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Pål Evensen, Hein Meling

Department of Electrical Engineering and Computer Science, University of Stavanger

4036 Stavanger, Norway
1
paal.evensen@gmail.com

2
hein.meling@uis.no

Abstract—This paper presents the design and implementation
of a simple and elegant middleware architecture providing virtual

sensors as representatives for any type of physical sensors. With
our middleware, clients can seamlessly discover sensor-hosted
services through Zeroconf and it provides a standardized com-
munication interface that applications can use without having to
deal with sensor-specific details. The limited capabilities of most
types of sensors prevent the inclusion of a full communication
stack with IP addressing. Yet, through the use of virtual sensors, a
uniform communication interface based on UDP/TCP sockets can
be exposed to clients. This will significantly simplify application
development for integrated services involving multiple types of
sensors. Our benchmarks shows that our middleware scales well
beyond the requirements of a private smart home.

I. INTRODUCTION

Wireless communication technologies enables seamless com-

munication between residential network entities such as set-

top-boxes, sensors, control units and other devices, and are

typically far less costly to install than their wired counterparts

due to cabling. These technologies have opened up a whole

range of new applications in the utility segment, like remote

control of heating, security and safety systems and health

monitoring.

However, the heterogeneity of communication protocols and

the mixture of addressing schemes used by networked devices

of different make and model is one of the biggest challenges

when developing integrated smart home services. Most smart

home systems offered today are based on proprietary all-in-

one solutions, where the sensors and actuators might use a

proprietary RF protocol over the 868MHz band, while others

might use ZigBee, Bluetooth or WiFi. Furthermore, most

devices have their own application-level protocol for commu-

nicating control commands and retrieving data. Moreover, due

to the limited capabilities of many types of sensors, a full

communication stack with IP addressing is simply unfeasible.

Yet, it would significantly simplify application development

if interaction with the sensors were based on UDP or TCP

sockets and IP addressing schemes. Currently, these issues

hampers innovation and development of new (possibly third-

party) smart home services. Another obstacle to the adoption

of smart home technology is the complexity of setting up

and managing the networking between devices, deterring most

home owners from acquiring such solutions. Hence, it is

paramount to the success of networked homes that device

configuration is performed automatically.

This paper builds on previous work [6] and presents the

design and implementation of a simple, yet elegant middleware

architecture providing virtual sensors as representatives for

any type of physical sensors. Improvements over the previous

version includes a cleaner, more generic system architecture

and added support for publish/subscribe style of interaction.

Additionally, we have included a performance evaluation,

which was missing in the previous paper. Our middleware,

which we have named SenseWrap, combines the Zeroconf

protocols with hardware abstraction, giving a service-oriented

and lightweight middleware for application programmers to

interact with. A virtual sensor provides transparent discovery

of arbitrary sensor devices through the use of Zeroconf pro-

tocols [3]. This enables applications to discover sensor-hosted

services through Zeroconf and it provides a standardized com-

munication interface that applications can use without having

to deal with sensor-specific details. That is, virtual sensors also

provides a uniform communication interface to clients, based

on UDP/TCP sockets or even HTTP. This is accomplished

by abstracting functionalities common to most sensor models,

and writing custom wrappers (drivers) for the specifics of each

sensor model. This way, applications need not know anything

about the physical or logical communication protocols used

by the sensors, making the same network services usable

with any sensor model sharing the same basic functionality.

For instance, a light-controlling application should be able to

operate independently of the actual luminosity sensors used.

Note that the architecture is generic and can be used in a

wide range of application areas where sensors needs to be

connected; however, for the sake of illustration, the examples

presented here are framed in a smart home setting.

By using virtualized sensors, third-party developers do not

need to learn any custom sensor APIs to interact with the

sensors, even though the capabilities of the sensors are limited

to low-level RF communication. Assuming sensor vendors

provide the sensor communication API, third-party developers

can supply the necessary custom wrappers for the middleware

to use, or vendors can provide such wrappers. Virtual sensors



gives flexibility to applications, since replacing sensor devices

does not require modifying the implementation of applications

using those sensors. This is assuming the basic interaction is

the same or similar. Furthermore, with technology innovation,

new sensor models may natively support Zeroconf and link-

local IP addressing. Applications can then use these with

minimal changes, bypassing the virtual sensors.

