other words, the Viterbi algorithm computes the probability that the user's

gesture matches the ideal gesture at each point in the gesture sequence, while allowing for

flexibility in the correspondence. To pick the salient moments in the gesture, all that is

required is to pick the minimum and maximum probability along the sequence.



Chapter 5

Experiments

5.1 Gesture Recognition Experiment

Our previous work demonstrated that velocity features of 3-D tracking data of the hands can

be used to achieve a highly accurate recognition rate [11]. In that system, 18 examples of 18

different T'ai Chi gestures were used as training, and testing was performed on 6 examples

of each of the 18 gestures. No portion of the testing data was used during training. The

testing sequences were hand segmented into groups of six, and this knowledge was utilized

as a grammar by the recognizer. Therefore there was no chance of insertion or deletion

errors, only substitution errors. A recognition rate of 98% was achieved on testing examples

recorded with the user in the same position and orientation as in the training examples.

Given this work, it is clear that Hidden Markov Models are an effective tool for recog-

nizing pre-segmented gestures. However, the recognition task of the T'ai Chi Teacher is

slightly different. This application must be able to recognize gestures from an unsegmented

stream. In addition, the previous work used the same person for testing and training data.

As a general teaching tool, Sensei must be able to recognize different people performing

T'ai Chi gestures.

To first test the plausibility of the models, recognition was performed offline on recorded

training set independent
test set

97.8% 95.1%

Table 5.1: Recognition accuracy in offline tests



OF GBT WC SW BK Accuracy

OF 55 5 0 0 0 91.6%

GBT 2 57 1 0 0 95.0%

WC 1 2 56 0 1 95.0%

SW 0 0 0 59 1 98.3%

BK 0 0 0 1 59 98.3%

Total 95.3%

Table 5.2: Confusion matrix for real-time recognition of multiple users. None of the users were in

the training data. OF:Opening Form, GBT:Grab Birds Tail, WC:Wave Clouds, SW:Single Whip,

BK:Brush Knee. Row labels are true nature. Column labels are system classification.

data. Four users were recorded performing 15 examples of each gesture, in sentences con-

taining all 5 gestures in random order. In the first experiment, all 60 examples of each

gesture were used to train the models and then all 60 examples were used in testing. In

the second experiment, training was done on 45 randomly selected examples of each gesture

and testing was done on the other 15 examples. Table 5.1 shows the recognition results for

these two tests.

To test the efficacy of this system to work in real time and on different users, four

people, none of whom contributed training data for the models, performed 15 sequences of

the five T'ai Chi gestures'. The tracking data from STIVE was smoothed and resampled

in real-time 2 , and the data was fed into a real-time Viterbi algorithm3 . Table 5.2 shows the

confusion matrix of the recognition results.

5.2 Identifying Salient Points in the Gesture

The experiment to test the efficiency of the system at identifying the salient moments

in the users' gestures is slightly less direct. As was discussed in the previous chapter, it

is difficult to assign a precise definition for what are such moments in the gesture. The

Viterbi algorithm returns the moments in the gesture where the model for the given gesture

had the highest and lowest probability of producing the given observation sequence. How

'Why only five T'ai Chi gestures? In our previous work [11], we developed models for eighteen different

gestures. However, because of the different preprocessing involved in this real-time implementation, we

could not simply use the same models without completely retraining. Because we wanted Sensei to

demonstrate the ability to recognize gestures in a natural sequence, the five gestures we chose are the

first five gestures in the short, Yang sequence [41]. Included in this sequence were two gestures, "Opening

Form" and "Grab the Bird's Tail" which were commonly confused in our previous system.
2 See Appendix B for details about the smoothing and resampling.
3 See Appendix A for further notes on the implementation of the Viterbi that was used.



do these moments relate to the moments given by the definition - the moments where the

movement of the user's hands most differed from the movement of the hands in the ideal

version of the gesture? If ground truth data on the location of those moments was known,

we could simply compare the moments that gave the minimum and maximum probabilities

in the Viterbi calculation to this ground truth data.

