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1.1. GelSight Overview 

The GelSight sensor is a novel tactile sensor to capture 

surface geometry through the use of a gel and a camera that 

gives a “sight” with computer vision algorithms. It consists 

of a piece of clear elastomer coated with a reflective 

membrane. When an object is pressed against the 

membrane, the membrane deforms to take the shape of the 

object’s surface, which is then recorded by a camera under 

illumination from LEDs located in different directions. A 

3-dimensional (3D) height map of the surface can then be 

reconstructed with a photometric stereo algorithm [1]. Fig. 

2 illustrates the GelSight principle.  

 

 
   (a)        (b)       (c) 

         
   (d)       (e)        (f) 

 

Figure 2 [1]: GelSight illustration. (a) A cookie is pressed against 

the membrane of an elastomer block. (b) The membrane is 

deformed to the shape of the cookie surface. (c) The shape of the 

cookie surface is measured using photometric stereo and rendered 

at a novel viewpoint. (d), (e), and (f) are the box, portable and 

finger configurations of the GelSight devices.  

 

The GelSight sensor has many important properties that 

make it attractive for use in tactile sensing. The sensor is 

made with inexpensive materials, and it can give spatial 

resolution as small as 2 microns. In addition, the sensor is 

not affected by the optical characteristics of the materials 

being measured as the membrane supplies its own 

bidirectional reflectance distribution function (BRDF). 

This allows us to capture a wide range of material surfaces 

no matter whether they are matte, glossy, or transparent 

(see Fig. 1). Last but not least, with compliant properties of 

the gel sensor, GelSight may be used to measure the 

roughness and texture of a touched surface, the pressure 

distribution across the contact region, as well as shear and 

slip between the sensor and object in contact. All these 

properties make GelSight a very promising candidate to be 

used in robotic fingertips for tactile sensing.  

Height maps obtained using GelSight have some special 

characteristics. To some extent, GelSight images are 

sensitive to the amount of force applied. Even for the same 

surface, with slightly different forces, the gray-scale 

images can have different gray levels due to different levels 

of deformations of the gel and/or texture surface. 

Furthermore, the relative orientation between the gel and 

the texture can be different for each measurement. Those 

two characteristics make it desirable to have a texture 

classification algorithm that is invariant to both gray scales 

and rotation.  We next give an overview of texture 

classification techniques and discuss what may be used in 

recognizing tactile textures with the use of GelSight. 

1.2. Texture Classification Overview 

Texture images are generally spatially homogeneous and 

consist of repeated elements, often with some random 

variations (e.g., random positions, orientations, and/or 

colors). There are generally three types of methods adopted 

for rotation invariant texture classification: statistical, 

model-based and structural methods. This work focuses on 

the statistical methods due to the statistical properties of 

textures. In statistical methods, the feature distribution 

method is among the most popular. Pietikainen et al. [10] 

described texture images using features like 

center-symmetric auto-correlation, local binary pattern 

(LBP), and gray-level difference, which are locally 

invariant to rotation. They propose a feature distribution 

method based on the G statistics to test those features for 

rotation-invariant texture analysis. Ojala et al. [2] extended 

the work by using multiresolution gray-scale and rotation 

invariant LBP at circular neighborhoods of different radius 

and neighbor density, and achieved a relatively high 

classification rate. This had then become the 

state-of-the-art method, based on which a number of 

improved texture classification algorithms were developed. 

Among those are LBP histogram Fourier features 

(LBP-HF) [6], LBP variance (LBPV) with global matching 

[7], dominant LBP (DLBP) [8]. Yet one common issue of 

all these LBP-based methods is that they mostly deal with 

microstructures of texture images by considering patterns 

within a small neighborhood (e.g., up to 3 pixels away) but 

not macrostructures with a large neighborhood.  