The rest of this paper is organized as follows: Section II

presents the background for the paper, gives an overview of

related work, and state our assumptions. Section III presents

the architecture of our middleware for virtualized sensors,

and Section IV provide some relevant implementation details.

Section V presents and evaluates test results and Section VI

concludes the paper.

II. BACKGROUND AND ASSUMPTIONS

The middleware focuses on self-configuration and will offer

support for developing integrated services, where multiple

services can interact to offer synergies across different tech-

nologies: For instance, a light-control service could interact

with the movement sensors associated with the alarm service,

in addition to luminosity sensors, to decide whether the light

should be switched on.

In the context of the IS-home project, we assume a net-

worked device capable of running our middleware; this could

be a simple embedded computer running the Linux operating

system, like a base station, router etc. Further, we assume

the computer has multiple interconnection interfaces, e.g.

ZigBee, Bluetooth, WiFi, GPRS, Ethernet and USB ports for

connecting alternative network devices. This computer may

run one or more network services, and may act as a gateway

between different network applications and devices.

Zeroconf is an essential component in our middleware

architecture; sensors and other network devices will be regis-

tered with and discoverable through Zeroconf. Hence, a brief

overview of Zeroconf is given below.

A. Zero Configuration Networking

Zero configuration networking is endorsed by the Internet

Engineering Task Force (IETF) [10], through various RFCs.

Zeroconf automates three core services: IP addressing, name

resolution and service discovery [3]. In other words, IP ad-

dresses will need to be assigned automatically to each device

and coupled with a meaningful name, and services have to

be discovered automatically as they enter the network. This is

achieved with the following combination of techniques [3]:

• Link-local addressing is used to assign IPv4 addresses

without relying on a DHCP server present on the network.

• Multicast DNS (mDNS) is used to provide name binding

without a DNS server present.

• DNS Service Discovery (DNSSD) enable users to browse

for services without having to know anything about the

hosts providing them.

The philosophy behind the Zeroconf platform is rooted in

the assumption that end users are interested in services, not

devices. The goal is that users should be able to select services

from a list through a graphical user interface.

Each Zeroconf-enabled device keeps its own list of services

that is kept up to date in a distributed and thought-out manner,

using a combination of techniques such as multicasting and

polling to keep track of available services present on the

network. Combined, these methods prevents the network from

being flooded with control traffic.

Universal Plug and Play (UPnP) [7] is an open ended collec-

tion of protocols that offers some of the same functionality as

Zeroconf. Our reason for going with Zeroconf is that UPnP is

rather heavyweight, communicating with SOAP XML objects

over HTTP and has a flawed service discovery protocol, built

on an abandoned IETF draft [2]. Please see work [6] for a

more detailed comparison between UPnP and Zeroconf.

B. Related work

In previous work, Construct [5] offers a distributed middleware

for pervasive systems and provides mechanisms for capturing

sensor data and converting them into RDF formatted data

for storage. Like SenseWrap, Construct employs Zeroconf

to locate services, but does not allow discovery of sensor

devices as in our middleware. While our focus is on finding

a standardized way for applications to communicate with

sensors, the main focus of Construct appears to be on data

capture and the processing of information. SStreaMware [9] is

another middleware that shares some features with SenseWrap,

but is an all-encompassing solution where sensor interaction

is performed via a provided graphical user interface and

not at application level. Our approach to virtualizing sensors

based on Zeroconf, using protocol adapters to interface with

applications is more lightweight and allows better application

level adaptation.

Hourglass [12] is an infrastructure for connecting sensor

networks to applications. It provides a data collection network,

that aggregate functionality from several disparate sensor

networks, and offer this to Internet-based applications. Com-

pared to our architecture, Hourglass focuses on the underlying

network links and data streams more than the service aspect.

The main effort is on handling unreliable connectivity by

providing links between networks and applications that buffers

data and retransmits these at a later point in cases of link

loss. Neither Hourglass or Global Sensor Network (GSN) [1]

focus on service discovery. Like our own middleware, GSN

aims to solve the problem of hardware heterogeneity in sensor

networks. GSN also use adapters to abstract physical devices

into virtual sensors. With SenseWrap, we take the abstraction

one step further by virtualizing the services as well. With GSN

the emphasis is to provide the ability to query all supported

sensors using SQL, and to provide a homogeneous view of

sensor data.