Although that ground truth data does not exist, it is possible to arrive at an acceptable

approximation. Consider again the simple definition for the salient moments as described

in the previous chapter: the salient moments are the instances in the user's gesture where

the hands were furthest in space from where the hands were in the ideal version of the

gesture, with some flexibility in correspondences. We discarded this definition because it

didn't allow for shift invariance or invariance to the size of the users' bodies. However,

what if the user is the expert, and the user does sit in the same position as she did when

she trained the system? Then it would be possible, using a simple dynamic time warping

algorithm which uses Mahalanobis distance as a distance metric, to locate the moment in

the user's gesture when the hands were most different and least different from the ideal

positions. If we use these moments as our ground truth data, they can then be compared

to the values determined with the Viterbi algorithm running in our normal, velocity space.

To clarify this procedure, consider Figure 5-1. In this figure, the probability track for

an actual "Opening Form" gesture as computed with the Viterbi algorithm is shown on

top. Vertical lines show the locations of the moments classified as "best" and "worst." The

lower part of the figure shows the same gesture as segmented with a dynamic time warping

algorithm using Mahalanobis distance as a distance metric. Figure 5-2 shows how we use

the DTW algorithm as ground truth to compute an error percentage for the classification

from the Viterbi algorithm.

To evaluate the performance of this aspect of the T'ai Chi Teacher, we devised two

experiments. The goal of the first was to test the system's ability to find the types of errors

typical of beginners: gross movements obviously out of the correct trajectory. The goal

of the second experiment was to test the system's ability to find the more subtle types of

errors typical of experts.

The HMM's for both experiments were trained on data from a single user. Thirty

examples of each gesture were performed by the user sitting in the same position. For each

of the two experiments, ten different examples of each gesture were performed by the same
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Figure 5-1: The top view is the probability/frame along the observation sequence computed by the

Viterbi algorithm. The lower view is the same sequence, but with probability computed by a DTW

algorithm using Mahalanobis distance as a distance metric. The gesture was "Opening Form." At

approximately frame 52, the user moved his left hand well out of the expected trajectory.
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Figure 5-2: Hypothetical probability tracks as computed with the two methods. The vertical lines

show the classification as calculated in both methods. We assume the classification from the DTW

algorithm is ground truth and compute an error on the classification of the Viterbi algorithm. The

error percentage is the time difference of the two classifications divided by the time of the entire

gesture.
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experiment Bad moments Good moments

beginner 5% 12%

expert 15% 14%

Table 5.3: Errors in classification of the instants in the gesture where the user most (good moments)

or least (bad moments) matched the ideal gesture. Ground truth is provided by the classification

from the DTW algorithm. The error percentages are calculated by dividing the time difference of

the classification from the Viterbi algorithm and the ground truth classification by the time length

of the entire gesture. The beginner experiment included gestures where the user made large scale,

beginner-type errors, and the second experiment was with expert-type errors.

user, sitting in the same location. The moments chosen with the Viterbi algorithm were

compared to those generated by a dynamic time warping system which used Mahalanobis

distance as a distance metric. Table 5.2 shows the average time between the two instances

chosen by both methods over the course of the testing data for both experiments.

5.3 Analysis of Results

When considering the recognition results, some important caveats are in order. In the first

two experiments, recognition was tested on sequences which had been presegmented into

sentences of five gestures. In this case, the classification of an observation sequence is simply

whichever model has the highest probability of having emitted that sequence. In the real-

time, multiple user experiment, a different definition of classification is needed because the

data is not segmented. The procedure used is as follows:

" As described in the previous chapter, run the Viterbi algorithm over a window of

frames as each new frame is observed.

" Take the maximum Pr(A) over all the models and this is the most likely model at

that frame.

" If the probability for that model exceeds its set threshold, classify the sequence as an

instance of the model.

When setting the thresholds, there is a tradeoff between insertion and deletion errors.

The thresholds used in Sensei were set before the experiments by testing models trained on

all 60 examples in the training data on independent example data and minimizing the sum



II I I I 1 1

200-

100-

0 ---
0 50 100 150 200 250 300 350 400

2 0 0 --- --- -- .----.--.- - -

100-

0 50 100 150 200 250 300 350 400

20 0 100........................ 11 1 5

50 .. ...... ...... 0

0 0 10 150 200 250 300 350 400

- II I

200-

100-. .................. ....... ................. ... ...............

