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Abstract: Vertically aligned multi-walled carbon nanotubes (VA-MWCNTs) with an 

average diameter below 80 nm and a thickness of the uniform VA-MWCNT layer of about 

16 µm were grown in microwave plasma torch and tested for selected functional properties. 

IR absorption important for a construction of bolometers was studied by Fourier transform 

infrared spectroscopy. Basic electrochemical characterization was performed by cyclic 

voltammetry. Comparing the obtained results with the standard or MWCNT-modified 

screen-printed electrodes, the prepared VA-MWCNT electrodes indicated their high 

potential for the construction of electrochemical sensors. Resistive CNT gas sensor revealed 

a good sensitivity to ammonia taking into account room temperature operation. Field 
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emission detected from CNTs was suitable for the pressure sensing application based on the 

measurement of emission current in the diode structure with bending diaphragm. The 

advantages of microwave plasma torch growth of CNTs, i.e., fast processing and versatility 

of the process, can be therefore fully exploited for the integration of surface-bound grown 

CNTs into various sensing structures.  

Keywords: carbon nanotubes; microwave torch; plasma enhanced chemical vapor deposition; 

electronic properties; electrochemical sensor; gas sensor; field emission; IR absorption 

 

1. Introduction 

Carbon nanotubes (CNTs), a synthetic carbon allotrope, are made of sp2 hybridized carbon atoms. 

Single-walled CNT (SWCNT) is a graphene sheet rolled-up into a seamless cylinder and multi-walled 

CNT (MWCNT) is composed of several such cylinders, nested concentrically [1,2]. CNTs are often 

synthesized by a chemical vapor deposition (CVD) in the presence of a catalyst, nanoparticles of 

transition metals. In thermal CVD, a carbon-containing gas mixture is heated typically to 550–1100 °C 

by a conventional heat source. Plasma enhanced CVD (PECVD) activates the gas mixture by ignition of 

plasma discharge but a separate heating of the substrate might be required too [3]. General arguments for 

the PECVD include low-temperature, easily achieved vertical alignment and large area processing [4].The 

CVD methods are used for a CNT volume-synthesis and a surface-bound growth of vertically aligned 

and micropatterned CNT arrays [5]. The vertically-aligned CNTs (VA-CNTs) are highly desirable for 

the integration into functional devices. The aligned growth can produce CNTs free from amorphous 

carbon with a very narrow range of tube lengths and diameters, which is an additional advantage for 

many applications [6]. 

Unique physical and electrical properties of CNTs, i.e., high electrical conductivity,  

remarkable mechanical strength, and thermal and chemical stability, predestinate them for many 

nanotechnology-based applications in electronic, optical and biomedical devices, sensors and 

composites [7,8]. The application potential of CNTs depends on their properties that are given by their 

structure and the form in which they are applied. Separated MWCNTs exhibited a non-linearity in I-V 

characteristics that were relatively large in case of the contacts made by underlying gold electrodes but 

almost diminished if the contacts were placed on the top of partially etched nanotubes [9]. Theoretically 

predicted impedance of SWCNT bundles at high frequencies is quite complex, employing resistance R, 

inductance L and capacitance C, and their validation proved to be difficult [10]. The experimentally 

proposed circuit model of SWCNTs contains a parallel RC element resulting from the contacts in series 

with R and L representing the SWCNT intrinsic behavior [10,11]. Similarly, an equivalent circuit model 

consisting of RC networks is constructed to simulate the electrical responses of MWCNT/polymer 

composites [12,13]. 

The optical properties of CNTs help to understand their structure [14], evaluate their purity [15] and 

open new applications for optical sensing [16,17]. MWCNT-based infrared detectors have received 

much attention due to MWCNT band gap of 0.4–6.0 eV and high absorption efficiency in IR [18].  

A bolometer based on CNT/polymer composites was constructed for the detection of infrared radiation 
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from the range 0.2–20 µm [19] and it was shown that the sensitivity and response time of the CNT-based 

bolometers can be substantially improved by an appropriate functionalization and selection of organic 

matrix [19,20]. 

CNTs exhibit also a great potential for electrochemical sensing due to their unique electrical 

properties, high surface area, fast heterogeneous electron transfer, and electrochemical stability [21–25]. 

The CNTs implemented as a VA-CNT film provide other advantages such as a controlled growth in 

defined areas and an easy modification of their surface demanded for particular sensing or biosensing 

applications [6]. The as-prepared VA-CNT-based sensors have been successfully applied to detect rutin [26] 

and salbutamol [27], a prohibited drug in sports. The VA-CNT thin films have also been tested as 

candidate platforms for DNA immobilization and detection of DNA hybridization [28]. The VA-CNT 

electrode modified by gold nanoparticles has been used for non-enzymatic detection of uric acid [29] 

and a platinum nanoparticle-modified VA-CNT electrode for detection of L-cysteine [30]. 