Open Services Gateway initiative (OSGi) provides a gate-

way for connecting different devices and services together

through a central point, allowing applications to be composed

from different, reusable service modules [4]. The framework is

module based and only specifies the application programming



interface, not the underlying implementation, leaving it up to

the developers to handle the actual communication with the

sensors or actuators.

Using OSGi as a foundation, Gürgen et al take a “database

approach” in their SStreaMWare middleware [9], offering

a schema to represent sensor data in a generic manner.

Interaction with the sensors is performed with declarative

queries in a SQL-like relational language. Like SenseWrap,

SStreaMWare uses adapters to transform generic commands

into the necessary device-specific format, and it also provide

both publish/subscribe and request/reply communication mod-

els. However, the scope of SStreaMware is quite different from

SenseWrap, as SStreaMWare comes as a complete package,

where sensor interaction is performed via a provided graphical

user interface and not at application level. This makes the

system difficult to adapt to third party applications, which

it is clearly not intended for. The scope of our middleware

is to facilitate integration between sensors and applications

with minimal effort. Our approach to virtualizing sensors

based on Zeroconf, using protocol adapters to interface with

applications is more lightweight and allows better application

level adaptation.

Tenet [8] is more of a network architecture than middleware,

dividing sensor networks into tiers, consisting of masters and

motes. The argument for this architecture is that sensor motes

are unreliable and underpowered, hence all but the simplest

computing tasks are better left to more powerful master nodes.

Furthermore, the authors claims that software re-usability is

enhanced by having most of the application logic on master

nodes, as device specific customization of the code is less

likely to be needed. This is not unlike our approach, but

instead of several masters, we use a single gateway to perform

the heavy lifting in terms of computational tasks. The reason

for not using several masters is simply that we don’t see the

need for more in a private smart home, although it would

be relatively easy to include additional gateways if required

(one way of achieving that would be to set up an additional

gateways to listen for different types of services).

III. ARCHITECTURE OVERVIEW

The middleware architecture is organized into multiple layers

of abstraction to provide sensor-based services to clients. That

is, physical sensors appears to behave as if they provide

Zeroconf-like services. Hence, the services provided to ap-

plications become independent of the sensor hardware. The

middleware takes advantage of standardized Zeroconf proto-

cols to provide automatic network configuration of sensors and

service discovery to clients. This makes the sensor services

available to any Zeroconf-enabled application on the same

network.

Our middleware define two core entities: The Sensor Unit

is a virtual representation of the physical device hosting

the actual sensors and actuators. Attributes include identity

(typically a MAC address) and location. Sensor units are

subclassed into sensor types such as Sun Spots, SquidBee,

etc. It is the implementation of a Sensor unit that handles the

communication between the middleware and the actual sensor.

A Service is hosted on the sensor unit, and can either

be a detector or an actuator. Examples of detectors include

sensors for temperature, humidity and luminosity. Examples of

actuators are power and light switches, thermostats and locking

mechanisms.

A. Application Protocol

SenseWrap supports both the request/reply and publish/sub-

scribe communication model. The default is request/reply with

the subscribe model available through additional parameters.

After a service has been looked up through Zeroconf, and

connection has been established, the client applications use

generic commands to communicate with the services.

For instance, the way to do a simple temperature reading

would be issuing the command GET to the service. This

would return a single reading. If the client wants to subscribe

to the temperature service, it can ask the middleware to

feed it with periodic readings by appending the keyword

SUB followed by the desired interval in milliseconds. The

middleware will keep sending readings at the specified

interval until it receives a STOP message, or until the

connection is closed.

The main components of the middleware are:

• DiscoverSensors listens on the network for new sensor

devices, and creates virtual representations of these.

• The Sensor class communicates directly with the sensor

nodes, and keeps track of connectivity. It translates appli-

cation commands received through the protocol adapter

and forwards these to the physical sensor, using the native

communication protocol of the sensor.

• A virtual Service represent a service provided by a sensor.

It registers the communication endpoint (host name and

port number) of the service with Zeroconf and listens

for connection requests from clients. Upon receiving a

connection request, the service creates a protocol adapter

to handle the communication with the client.

