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Abstract— We address the problem of covering an envi-
ronment with robots equipped with sensors. The robots are
heterogeneous in that the sensor footprints are different. Our
work uses the location optimization framework in [1], [2],
with three significant extensions. First, we consider robots with
different sensor footprints, allowing, for example, aerial and
ground vehicles to collaborate. We allow for finite size robots
which enables implementation on real robotic systems. Lastly,
we extend the previous work allowing for deployment in non
convex environments.

I. INTRODUCTION

A distributed and asynchronous approach for optimal

coverage of a domain with identical mobile sensing agents

is proposed in [2] based on a framework for optimized

quantization derived in [1]. Each agent (robot) follows a

control law, which is a gradient descent algorithm that

minimizes a functional encoding the quality of the sensing

coverage. Further, this control law depends only on the

information of position of the robot and of its immediate

neighbors. Neighbors are defined to be those robots that are

located in neighboring Voronoi cells. Besides, these control

laws are computed without the requirement of global syn-

chronization. The functional also uses a distribution density

function which weights points or areas in the environment

that are more important than others. Thus it is possible to

specify areas where a higher density of agents is required.

Furthermore, this technique is adaptive due to its ability to

address changing environments, tasks, and network topology.

Different extensions of the framework devised in [2]

have been proposed in the literature. In [3] the problem of

limited-range interaction between agents was addressed. The

problem of learning the distribution density function online

while moving toward the optimal locations was addressed

in [4]. In [5] the basic approach was extended to deal with

agents with limited energy. In this case, generalized Voronoi

diagrams such as power diagrams [6] are employed. In the

present work we propose three important extensions. First,

we address the problem of incorporating heterogeneity in

the robot team by allowing the robots to have different

types of sensors. This first extension is actually a minor

contribution since we use power diagrams, similarly to

[5], with a different motivation. Second, we overcome the

practical limitations of the point robot assumption in the
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original algorithm. Finally, we generalize the basic method

to nonconvex environments. To the best of our knowledge,

the last two extensions are not similar to any other extension

found in the literature.

In the next section we present the main aspects of the

basic method in [2] derived from the Locational Optimization

Framework [7], using a distance function that is independent

of the Euclidean metric.

II. LOCATIONAL OPTIMIZATION FRAMEWORK

Let Ω ⊂ R
N be a given representation of the environment,

P = {p1, . . . ,pn} be the configuration of n mobile sensors,

where pi ⊂ Ω, and W = {W1, . . . ,Wn} be a tessellation

of Ω such that I(Wi) ∩ I(Wj) = ∅, ∀i 6= j, where I(·)
represents the interior of a given region, and ∪n

i=1Wi = Ω.

The key idea is that each agent i is responsible for the

coverage of the region Wi. As a measure of the system

performance we define the coverage functional:

H(P,W ) =

n
∑

i=1

H(pi, Wi) =

n
∑

i=1

∫

Wi

f(d(q,pi))φ(q)dq ,

(1)

where d corresponds to a function that measures distances

between locations in Ω and sensors. Note that we do not

require that this function defines a metric in Ω. The function

φ : Ω → R+ is a distribution density function which

defines a weight for each point in Ω. The density function

may reflect a knowledge of the probability of occurrence of

events in different regions, or simply a measure of relative

importance of different regions in Ω. Therefore, points with

greater weight values should be better covered than points

with smaller values. The function f : R → R is a smooth

strictly increasing function over the range of d that measures

the degradation of sensing performance with distance. We

assume that H(P,W ) is differentiable. The problem of cov-

ering the environment, Ω, is then translated to the problem

of minimizing the functional in (1).