In this work, we propose a multi-scale local binary 

pattern (MLBP) operator that can capture both micro- and 

macrostructures with the use of pyramid levels. Also, we 

discuss the Hellinger similarity metric for classification. 

Section 2 describes the traditional LBP, followed by MLBP 

in Section 3. Section 4 presents the experiment results on 

Outex databases and GelSight texture images. Section 5 is 

the conclusion and future work. 

2. Local Binary Pattern 

LBP [2] is a texture operator for gray-scale and rotation 

invariant texture classification. It characterizes local 

structure of the texture image by considering a small 

circularly symmetric neighbor set of P members on a circle 

of radius R. The neighborhood is thresholded at the gray 

value of the center pixel into a binary pattern, which is then 

weighted by a binomial factor and summed to obtain the 
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LBP value: 
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������ is the LBP value, �� is the gray value of the center 

pixel of the local neighborhood, �
��� � �� � � � �� 
correspond to the gray values of the P equally spaced pixels 

on a circle of radius !��! " �� [2]. If the coordinates of �� 
are (0,0), then the coordinates of �
  are #! $ %&
 '()
� * �
! $ 
+, '()
� *-. The gray values of neighbors that do not fall 

exactly in the center of pixels are estimated by 

interpolation. Fig. 3 shows the neighborhoods with 

different P and R values.  

 

� � �
(a)          (b) 

 

Figure 3 [2]: Illustration of local binary patterns with P equally 

distributed members on a circular neighborhood of radius R. (a) P 

= 4, R = 1.  ��  is the gray value of the center pixel of the local 

neighborhood, �
��� � �� � � � ��  correspond to the gray 

values of the P equally spaced pixels on a circle of radius 

!��! " ��. (b) P = 8, R = 1.  

  

Signed differences �
 � �� are not affected by changes 

in monotonic changes in gray values of pixels; hence LBP 

is invariant to monotonic gray-scale shifts.  

Rotation invariance is achieved by assigning a unique 

identifier ������./  to each rotation-invariant local binary 

pattern, i.e., 

 

������./ � 0123!4!�������� +����5���+ � ����  � � � �6� 

where ROR(x,i) performs a circular bit-wise right shift on 

the P-bit number x i times. The superscript ri denotes 

rotation invariance. 

 Furthermore, Ojala et al. [2] defined uniformity measure 

U as the number of spatial transitions (bitwise 0/1 or 1/0 

changes) in the pattern, and designated “uniform” patterns 

as those with U not more than 2. The rotation invariant 

“uniform” LBP operator ������./7( is defined as: 
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and the superscript riu2 reflects the rotation invariance 

“uniform” pattern with U not more than 2. In practice, 

������./7(  has P + 2 distinct output values. The texture 

feature employed is the histogram of the operator outputs 

accumulated over a texture sample. ������./7( is invariant to 

gray scales and rotation, making it a potentially good 

candidate for classifying GelSight texture images.  