The CNTs belong to a group of new materials that have been extensively tested for gas sensing during 

the last 10 years and much effort has been put into the development of gas sensors working at room 

temperature. In spite of many papers devoted to SWCNT-based gas sensors [31–33], the MWCNTs can 

be also successfully used [34–36] and are preferable because of their low costs. The construction of room 

temperature ammonia (NH3) sensors is an important task because NH3 is a dangerous gas having a 

negative influence on the environment and humans. Cui et al. created a sensor with MWCNTs decorated 

by Ag nanocrystals that exhibited an enhanced response of 9% to 10,000 ppm of NH3 as well as fast 

recovery [37]. A high sensitivity—6.2% to 4000 ppm of NH3—was proven for Co1−xNixFe2O4/MWCNT 

composites [38]. Varghese et al. investigated sensitivity of resistive and capacitive MWCNT sensors for 

different gases such as water vapors, NH3, CO2 and CO [39]. 

CNTs have been also considered as promising field emitters due to their low turn-on filed, long 

emitter lifetime and good emission stability [40]. The field-emitter configuration should have the highest 

aspect ratio and low work function at its surface. The first extensive study of field emission from CNTs 

has been published by Bonard et al. in 1998 [41]. Later on, CNTs were used as field-emitters in flat-panel 

field-emission displays [42] or electron sources in electron microscopes [43]. 

In the present work, a promising application potential of VA-MWCNTs grown by PECVD in 

microwave (MW) plasma torch [44,45] is explored in detail. Previous studies of the CNTs deposited by 

the MW plasma torch revealed possible improvements of the process [46] and provided a basic structural 

characterization of the CNTs using scanning and transmission electron microscopies and Raman 

spectroscopy [47]. The technology based on the MW torch is a high speed process that takes only 60–120 s 

including catalyst activation (restructuralization of a catalytic thin film into nanoparticles) and does not 

require any external heating source of the substrate. Besides starting the CNT growth with a thin catalytic 

film deposited on the substrate in a separate technological step, it offers the possibility to prepare catalytic 

nanoparticles during the same process, i.e., using the MW plasma torch [48]. Another advantage is a 

successful preparation of vertically aligned MWCNTs directly on Si without using a barrier SiO2 layer [3]. 

A direct contact between the VA-CNTs and the Si substrate can be very important for some applications 

and it enables the construction of a field-emission based pressure sensor [49]. Besides the field emission, 

other functional properties (electrical and electrochemical, gas sensing, IR absorption) of the CNTs from 

the MW plasma torch are tested. Thus, the present work investigates and summarizes the CNT properties 
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directly related to particular sensing applications and in some cases (field-emission pressure sensor, 

electrochemical sensor, gas sensor) describes the sensor structure and its preparation. 

2. Experimental Section 

2.1. CNT Deposition and Structural Characterization 

The VA-MWCNT layers were deposited from Ar/CH4/H2 mixtures using the atmospheric pressure 

MW plasma torch operated at the power of 210 W. The flow rates of Ar, CH4 and H2 were QAr = 700 sccm, 

QCH4 = 19–38 sccm and QH2 = 250 sccm, respectively. The substrate for the CNT growth was heated by 

the interaction with plasma, and its temperature (950–1050 K) was regulated by the distance from the 

plasma torch nozzle. The CNT growth time, that included also the catalyst activation phase, varied from 

60 to120 s. 

The aim of the present work was to investigate functional properties of the CNTs deposited by MW 

torch and, in some cases, integrate them into sensing devices. Most of the measurement structures were 

based on Si due to its compatibility with microelectronic chips and microelectromechanical systems 

(MEMS). CNTs were grown either on a polished single crystal silicon (c-Si) substrate, the c-Si coated 

with an adhesive metallic interlayer or the c-Si coated with in a thermal silicon oxide (SiO2) film. The 

latter is used if the application requires a dielectric or thermal separation of the CNTs. The thickness of 

SiO2 film did not play a significant role and was chosen arbitrarily. The substrate details are given in the 

following sections describing each particular measurement structure.  

A vacuum evaporated Fe film, 5 nm in thickness, or Fe nanoparticles (NPs) deposited on the substrate 

by MW torch from iron pentacarbonyl (Fe(CO)5) vapors were used as catalysts. The details of the NPs 

deposition are described in previous papers [50,51]. The Ar flow through the central torch nozzle and 

through the blower with liquid Fe(CO)5 were 700 and 28 sccm, respectively. The Ar flow of 28 sccm 

through the blower with the liquid corresponds to 0.1 sccm of Fe(CO)5. The deposition time was 10 s. 