• Clients communicate with sensors through Protocol

Adapters. They provide a standardized communications

interface independent of the kind of sensor involved in

the communication, and are generic for all services. Once

the application has established a connection with the

protocol adapter, the adapter communicates directly with

the virtual sensor.

The DiscoverSensors and Sensor implementation are the only

components in our architecture that needs customization. That

is, they are both comprised of a generic part, and a custom part

that needs to be tailored specifically for each supported sensor

type. Keeping in line with the service-oriented philosophy of

Zeroconf, our middleware separates the services from the sen-

sors. This is the most flexible solution as it allows the system to

support more than one service per sensor, e.g. a single sensor

unit may contain both temperature and humidity sensors. The

separation of services from sensors adheres to established



Fig. 1. Detailed middleware architecture

object-oriented principles, as it promotes high cohesion and

low coupling between components. The details of a sensor’s

physical connection and battery status does not logically relate

to the attributes of, for instance, a temperature service. For

the same reasons, the protocol adapters are separated from the

virtual sensors and virtual services, as the connection details

between applications and virtual services are neither related to

the logic of the sensor nor the service.

Having the services separated from the sensors allows the

service component to be generic for all supported sensor types.

In addition, this approach is a good match with the Zeroconf

APIs, as the methods provided by these are geared towards

services instead of devices.

Figure 1 show a conceptual view of the system. Each phys-

ical sensor is represented by a corresponding virtual sensor.

Furthermore, each service offered by the sensor is represented

with a virtual service. A virtual sensor can have many services,

e.g. if the same physical sensor device is a multi-sensor device,

the different sensor readings can be offered to applications

through distinct virtual services. A virtual service can also

have many connections through different protocol adapters.

For example, multiple services for the same sensor can be

registered with Zeroconf at the same time, one accessible over

TCP and another over SOAP.

Client applications use Zeroconf to identify and locate

services provided by sensors, and communicates with them

through the protocol adapter. An application can be composed

of one or more services, but only needs one socket per service.

IV. MIDDLEWARE IMPLEMENTATION

SenseWrap is written in Java, with the core components

represented in the classes DiscoverSensors, Sensor, Service,

ClientHandler and BonjourRegistration.

DiscoverSensors maintains a list of sensors that the mid-

dleware is capable of communicating with. As the sequence

diagram in Figure 2 illustrates, the DiscoverSensors listens for

service advertisements broadcast by sensors in the network.

After the service has been registered with Zeroconf, it listens

for socket requests on the corresponding TCP port, and spawns

a ClientHandler thread for each connection request.

Clients can multicast a DNSSD request for available ser-

vices that resides on the same network and the Zeroconf

framework will reply with the name of the host on which

the virtual service is running, and the port number which

to connect to. An application can then send a connection

request and get a TCP socket in return. Commands received

by the client handler is forwarded to the virtual sensor, which

translates these into the appropriate sensor-specific command,

which, in turn, is transmitted to the physical sensor, using the

device’s native communication protocol.

Each virtual sensor keeps track of the state of its associated

physical sensor. A sensor is considered to have failed if an

IOException is caught, e.g. due to a communications failure. If

a sensor fails, the virtual sensor is responsible for unregistering

the service from Zeroconf, removing itself from the list of

sensors maintained by the DiscoverSensors, and terminate.

Similarly, if an IOException is caught when clients are trying

to access the service, the virtual service will be unregistered

from Zeroconf itself.

A. Adding New Sensor Types

Adding support for new types of sensors involves developing

device-specific versions of the DiscoverSensors and Sensor.

In order to simplify development, the middleware comes with

abstract versions as well as interfaces for these components,

allowing implementations to reuse common functionality, ef-

fectively giving developers a blueprint of the required classes.

Essentially, the custom part of the service factory needs code

for detecting connection requests from the physical sensors

and for creating the appropriate virtual sensor. Obviously, the

virtual sensor must also be able to communicate natively with

the physical sensors.

B. Adding New Communication Protocols

The protocol adapter is a generic communication interface

through which clients connect. Different applications might

require different communication protocols, and the middleware

supports adding new protocol adapters. Currently, a TCP-based

protocol adapter is supported, while support for UDP, HTTP,

SOAP and RMI can easily be added, as shown in Figure 3.

Once an adapter has been developed, it can be reused without

modification for all sensor types supported by the middleware.