A. Centroidal Voronoi Tessellation

An important tool in the Locational Optimization theory

is the Voronoi tessellation. Given the set of points P =
{p1, . . . ,pn}, often called sites, distributed over the bounded

domain Ω, with boundary ∂Ω, we define the Voronoi region,

or Voronoi cell, Vi, associated to the point pi according to

a given distance function d as:

Vi = {q ∈ Ω|d(q,pi) ≤ d(q,pj),∀j 6= i}. (2)

The definition in (2) is in fact a generalization of the

ordinary definition of Voronoi regions based on the Euclidean
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distance [7]. The generalized Voronoi tessellation of the set

P , V (P ), is the collection of such regions. The Voronoi

boundary ∂Vi is defined as:

∂Vi = ∪n
j=1lij ∪ {∂Ω ∩ Vi}. (3)

where lij is the bisector:

lij = {q ∈ Ω|d(q,pi) = d(q,pj), j 6= i}. (4)

Given a robot i we define the neighborhood of i, Ni, as

the set of robots that share Voronoi boundaries with Vi:

Ni = {j ∈ P |∂Vi ∩ ∂Vj 6= ∅}. (5)

Assuming that Ω is a convex polytope and d is the

Euclidean distance, the boundaries are hyperplanes and the

Voronoi cells are convex. In this case, two neighbor agents i
and j are associated with cells that share a hyperplane, and

this hyperplane intersects the segment pipj at its midpoint,

and perpendicular to the segment. For an extensive treatment

of Voronoi tessellations we refer to [7]. The next two propo-

sitions relate Voronoi tessellations with the minimization of

the objective functional in (1) for a general distance function,

d. The proofs follow the same arguments, used by [8] and

[4] in the case of the Euclidean distance.

Proposition 1 A necessary condition for a minimizer of

the objective functional in (1) is that the W tessellation

corresponds to the Voronoi tessellation, V (P ), according to

the distance function d.

Proof: Let V̂ be another tessellation than the Voronoi

V . For a given point q ∈ Vi, and q ∈ V̂j , where pk ∈ V̂j ⇔
k = j, we can write:

f(d(q,pi))φ(q) ≤ f(d(q,pj))φ(q). (6)

Since V̂ is not a Voronoi tessellation, the inequality in (6)

will hold strictly over some measurable set of Ω. Therefore:

H(P, V ) < H(P, V̂ ).

Assuming that W is determined by the Voronoi tessellation

of the points in P then H(P,W ) = H(P, V (P )) = H(P )
and we have the following result

Proposition 2 A necessary condition for H(P ) to be mini-

mized is:

∂H(P )

∂pi

=
∂H(pi, Vi)

∂pi

=

∫

Vi

∂

∂pi

f(d(q,pi))φ(q)dq = 0.

(7)

Proof: By applying the differentiation under the integral

sign (see [9]) we can write

∂H

∂xi

=

∫

∂Vi

f(d(q,pi0))φ(q)
∂(∂Vi)

∂xi

· nids

+

∫

Vi0

∂

∂xi

f(d(q,pi))φ(q)dq

+
∑

j∈Ni

∫

∂Vj

f(d(q,pj))φ(q)
∂(∂Vj)

∂xi

· njds ,

where pi = [xi, yi]
T in two dimensions, pi0 is a fixed

configuration of agent i, Vi0 is the Voronoi region associated

to pi = pi0 , ni and nj are the outward facing unit normals

of ∂Vi and ∂Vj respectively, and ds is the element of arc

length. Due to the property in (4), at the bisector we have

∂Vi = ∂Vj and d(q,pi0) = d(q,pj). Also nj = −ni, and

since ∂Vi = {∪j∈Ni
(∂Vi∩∂Vj)}∪{∂Ω∩Vi}, and

∂(∂Vj)
∂xi

= 0
at ∂Ω ∩ Vi, we have

∂(∂Vi)

∂xi

· ni = −
∑

j∈Ni

∂(∂Vj)

∂xi

· nj .

Therefore, we conclude that

∂H

∂pi

=

∫

Vi

∂

∂pi

f(d(q,pi))φ(q)dq , (8)

which must be equal to zero at a minimum point.

In [2] the Euclidean distance is used as d, and f(d) = d2.

Moreover, since it is assumed a convex environment it is

easy to prove that all Voronoi cells are convex polytopes. In

this case the necessary configuration to be at a minimum is

obtained when each agent is located exactly at the centroid

of its own Voronoi cell. The centroid is given by:

p∗
i =

∫

Vi
qφ(q)dq

∫

Vi
φ(q)dq

. (9)

Similarly, we can define a generalized centroid for general

f and d functions, as follows:

p∗
i = min

pi∈Vi

∫

Vi

f(d(q,pi))φ(q)dq. (10)

According to Propositions 1 and 2, every robot must be

driven to the generalized centroid of its Voronoi region

to minimize the functional (1). The resulting partition of

the environment is commonly called Centroidal Voronoi

Tessellation (CVT).