Surfaces and cross sections of the prepared CNT samples were checked by the Tescan MIRA II LMU 

scanning electron microscope (SEM, TESCAN, Brno, Czech Republic) using 15 kV acceleration voltage. 

2.2. Characterization of Electrical Behavior of CNTs 

The CNTs for electrical characterization, such as I-V characteristics and sheet resistance measurements, 

were grown in the MW plasma torch on p-type, boron-doped, c-Si substrates (8 mm × 8 mm, thickness 

525 µm, resistivity <6 Ω·cm−1) coated by the SiO2 film, 300 nm in thickness, and the top Fe catalytic 

layer. The square chips fully covered with CNT films were finished by vacuum evaporation of gold pads 

(0.5 mm × 0.5 mm) in each sample corner. 

The chips were investigated at the probe station Cascade M150 connected to the Keithley SCS-4200 

semiconductor analyzer (Keithley Instruments, Inc., Cleveland, OH, USA). The I-V characteristics of 

the films were measured between the opposite corners in the voltage range from −5 V to +5 V. The 

specific electrical resistance was determined by Van der Pauw measurement which was carried out 

automatically by the Keithley SCS-4200 analyzer. 

For the impedance spectroscopy, the CNTs were grown on a SITAL glass-ceramic substrate  

(10 mm × 15 mm, thickness 525 µm) using Fe catalytic layer. This substrate was chosen to suppress the 
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effect of Si substrate properties during the impedance spectroscopy measurement. The VA-MWCNTs 

were deposited on a central circular area, 6 mm in diameter. Two circular gold contacts of 3 mm in 

diameter were prepared by vacuum evaporation. The impedance was measured using the Agilent 

E4980A Precision LCR meter (Agilent Technologies, Santa Clara, CA, USA) and data acquisition by 

LabView software (National Instruments, Austin, TX, USA). The measurements were performed in the 

frequency range from 20 Hz to 2 MHz with the voltage level of 0.5 V. 

2.3. IR Absorption 

The FTIR measurement procedure is a simple way to compare samples with or without grown CNTs 

in order to consider CNTs as possible IR detector. The CNTs for infrared absorption measurements were 

grown on the same substrates as described in the previous Section 2.2, i.e., c-Si substrate with the 

SiO2/Fe double layer. In the case of the bolometer, thin SiO2 layer is needed for construction of low 

thickness MEMS diaphragm to suppress thermal loses to the substrate mass [52]. 

The IR absorption of VA-CNTs on the Si substrate covered by 300 nm thick SiO2 film was 

investigated with the Fourier transform infrared (FTIR) spectrometer Nicolet iS50 in the attenuated total 

reflection (ATR) mode. The ATR crystal was pressed against the sample and the measurement was 

performed in the wavelength range 2.5–22.5 µm. The absorbance of the VA-CNT sample was compared 

to the absorbance of Si substrate covered by 300 nm thick SiO2 film and 5 nm thick Fe film used as 

catalyst of the CNT growth.  

2.4. Electrochemical Characterization  

The preparation of samples for the electrochemical measurements started with n-type, highly 

antimony-doped, c-Si substrates (5 mm × 30 mm, thickness 525 µm, resistivity <0.02 Ω·cm−1) coated 

by the SiO2 film, 300 nm in thickness. The working electrode had dimensions 4.5 mm × 4.5 mm and 

consisted of the CNTs deposited in the MW plasma torch (Section 2.1). Before the CNT growth, the 

SiO2 insulating film was removed from the working electrode area by a wet chemical etching in buffered 

HF and the area of the working electrode was covered by magnetron sputtered Ti (10 nm)/Ta (250 nm) 

double layer and vacuum evaporated top Fe film, the catalyst for the CNT growth. The Ti/Ta coating 

was necessary to ensure a good adhesion of the CNTs that otherwise peeled off the substrate when 

immersed in an electrolyte. The highly doped Si substrate was needed for a good electrical connection 

between the CNT layer and the contact pads which were situated on the opposite end of the substrate 

with the same dimensions as the electrode. 