In addition to making the middleware flexible, this ensures

future compatibility with new protocols as they emerge.

V. PERFORMANCE

Because the middleware is intended to run on a dedicated

machine within the home, we do not see scalability as a big
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concern. Typically, the number of sensors to be handled in

such an environment are limited to less than 100, and as such,

the demands for scalability is not critical. However, we have

performed tests on this matter to reveal potential flaws of the

architecture. Response time (the time it takes for clients to

receive an answer to a request) under realistic client load was

measured with clients

Regardless of the scalability of the middleware itself, the

number of services running on the middleware is limited by the

underlying Zeroconf framework, which becomes ineffective

when the number of nodes approaches 1000 [3].

Tests were performed by running the middleware on a

dedicated machine, while polling it for sensor readouts from

other machines on the same local network. At the most, 19

computers, hosting eight clients each was continuously polling

the middleware. The “server” had 2GB of RAM, an Intel Core

Duo 2 E8300 processor and was running Fedora Core 11 with

Sun’s Java version 1.6 14. Measurements was made for the

request/reply model.

Execution time elapsed between query and response from

a temperature sensor on a Sun SPOT through the SenseWrap

middleware was measured at the client. A caching mechanism

implemented in the middleware was set to reread values from

the sensor only if the existing value was older than four

seconds.

A. Results

Performance were measured to an average of 6.8 milliseconds

with a test run of ten simultaneous clients, each issuing 1000

requests (figure 4), immediately sending a new query as soon

as a reply is received. This amounts to an average capacity of

handling about 147 queries per second under load. Predictably,

the average response times rise as more clients are jamming

the middleware with queries, and drops to a capacity of around

5.5 queries per second with 152 simultaneous clients.

The scatter plot (figure 5) shows an excerpt of 14000

operations from a run of 95 clients simultaneously querying

the middleware a total number of 190000 times while caching

of sensor readings is set to four seconds. The plot starts ten

seconds into the experiment, to be sure that all clients has

started. The y-axis shows the round-trip time for each query,

measured in seconds. The x-axis shows time elapsed, also

measured in seconds.

An observation that can be made from figure 5 is that it

takes only 6.38 seconds to finish 14000 operations, giving an

average of 4.6 milliseconds per operation as opposed to the

lowest average of 6.8 milliseconds measured for each single

operation. This indicates that having the clients waiting for

a response before issuing a new command does not load the

middleware sufficiently to make it the performance bottleneck.

B. Evaluation

In a smart home scenario, the middleware is likely to run on

less powerful hardware than what was used in our tests, but
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our rationale is that even if one divide the performance by ten,

it is still more than sufficient to handle the requirements of a

typical smart home. We also measured the execution time for

each renewal of the cache at the server. A total of 56 sensor

readings had an average value of 951.57 ms, which would give

the middleware a capacity of just over one reading per second

per sensor, thus illustrates the performance gain of caching.

VI. CONCLUSIONS AND FUTURE WORK

By virtualizing the physical sensors in smart homes, we can

provide client applications with a uniform communication

interface. We have demonstrated how the important task of

automating the discovery of services and devices as well

as the networking between applications can be solved using

Zeroconf.

The need to implement routing in the middleware became

apparent under testing, as values was not always returned to

the correct client. This could be solved by tagging incoming

requests with thread ID and looking up the correct thread

before returning a value.

While the middleware presented here makes the commu-

nication protocol between sensors and application generic,

the application protocol is not. By implementing an ontology

built with OWL, the application protocol could be made

generic and platform independent as well. We also intend

to expand our application to include support for other types

of sensors beyond the Sun SPOTs supported in the current

implementation.

Enabling remote access to the services in the home over

wide area networks such as the Internet or GPRS can be

useful for tasks like adjusting the heat before coming home, or

turning off the alarm to let someone in. Remote accessibility

brings up some security and privacy concerns that needs to be

addressed at some point.

Having multiple higher-level applications competing for re-

sources (actuators) introduces the issue of resource ownership

and dependency management. For instance, two applications

accessing the same actuators could potentially result in con-

flicts where one of them is constantly turning a switch off,

while the other turns it back on. A priority concept, like the one

outlined by Retkowitz and Kulle [11] could be worth looking

into in future versions.
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