3. Multi-scale Local Binary Pattern  

The “uniform” patterns in LBP are indications for 

structures such as spots, flat areas, and edges of varying 

positive and negative curvatures. The choice of P and R 

affects directly the size of the structures under 

investigation. Intuitively, the larger the R is, the larger the 

size of the patterns examined; a small R corresponds to 

microstructures and a large R macrostructures. As 

discussed in [2], however, P and R are closely related and 

practically limited by requirements of efficient 

implementations. Firstly, on one hand, for a given R, we 

want a large P to reduce the quantization level of the 

neighborhood circle which is determined by DE�FG�. On 

the other hand, circular neighborhood for a given R 

contains a limited number of pixels (e.g., 8 for R = 1), 

which sets an upper limit for P in order to avoid redundancy 

in calculating the LBP value. A sensible relationship 

between P and R is that P = 8R. Secondly, an efficient 

implementation with a lookup table of �� elements sets an 

upper limit to P for real-time applications [2]. For example, 

with (P,R) = (32,4), the size of the lookup table for ������./7( 

can be up to 4 Gigabytes which is quite big and it becomes 

slow to find a particular match of the LBP value in the 

lookup table. This may limit the potential application of the 

algorithm for real-time implementations. For the above two 

reasons, Ojala et al. [2] only considered (P,R) values of 

(8,1), (16,2) and (24,3). However, this limits the 

capabilities of using macrostructures with R > 3 as texture 

features with larger P and R. In fact, many texture images in 

the real world may contain similar microstructures but 

different macrostructures. Fig. 4 shows an example of two 

visually very different textures that have similar 

microstructures but very different macrostructures.  

  (3)
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Figure 4: Illustration of two textures with si

but very different macrostructures. (a) Tex

(c) Histogram of LBP values for (P,R) = 

images of texture 1 and 2. This repres

microstructures with R = 2. (d) Histogram of

= (16,2) on images with reduced dimensions

pyramid (refer to Section 3.1). Equival

statistics of the macrostructures with R = 8 i

 

To achieve a high classification ra

desirable to have operators that includ

microstructures and macrostructures as 

without increasing the values of P a

section, we introduce MLBP that takes

both micro- and macrostructures, and a

increase in performance. 

3.1. The Algorithm 

As discussed in Section 2, the conven

deal with macrostructures effectively fo

increasing P and R on the original textu

al. did [2], we can first reduce the dimen

and then apply the same P and R to obta

We employ the Gaussian pyramid [3]

reduction before applying LBP.  

Denote the original image as pyram

pyramid level as level 1 and so on. E

image dimensions by half before 

approximately equivalent to applying L

and R on the original image in terms 

histograms (regardless of and the weigh

the Gaussian pyramid), yet with a muc

instance, the histogram information co

values obtained with (P,R) = (16

approximately equivalent to that obta

(32,4) at level 0 after normalizing the L

considering histograms of LBP values a

levels of the original image, we can tak

 

 

��
(b) 

 
(d) 

imilar microstructures 

xture 1. (b) Texture 2. 

(16,2) on the original 

ents statistics of the 

f LBP values for (P,R) 

s at level 2 of Gaussian 

lently this represents 

in the original image.  

ate, it is practically 

de statistics of both 

the texture features 

and R. In the next 

s into consideration 

achieve a significant 

ntional LBP may not 

for R > 3. Instead of 

ure image as Ojala et 

nsions of the images 

ain the LBP features. 

] approach for size 

mid level 0, reduced 

ffectively, reducing 

applying LBP is 

LBP with twice the P 

of normalized LBP 

hts used to generate 

ch faster speed. For 

ontained in the LBP 

,2) at level 1 is 

ained with (P,R) = 

LBP histograms.  By 

at different pyramid 

ke into consideration 

both micro- and macrostructur

feature vector used for clas

concatenation of LBP histogra

different image scales. We refer

multi-scale local binary pattern,

While the multiresolution LB

tries to combine statistics of stru

fundamental limitation is that it

due to the reasons discussed in 

and, therefore, does not take int

macrostructures. The MLBP op

multiresolution LBP by Ojala et

histograms of different pyrami

same P and R for each level, ins

directly on the original image. I

us to consider statistics of stru

More specifically, we use n dif

parameter a = 0.375 in Burt a

obtain the histogram of ������./7
level i = 0,…, n-1, which we de

We then apply weights B/  to ��/
form a big feature vector denote

 

 H������I � %&,%
 

for i = 0,…,n-1, where n is the 

and concat[.] is the concaten

different from previous notation

pattern over a particular neigh

here is used to denote the co

������./7( at different pyramid lev

For each level reduction, t

approximately by half in each d

of pixels is reduced to approxi

image. So is the sum of the L

simple weights B/ � �/  to par

reduction of the image size 

images play less important, b

texture classification. For exam

(16,2), we have 

 

 H����J�(K � L��J�(� �������
 

It is possible to use a differen

on statistics of the texture dat

significant improvement over 

while adding in a new class 

completely. Hence we do not go

Also, an extension to the MLBP

(P,R) values at different pyram

added advantages of doing so, 

(P,R) value across different leve

res of different sizes. The 

ssification is a weighted 

ams at different levels or 

r this histogram operator as 

 or MLBP for short.  