B. Continuous-Time Lloyd Algorithm

A classic discrete-time method to compute CVT’s is the

Lloyd’s algorithm [1]. In each iteration this method executes

three steps: (i) compute the Voronoi regions; (ii) compute

the centroids; (iii) move each point site to the corresponding

centroid.

In [2] a continuous-time version of this approach is pro-

posed for kinematic models:ṗi = ui. The following control

law guarantees that the system converges to a CVT:

ui = −k(pi − p∗
i ) , (11)

where k is a positive gain. The control law is a gradient-

descent approach, since if d is the Euclidean distance and

f(d) = d2, ∂H
∂pi

= 2
(

∫

Vi
φ(q)dq

)

(pi −p∗
i ). It is important

to mention that H is nonconvex which implies that the

system will in general converge to a CVT that corresponds to

a local minimum. In the rest of the paper we present possible

extensions of the method proposed in [2].
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III. HETEROGENEOUS ROBOTS

In this section we consider the problem of deploying a

team of agents with heterogeneous sensing capabilities to

cover an environment. We capture this heterogeneity by

modelling each robot (sensor) as a circle (in R
2) Bi(pi, Rpi

),
where pi is the center position and Rpi

is the radius. This

models omnidirectional sensors that may have limited range

and where the quality of the measured information is only

acceptable in the region Bi. Our robots are heterogeneous in

that the sensor footprints are different. Although the points

inside Bi have acceptable quality, this does not necessarily

mean that the quality is uniform. The performance may

degrade with the distance from the center of Bi. Mathemat-

ically, we describe the team task as the minimization of the

functional:

H(P, PV ) =

n
∑

i=1

∫

PVi

[‖q − pi‖
2 − R2

pi
]φ(q)dq , (12)

where f(d) = d and d(q,pi) = ‖q − pi‖
2 − R2

pi
is the

so-called power distance [6]. According to Proposition 1

the required tessellation must then be a Voronoi partition

according to the power distance. The resulting tessellation

is well-known in the literature and it is often called the

Voronoi Diagram in the Laguerre geometry [10] or the power

diagram [6].

The power diagram, PV , associates a power region, PVi,

with each circle (pi, Rpi
) in R

2 defined by:

PVi = {q ∈ R
2|d(q,pi) ≤ d(q,pj),∀j 6= i} , (13)

where the power distance d(q,pi) = ‖q − pi‖
2 − R2

pi
.

The power diagram can be viewed as a generalized

Voronoi diagram which is closely related to the original

Voronoi diagram. Some of its properties are:

Property 1 The bisector between neighbor power cells PVi

and PVj is a hyperplane perpendicular to the segment that

connects the centers of the circles, Bi and Bj . If the two

circles intersect, the bisector passes through the points of

intersection. The bisector is defined by the equation:

(pi − pj)
T q =

1

2
(‖pi‖

2 − ‖pj‖
2 − R2

pi
+ R2

pj
). (14)

Property 2 Each power cell PVi is convex or empty. A

necessary condition for PVi to be empty is that the center

pi is contained in the union of the other circles.

Property 3 If a circle, Bi, is not intersected by any other

circle, then Bi is entirely contained in PVi.

Property 4 If all circles Bi are identical, PVi = Vi.

Figure 1 presents three different cases for the power

regions for two circles. Figure 1(c) presents the situation

where an agent is not located inside its own power region.

Thus it is also possible that a robot could have an empty

power region. In Figure 1(b), if we have a third robot the

same size of the smallest robot inside the power region of
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Fig. 1. Power cells. Fig. 1(a) Two disjoint circles. Fig. 1(b) Intersecting
circles with both centers inside their corresponding power cells. Fig. 1(c)
Intersecting circles with one center outside its corresponding power cell.

the large robot, this third robot contained in the power region

of the largest robot would have an empty power region.