0 ---- /

0 50 100 150 200 250 300 350 400
200-

0 50 10 15 2015 0 5 0

0 50 100 150 200 250 300 350 400

Time

Figure 5-3: The gestures for each plot are, from top to bottom, Opening Form, Grab the Bird's

Tail, Wave Hands Like Clouds, Single Whip, and Brush Knee. The dotted lines are the preset

thresholds. Classification occurs when the probability for one of the gestures eclipses its threshold.
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of the insertion and deletion errors. Figure 5-3 shows an example sequence, the thresholds,

and the derived classifications.

A recurrent problem originally faced in these experiments was that the probabilities

for all the models rose when the user paused, holding the hands still. The reason this

happens is that all of the models have states with means near the origin. It is possible,

with its dynamic time warping, for the Viterbi algorithm to explain an observation sequence

by assuming that a model was in this state with low velocity for most of the observation

sequence. The probability per frame, in that case, will rise. In order to alleviate this

problem, we included a silence model: an HMM that modeled non-moving hands. The

testing data used in the experiments did not typically contain pauses, so the silence model

has been omitted from the results. In practice, however, the addition of this model into the

recognition scheme was found to be effective.

Another problem in the classification scheme discussed above is that when looking for

the maximum Pr(A) over all the models, we assumed that the probabilities were uniform

for all the gestures. In reality, they are not. The different models have different numbers

of states, each of which has a unique probability density function with its own scale. One

method to handle this problem is to use cross-validation in the training stage. By adjusting

the parameters of the models, one can minimize the differences between models in the

probabilities of the training data.

Finally, it is clear that the Viterbi algorithm is not perfect in analyzing the motions

of the gestures to find the salient moments. The system is effective at locating the gross,

large-scale types of errors typical of beginners, but not as effective at locating the more

subtle errors typical of experts, as the results in 5.2 shows.

One problem is simply in finding the right definition for what the salient moments are.

One piece of future work is to have human experts observe a user and identify these moments

by hand. This classification can then be compared to that done by the Viterbi algorithm

in an effort to learn the "correct" classifications.

Another drawback to the Viterbi comes simply because HMM's approximate the ob-

servation space with a small number of states. For example, a model with three states

essentially forces the observation sequence into the three probability density function blobs

along the trajectory. The probability dips as the observations move from one state to the

next, until the observation more closely matches the mean of the new state. More states in



the model, of course, will help to alleviate this problem. This situation can be most easily

seen in the results for the gesture "wave hands like clouds." This gesture is performed

with circular movements of the hands. When there is a continual change in the direction of

motion, as in circular movements, models in velocity space need a large number of states or

this quantizing error will increase. We found the errors in the experiments for "wave hands

like clouds" to be almost twice as large as those of the other gestures.



Chapter 6

Summary and Future Work

6.1 Summary

The real-time, interactive feedback system, Sensei: The T'ai Chi Teacher, has been shown.

This application provides a good platform on which to build a more sophisticated teaching,

training, and feedback tool for gestures or action. To support this thesis, we define a good

platform to be one in which successful gesture recognition is achieved and in which salient

moments in the gesture are identified. With these two tools, a more sophisticated teacher

can understand what gesture the user is attempting to perform and at what moments in

the action the user should receive feedback.

The gesture recognition task is accomplished through the use of Hidden Markov Models.

A recognition rate of 95.2% was achieved on multiple users performing five gestures in real-

time. The same HMM framework is used to locate the salient moments in a gesture. An

average error rate of 8% for larger, beginner moves and 14% for more subtle, expert moves

was achieved in locating these moments, when compared to the instants calculated by

comparing the motion trajectory of the hands to that of an expert.

6.2 Future Work

What the T'ai Chi Teacher does not purport to be is a complete T'ai Chi gesture recogni-

tion system. Currently, it is only capable of recognizing five different gestures. One simple

extension of this work would be to increase the number of gestures in the system's vocabu-

lary. The success of our previous T'ai Chi recognition system [11] suggests this goal is easily



attainable. In addition, using the STIVE tracking system does not allow the system to dis-

tinguish between fine differences in hand positions and orientations which are an important

part of T'ai Chi movements. As the tracking system improves, features based on the ori-

entation of the hands might prove to be a valuable addition to the models. Alternatively, a

foveated camera driven by the hand tracking would also accomplish this goal.