BP by Ojala et al. [2] also 

uctures of different sizes, its 

t does not go beyond R > 3 

the beginning of Section 3 

to consideration statistics of 

perator is different from the 

t al. [2] in that we find LBP 

id levels with possibly the 

stead of increasing P and R 

n this way, it really enables 

uctures at different scales. 

fferent pyramid levels with 

and Adelson paper [3] and 

�7(  as in Eqn. (4) for each 

enote as ����/  for simplicity. 

��� and concatenate them to 

ed as: 

%M>LB/ $ ����/ N (6)

number of pyramid levels, 

nation operator. Note that 

ns where LBP refers to the 

hborhood of pixels, MLBP 

oncatenated histograms of 

vels.  

the image size is reduced 

dimension, and the number 

imately 1/4 of the original 

BP histogram. We use the 

rtially compensate for the 

while noting that smaller 

ut not negligible, roles in 

mple, for n = 4, and (P,R) = 

�J�(� ���O��J�(( P��J�(Q N (7)

nt set of weights, e.g., based 

tabase, but we do not see 

the simple scheme above, 

might change the weights 

o into the detail in this work. 

P operator is to use different 

mid levels. We do not see 

and here we use the same 

els.  

12421242124212441244



 

 

3.2. Similarity Metric 

For histogram features, Arandjelovic et al. [4] recently 

proposed that the Euclidean distance measure often yields 

inferior performance compared to using measures such as 

Hellinger. In this work, we used Hellinger distance as the 

similarity metric. The Hellinger kernel, or Bhattacharyya 

coefficient [5], for two L1 normalized histograms, x and y, 

is defined as: 

 �R�S� T� � 	U�/V/
I

/��
 (8)

where 9 �/ � �I/��  with �/ � � , and 9 V/ � �I/��  with 

V/ � �.  

It was shown in [4] that after the following two steps, 

comparing Euclidean distances of the resulting vectors is 

equivalent to comparing Hellinger distances of the original 

vectors: (i) L1 normalize the feature vector so that 

9 �/ � �I/��  with �/ � �; (ii) square root each element �/. 
This is because the Euclidean distance can then be 

expressed as: 

 

WX�YS�UT�( � ZYS � UTZ(
(
 (9)

 

�������������������������� � � ��R�S� T�  

 

�������������������������� �[�S� T�( (10)

 

where [�S� T� � U� � �R�S� T� is the Hellinger distance. 

In this way, we have the flexibility to apply many readily 

available built-in functions in various image processing 

software such as MATLAB. The smaller the Hellinger 

distance, the more similar the two histograms or feature 

vectors are. 

4. Experiments 

Experiments were done on both Outex databases [5] and 

GelSight images to test the performance of the MLBP 

operator. The Outex databases contain 2D texture images 

that are used to compare performance of MLBP with that of 

other methods. The GelSight images are of real interest for 

tactile sensing and are used to validate the performance of 

MLBP. Here we convert GelSight 3D height maps to 2D 

gray images by using brightness levels to represent the 

height information. While there is a clear distinction 

between 2D visual textures such as those in the Outex 

databases and the 3D surface textures in GelSight, the basic 

principle of texture classification remains the same.  

4.1. Experiment on Outex Databases 

The Outex database is a publicly available framework for 

experimental evaluation of texture analysis algorithms [5]. 