The next proposition presents the gradient that will be used

by the distributed control laws.

Proposition 3 The gradient of H(P, PV ) in (12) is given

by:
∂H

∂pi

= 2(pi − p∗
i )

∫

PVi

φ(q)dq , (15)

where p∗
i is the centroid of PVi.

Proof: The proof follows directly from Proposition 2.

By observing the last proposition we conclude that we can

use the same control law in (11). However, one must be

careful of the special properties of power diagrams.

As stated in Property 2, a robot that is located in the union

of other sensors footprint may have an empty power region.

This is not surprising. Since we are designing strategies

for heterogeneous teams of robots that act only on local

information, robots that have better sensors than others have

priority during the deployment. Thus robots with the worst

sensors may get trapped in configurations in which they do

not contribute to the overall mission. Of course, it is possible

to let the “trapped” robot perturb the system by executing a

deterministic controller to a region outside the circle in which

it is trapped. Practically, we don’t find empty power regions

in our simulations.

IV. ROBOTS WITH FINITE SIZE

A practical problem of the unconstrained minimization

executed by the pure gradient-descent law in (11) is that

actual robots are not point-robots. In this section, we extend

the basic results to robots that can be modelled as circular

disks, each one with radius rpi
. Also, as in [2], we first

assume d is the Euclidean distance and f(d) = d2. Let FVi

be the free Voronoi region defined by the set of points:

FVi
= {q ∈ Vi|‖q − q∂Vi

‖ ≥ rpi
,∀q∂Vi

} , (16)
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(a) (b)

Fig. 2. Linear constraints for a disk-robot with radius rpi
. The dotted

lines represent the facets of ∂FVi
, which are given by gi1 = 0, gi2 = 0,

gi3 = 0, and gi4 = 0, with gradients as in Fig. 2(a). Given the active set
A = {gi1} in Fig. 2(b) we compute the control input ui by projecting
the negative gradient of H onto the unit vector ti1 which is tangent to the
active facet.

where ‖ · ‖ is the Euclidean norm and q∂Vi
is a point at the

boundary of the Voronoi region, ∂Vi. In fact, the boundaries

of the free Voronoi regions, ∂FVi
, are hyperplanes parallel

to the hyperplanes that define the boundaries of Vi, located

at a distance rpi
from ∂Vi. It is straight forward to check

that such free region is convex.

If the robots start from a safe configuration, a sufficient

condition to guarantee collision avoidance is that each robot

disk lies in the interior of its own Voronoi region. Therefore,

we define a constrained, location optimization problem as

follows. If robot i is constrained to remain inside its own

Voronoi region which is bounded by m facets, there are m
linear constraints on the position of its center. Accordingly,

we find the robot positions:

min
pi

H(P, V ) (17)

s.t.

gi1(pi) ≤ 0 , . . . , gim(pi) ≤ 0

where gil(pi) = 0 defines the lth facet.

Accordingly we choose the control law given by:

ui = βihi , (18)

where βi ∝
∥

∥

∥

∂H
∂pi

∥

∥

∥
and the vector hi is determined by:

min
hi

(

∂H

∂pi

)T

hi (19)

s.t.

‖hi‖ = 1 ,∇gT
iphi ≤ 0 , . . . ,∇gT

ithi ≤ 0

If A = {gip, . . . , git} is the set of active constraints

gip = . . . = git = 0, we can compute the controls in (18) as

follows:

1) If A is empty then

ui = −k
∂H

∂pi

, (20)

2) Otherwise

ui = kπ

(

−
∂H

∂pi

, ∂FVi

)

, (21)

where π
(

− ∂H
∂pi

, ∂FVi

)

gives the projection of vector

− ∂H
∂pi

along the vector til which is the unit vector

tangent to the lth facet (see Fig. 2). This tangent

vector provides a feasible direction and is such that

− ∂H
∂pi

T
til > 0.

Since the region FVi
is convex and ∂FVi

is given by plane

faces the projection π is guaranteed to return a feasible vector

if one exists. Equilibrium is obtained when the first-order

Karush-Kuhn-Tucker (KKT) conditions are satisfied.