Another extension would be to grow the system into a general action feedback and

teaching tool. The idea here is to turn the application into one which allows experts in

a variety of gestures or actions, such as American Sign Language or tennis strokes, to

train the system. The same framework demonstrated here would extend naturally to other

vocabularies; by generalizing the procedure of training the HMM's, this application could

be a general action teacher, rather than a T'ai Chi Teacher.

The feedback elements of the system could also be extended in several directions. A

system could be developed that models the ability level of the user and adjusts the type of

feedback that it gives accordingly. For example, a beginner in the art of T'ai Chi would

probably be better served by receiving an abundance of positive feedback until she becomes

more proficient. An expert, on the other hand, would probably best benefit from a highly

critical feedback, one that identifies fine-grained differences between the motion and the

ideal gesture.

Also, the growing bed of tools provided by the field of affective computing [23] could

be utilized to tune the feedback provided by the teacher. For example, if a user starts to

become frustrated with the system, the frequency of interruptions and feedback could be

adjusted.

Finally, one piece of further work for the feedback that could make the teaching partic-

ularly useful would be to use the display screen to not only show the user where her hands

are at any given time but where they "should" be at that moment. This allows the user

to modulate her motion as she is performing the gesture, as opposed to receiving feedback

only upon its completion.



Appendix A

Computational Advantage of

Training the Models Backwards

In Chapter 4 we described the process of running the Viterbi algorithm over a range of

sequence lengths. One disadvantage of this process is that in the standard implementation

of the Viterbi algorithm, the calculation of the entire lattice of probabilities depends on

the values of the probabilities in the first frame. Recall that the procedure is essentially

recursive, with all subsequent probability calculations depending on the previous ones. To

run the Viterbi over sequences of varying lengths, where the first frame changes from Tma

to Tmin while the last frame is held fixed, necessitates recomputing the Viterbi lattice for

each sequence length. To avoid this computationally expensive procedure, we time reverse

the data. Each new frame becomes, in effect, the first frame in the sequence. Then, when

the Viterbi algorithm is run over sequences of varying lengths, the first frame is stationary,

but the last frame moves from Tmar to Tmin. The lattice is simply computed once for the

maximum length and it then contains all the probabilities needed for the entire sequence.

This modification, however, implies that the models must be trained on data that is

similarly time reversed. Training data is recorded and then flipped in time before the

models are trained. The resulting beginning state, then, is in actuality the final state,

and vice-versa. In addition, the prior probability, 7r, becomes the closing probability (the

probability of the final state being state n) 1 .

'The idea presented in this appendix was originally suggested by Andrew Wilson.



Appendix B

Smoothing the Data

B.1 Filtering

The hand and head tracking data provided by STIVE is subject to noise. The velocity

features we use to do recognition are by nature particularly susceptible to noise, so it is

important to low-pass filter the data to alleviate the problem. Because the movements

involved in T'ai Chi gestures are slow and smooth, there is little risk of losing salient

information by filtering. The filter we use is a 23 tap minimax filter with a cut-off frequency

of 3Hz. This introduces a 12 tap lag (which corresponds to 0.36 seconds at our sampling

rate of 30Hz.) in the processing. However the benefit in the calculation of the velocity

compensates for this negative attribute. Figure B-i shows a plot of the raw data and the

smoothed data.

B.2 Resampling

Hidden Markov Models assume that the observations are evenly sampled in time. This is

not the case with STIVE data. The T'ai Chi Teacher takes data incoming from the STIVE

system and resamples it in time at a rate of 30Hz. The goal is this: given a set of function

values f(xi) at locations x; for i = 1 ... N, determine the value of f(x). Several methods

exist for this task, differentiated by the constraints placed on the interpolated function. We

use a natural cubic spline interpolator: one in which the first derivative is smooth and the

second derivative is continuous. Furthermore, the second derivative is constrained to be 0

at the boundaries (i = 1, N).
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Figure B-1: An example of the raw and resampled/filtered data.

Because we already cache 23 samples of data for the filter, we use this same segment

to compute resampling (i = 1... 23). The cubic spline algorithm we use is a standard

implementation from [25].
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