There are a number of test suites available. We are 

particularly interested in the following two that are most 

popular for evaluating texture classification algorithms in 

terms of invariance to gray scales and rotation: 

1. Test suite Outex_TC_00010 (TC10): There are 24 

textures in total, and each texture contains 180 samples at 

nine rotation angles (�F, \F, ��F, �\F, D�F, O\F, E�F, ]\F, 
and ^�F). Each sample has dimension ��P� _ ���P pixels. 

Fig. 5 shows the 24 textures at angle �F. The classifier is 

trained with the reference textures (20 samples of 

illuminant “inca” and angle �F in each class), while the 

other 160 samples of the same illuminant but the other eight 

rotation angles in each texture class, are used for testing the 

classifier. In this suite, there are 480 training samples and 

3,840 testing samples in total.  

 

 
Figure 5: ��P� _ ���P  samples of the 24 textures in 

Outex_TC_00010 and Outex_TC_00012. 

 

2. Test suite Outex_TC_00012 (TC12): The classifier 

is trained with the reference textures (20 samples of 

illuminant “inca” and angle �F in each class) and tested 

with all samples captured using illuminant “tl84” and 

“horizon”. In each problem, there are 480 training samples 

and 4,320 testing samples.  

Our goal is to maximize the classification rate, defined as 

the ratio of the number of correctly classified samples to the 

total number of samples for classification. First, we find the 

MLBP feature vector as in Eqn. (6) for each training 

sample, L1 normalize it and square root each element. For a 

given testing sample, we do the same operation and find its 

12431243124312451245



 

 

3 nearest neighbors among the training samples using 

Euclidean distance measure. Remember from Eqn. (10) 

that equivalently we are using Hellinger distance metric on 

the MLBP. Among the 3 nearest neighbors found, if at least 

two of them belong to the same class, we output that class 

as the class of the testing sample. If the 3 nearest neighbors 

belong to 3 different classes, then we output the class of the 

nearest neighbor as the class of the testing sample. We use 

the same pair of (P,R) = (16,2) at n = 4 different pyramid 

levels for this experiment. 

 
Table 1: Correct classification rates (%) of different methods, with 

the highest rate of each column highlighted in bold. Note that 

(P,R) = (16,2), and n = 4.  

 

 TC10 

“inca” 

TC12 

“tl84” 

TC12 

“horizon” 

`abc�defg( 96.10 88.80 83.40 

`abc�defg(Ghijc�d 97.70 87.30 86.40 

LBP-HF 97.97 91.50 87.66 

`abhc�dg(klmn 97.76 95.39 95.57 

o`ab 99.10 93.20 90.40 

ljP 92.50 90.90 91.10 

MLBP 99.17 98.91 98.22 

 

Table 1 shows the correct classification rate using 

different methods by comparing MLBP with 6 other 

classical texture classification algorithms: `abc�defg( [2], 

`abc�defg(Ghijc�d [2], LBP-HF [6], LBPV with global 

matching (`abhc�dg(klmn) [7], dominant LBP (DLBP) [8], 

and ljP  [9]. LBP-HF, `abhc�dg(klmn , and DLBP are 

improved versions of LBP, and their best performances 

among all (P,R) pairs used by the authors are listed here for 

comparison. MR8 is the state-of-the-art statistical 

algorithm for texture classification.  

From Table 1 it can be seen that for all TC10 and TC12 

databases under different illuminations, MLBP achieves 

the best classification rates among all 7 methods compared 

and is most invariant to different illuminations.  In 

particular, for the TC10 database, MLBP increases the rate 

to 99.17% from 96.10% of `abc�defg(. For the TC12 “tl84” 

and “horizon” databases, MLBP increases the rate by 

10.11% and 14.82% respectively, compared to `abc�defg( . 