We can use the algorithm presented in this section with

heterogeneous mobile sensors by using (15) and the power

diagram, PV , to compute ∂H
∂pi

but (18, 19) computed using

the facets from the Voronoi diagram, V .

V. NONCONVEX ENVIRONMENTS

In [11], nonconvex environments are addressed in the

problem of deploying a team of robots to achieve full

visibility of the environment. Differently, in the present

work we consider the following problem in a nonconvex

environment: minimize the coverage functional (1), such that

d is the geodesic distance and f(d) = d2:

H(P,W ) =

n
∑

i=1

H(pi, Wi) =

n
∑

i=1

∫

Wi

d(q,pi)
2φ(q)dq.

(22)

Let Ω be a compact region in R
2 with boundary, ∂Ω,

determined by a simple polygon with m sides and set

of vertices V = {v1, . . . ,vm}. Also, assume that P =
{p1, . . . ,pn} ⊂ Ω. By the geodesic distance, d(o,w), be-

tween two points o and w, we mean the length of the shortest

path, s(o,w), between o and w, entirely contained in Ω. In

fact, it is well known that such a path is formed by the

sequence of segments {ovr1,vr1vr2, . . . ,vrl−1vrl,vrlw},

where vri’s are reflex vertices of ∂Ω. By reflex vertices,

we mean the vertices with internal angle greater than 180
degrees. According to Proposition 1 we require a Voronoi

tessellation computed according to the geodesic metric. Such

a geodesic Voronoi tessellation can be computed by means

of the algorithm proposed in [12]. Some properties of the

geodesic distance in simple polygons are [12]:

Property 5 As Ω is closed and bounded by a simple poly-

gon, s(o,w) exists and is unique for every pair of points in

Ω. Moreover, s(o,w) is piecewise linear with “breakpoints”

at reflex vertices of ∂Ω.

Property 6 The function d(o,w) is continuous in both o

and also w. Furthermore, this function is continuously

differentiable except at a set of measure zero Γ.

The following proposition allows for devising distributed

control laws.

Proposition 4 If w ∈ Ω\Γ is a point where the gradient

∇wd(w,q) exists, then this gradient is given by:

∂d

∂w
= −zw,q , (23)

where zw,q is a unit vector directed along the first segment

of the shortest path s(w,q).
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Proof: Let the shortest path, s(w,q), between the

points w and q, be given by the sequence of segments

{wvr1,vr1vr2, . . . ,vrl−1vrl,vrlq}. The path length is then

determined by: d(w,q) = ‖vr1 −w‖+ ‖vr2 −vr1‖+ . . .+
‖vrl − vrl−1‖+ ‖q− vrl‖ , where vri’s are reflex vertices

of the polygon ∂Ω. Therefore,

∂d

∂w
= −

(vr1 − w)

‖vr1 − w‖
. (24)

From this proposition and from (8), a distributed control

law that minimizes H in (22) can be computed by:

ui = −k
∂H

∂pi

= 2k

∫

Vi

d(pi,q)φ(q)zpi,qdq. (25)

It is important to mention that at the points where we have

discontinuities in the gradient, which are also reflex vertices

of the polygon ∂Ω, we must use generalized gradients [13].

Definition 1 (Clarke’s Generalized Gradient): For a locally

Lipschitz function g : R
N × R → R define the generalized

gradient of g at (x, t) by

∂g(x, t) = co{lim∇g(xi, ti)|(xi, ti) → (x, t)} , (26)

where co is the convex closure, (xi, ti) 6∈ Γ which is the set

of measure zero where the gradient is not defined.

Assume that agent pi is located exactly at a reflex vertex

vri. Let ∂FH(pi, Vi) ⊂ ∂H(pi, Vi) be the subset of general-

ized gradients, ξ, at the reflex vertex, vri, that have feasible

directions, i. e., ∃δ ∈ (0, δmax] such that vri − δξ ∈ Ω. We

can use the following control law at the reflex vertices:

ui = −kξ , (27)

where k is a positive gain, and ξ could be any vector

belonging to ∂FH(pi, Vi).

VI. SIMULATION RESULTS

In this section we present simulations to verify the three

extensions to the work in [2]. First we show in Figure 3 the

result of applying the algorithm described in Section III to

deal with heterogeneous, point robots. We show a team of

nine agents with three possible footprints. Two agents have

a large circular footprint of radius 0.08 units, one agent has

a medium-size circular footprint of radius 0.05 units, and

the remaining robots have the smallest circular footprint of

radius 0.02 units. In the left figures we present configurations

of the group and in the right we present trajectories that show

how the robots evolved from the configuration shown in the

panel immediately to the left to the next configuration in

the panel below. The trajectories in Figure 3(h) end at the

optimal configuration. The corresponding power diagram is

also presented. The density function is a smooth cubic spline

centered at the point qc = [0.5, 0.5]T :

φ(q − qc, h) =







1 − 3
2κ2 + 3

4κ3 if 0 ≤ κ ≤ 1 ,
1
4 (2 − κ)3 if 1 ≤ κ ≤ 2 ,
0 otherwise ,

(28)
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Fig. 3. Simulation results for heterogeneous agents in a environment with
density function defined as in (28). In the panels on the left, the large
circle with diameter 0.6 units represents the density function support. A
team of nine robots, starting from an initial configuration (Fig. 3(a)), with
intermediate configurations (Figs. 3(c) and 3(e)), converge to a centroidal
formation (Fig. 3(g)). Figs. 3(b), 3(d), 3(f), and 3(h) correspond to the
trajectories followed by the robots starting from the configuration in the
figure presented in the left. The crosses represent the centroids of the
corresponding power regions. Small circles associated with robots represent
the footprints of the sensors carried by the robots.
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Fig. 4. Simulation results for finite size agents in an environment with
density function defined as in (28). A team of ten finite size agents start from
an initial configuration (Fig. 4(a)) and have final configuration that implies
collisions as in Fig. 4(b) when executing the unconstrained minimization
as in [2]. By using the technique proposed in Section IV the agents reach
a final configuration (Fig. 4(c)) without colliding (see trajectories). The
crosses represent the centroids of the corresponding Voronoi regions. The
largest circle represents the density function support while the other circles
represent the shape of the robots.

where κ = ‖q−qc‖/h. It can be observed that the function

support is determined by 2h. In the simulation h = 0.15.

We can verify that the final configuration is obtained

when a centroidal tessellation is obtained, as expected. It

is interesting to note that the best sensors converged to the

area where better coverage is required, i. e., the area where

we find the higher values of the density function.

Figure 4 shows the result obtained when solving the

constrained minimization proposed in Section IV for a team

of ten disk-shaped robots. The density function is the same

as before. In this example, collisions are observed when the

unconstrained control law (11) is used (see Figure 4(b)).

However, the trajectories shown in Figure 4(c) which are

obtained by using the control law (18) are free of collisions.

Note that in this case not all agents converge to their

centroids (see Figure 4(c)). This is the price the robots have

to pay to guarantee safety (no collisions).

The extension to address nonconvex environments is ver-

ified in Figure 5. A group of four agents cover a L-shape

environment according to the density function in Figure 5(a).

The peak of the function is located at the point [0.7, 0.7]T .

This density function is a cubic spline inside the nonconvex

domain and zero outside. One can conclude from Figure 5(b)

that the robots follow trajectories that do not leave the

nonconvex domain as desired. As expected, the robots moved

to the region where better coverage is required.

VII. CONCLUSIONS

We addressed the problem of deriving optimal distributed

control laws to cover nonconvex domains with a team of
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Fig. 5. Simulation results for a L-shape environment. Given a density
function defined in a nonconvex domain (Fig. 5(a)), a group of four robots
executes the approach proposed in Section V and moves according to the
trajectories in Fig. 5(b).

heterogeneous mobile sensors with finite sizes. This paper

incorporates three novel extensions into the previous work

[1], [2] to address: (a) sensors with circular footprints of

different radii, (b) disk-shaped robots, and (c) nonconvex

polygonal environments. The extensions are based on the use

of different distance functions, power distance and geodesic

distance, and the incorporation of constraints to allow col-

lision avoidance. Extensions to spheres (in R
3) are straight

forward.
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