This shows that the MLBP operator is most invariant to 

rotations under the same illuminant. Furthermore, when we 

compare the performance of MLBP for TC10 and TC12 

under 3 different illuminants, we see that the classification 

rate is very stable (98.22% ~ 99.17%) as compared to other 

methods such as DLBP. This means that MLBP is also 

invariant to gray scales to a large extent. Nevertheless, 

when the illumination is not uniform, which is often the 

case in real-world conditions, all the above methods may 

not perform well simply due to the fact that shadows or 

illuminants now become part of the textures. Hence it 

becomes beneficial for us to use GelSight height images 

combined with MLBP to classify those textures.  

4.2. Experiment on GelSight Images 

We obtained 40 classes of GelSight texture images from 

the GelSight portable device (Fig. 2(e)) using the 

techniques described in [1]. Each class consists of 6 texture 

images at random orientations and with dimensions 

OP� _ EO�  pixels. Each image is then cropped to 4 

non-overlapping samples of dimension ��� _ ��� pixels 

at the center of the image, with 960 samples in total.  

 

 
Figure 6: GelSight texture database with 40 different texture 

classes, comprised of, from left to right and up to down, 14 

fabrics, 13 foams, 3 tissue papers, 7 sandpapers, 1 plastic and 2 

wood textures.  

 

The actual images obtained from GelSight are height 

maps. We convert them to 2D images with brightness of 

pixels indicating the height levels: the brighter the pixel in 

the corresponding 2D image, the larger the height is. Fig. 6 
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shows samples of the 40 texture classes. Numbered from 

left to right and up to down, the surfaces are 14 fabrics, 13 

foams, 3 napkins, 7 sandpapers, 1 plastic and 2 woods. 

Note that the database contains some really similar 

textures, such as textures 1 and 2, 17 and 19, 15, 16, 18, and 

25, etc., which makes the classification task challenging. 

Among the 24 samples for each texture class, some are used 

as the training samples and the rest as testing samples. 

Table 2 shows the correct classification rate for different 

numbers of training and testing samples. Here we use n = 4 

pyramid levels.  

 
Table 2: Correct classification rate (%) of MLBP for different 

numbers of training samples with the highest rate highlighted in 

bold.  

 

Number of 

training samples 

per texture 

MLBP 

(P,R) = (16,2) 

MLBP 

(P,R) = (8,1) 

8 99.22 98.12 

12 99.79 98.96 

16 99.69 99.38 

 

It can be seen that among all the different settings, 

MLBP with (P,R) = (16,2) and 12 training samples can give 

the best performance of 99.79% with only one sample 

misclassified out of 480 testing samples. As the number of 

training samples increases, the correct classification rate is 

expected to increase as well, as there are more samples to 

be compared with. But the classification speed may become 

to decrease. In practice, we will find a compromise between 

the number of training samples used and speed especially 

when the classification is performed in real time, such as in 

the case of robotic tactile sensing. Also, we may use 

different (P,R) pairs for different tasks.  

5. Conclusion 

Tactile sensing is an important but challenging area 

for robotics. With the compliant properties of gel 

elastomers that mimic human fingers, GelSight is 

a promising candidate for tactile sensing and 

material perception. This work focuses on the classification 

of surface textures, where the texture data is based on 

height maps attained by touching a surface with a GelSight 

sensor. We adopted techniques based on local binary 

patterns (LBP). Conventional LBP and improved versions 

such as LBP-HF and DLBP mainly look at microstructures 

of textures and overlook the macrostructures that may 

be important distinguishing features for different textures. 

In this work, we presented a novel multi-scale 

operator, MLBP, that takes into consideration both 

microstructures and macrostructures for feature extraction. 

We also adopted the Hellinger distance as a similarity 

metric. To compare our algorithm with current techniques 

in the visual texture literature, we used the Outex 

databases. MLBP performed the best among several 

classical methods for texture classification. We also built a 

database of GelSight surface textures, with 40 classes of 

different materials, and achieved a classification rate as 

high as 99.79%. Although the database is small, the high 

classification rate indicates that our system is well suited to 

the task of recognizing high-resolution surface textures, 

and may help to deliver a rich form of information for 

robotics. 
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