Electrochemical response of the [Fe(CN)6]4−/3− redox couple mediated by the CNT electrode was 

investigated by the cyclic voltammetry (CV) with AUTOLAB PGSTAT 204 potentiostat/galvanostat 

controlled by Nova 1.10 software (Metrohm Autolab B.V., Utrecht, The Netherlands). A standard  

three-electrode voltammetric cell employing an Ag/AgCl reference electrode (type 6.0729.100, 

Metrohm, Herisau, Switzerland) and a platinum auxiliary electrode (type 6.0343.000, Metrohm) was 

used for all the experiments. The electrolyte was an equimolar solution of 2.5 mM potassium 

ferrocyanide and potassium ferricyanide ([Fe(CN)6]4−/3−) in 0.1 M KCl. The cyclic voltammograms were 

recorded in the potential range from −1 V to +1 V with scan rates (υ) from 5 to500 mV·s−1. 
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2.5. Gas Sensing Properties 

The CNTs for testing the gas sensing properties were prepared on the p-type, boron-doped, c-Si 

substrates (8 mm × 8 mm, thickness 525 µm, resistivity <6 Ω·cm−1) coated with the 92 nm thick SiO2 

film. The catalytic Fe nanoparticles were deposited by the MW plasma torch (see Section 2.1) in the 

central area, 4 mm × 4 mm, of the substrate. This form of the Fe catalyst was chosen for the growth of a 

less dense CNT mesh because the gas sensing application requires a large surface area and dense CNTs 

mask each other. The CNTs were grown from Fe NPs in the MW plasma torch (Ar = 700 sccm,  

H2 = 250 sccm, CH4 = 38 sccm, deposition time 60 s, deposition temperature 973 K) as described in 

Section 2.1. The measurement chip was finished by vacuum evaporated gold contacts (15 nm NiCr 

adhesion layer with 350 nm Au layer on the top) with a size of 2 mm × 6 mm centered symmetrically to 

the middle of the sensor. 

The gas sensing properties were determined as a change of the sample resistance during its exposure 

to a gaseous analyte, either ammonia (NH3) or isobutane (iC4H10). The measurements were performed 

in a custom-built gas station equipped with two gas channels and one chamber for two sensors’ 

characterization at once. One gas channel is used for the synthetic air as a carrier gas. The second gas 

channel supplies diluted analytes, NH3 or iC4H10 in nitrogen. The response of the sensors was determined 

at different analyte concentrations, namely 100 ppm, 250 ppm and 500 ppm. Before each measurement, 

a sample conditioning was carried out for 30 min at 200 °C in the air flow of 1000 sccm. The sensor 

response was defined as 

( )( ) 100%/RR–R=R/R 000 ×Δ  (1)

where R is the resistance of the sensor exposed to the analyte and R0 is the sensor resistance in pure air. 

The sensitivity tests were performed at two temperatures, room temperature and 200 °C. The resistance 

R0 was determined from 60 min measurement in air flow of 500 sccm. The sensor response to analyte 

was measured as three 10 min cycles (for 100 ppm, 250 ppm and 500 ppm of analyte) alternated with 

three 10 min cycles in air flow. The total gas flow rate was kept constant at 500 sccm.  

2.6. Field Emission Properties for Pressure Sensing 

The MEMS field emission pressure sensor was designed as a diode structure (see Figure 1). It 

consisted of two n-type, highly antimony-doped, c-Si electrodes (10 mm × 15 mm, thickness 525 µm, 

resistivity <0.02 Ω·cm−1). One of them was anisotropically etched to a bending diaphragm. The other 

was coated by an emissive material, the VA-MWCNTs deposited in the MW plasma torch (see Section 2.1). 

The highly doped Si substrate was needed for a good electrical connection between the CNT layer and 

the contact pads. The Fe catalytic film, required for the growth of CNTs, was deposited in the center of 

the substrate on the area of 4 mm × 4 mm. A native oxide film on Si was removed by HF prior to the 

deposition of the Fe film, thus ensuring the electrical contact between CNTs and Si. The field-emission 

pressure sensor is proposed to be constructed by the separation of the electrodes with a dielectric layer 

creating an integrated evacuated volume. The dielectric layer can be made of Pyrex or Simax glass using 

anodic bonding technology or made of glass frit using a screen printing process. 
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Figure 1. Schematic view of the MEMS pressure sensor with carbon nanotubes emitters. 

The measurements of the field emission properties were carried out in a vacuum chamber at pressure 

lower than 10−4 Pa. A diaphragm bending was simulated by the linear nano-motion drive SmarAct 

enabling precise changes of the distance between the two electrodes inside the vacuum chamber with 

the step from 50 nm to1000 nm. The initial distance of 120 µm was established using a solid dielectric 

foil that was then removed and the emitter-to-anode distance was set up with the SmarAct drive from  

84 µm to120 µm. The measurement voltage from 0 to150 V was automatically applied using software 

communicating via GPIB with the voltage supply. 

3. Results and Discussion 

3.1. SEM of CNTs 

A fast growth of VA-MWCNT films on the c-Si and c-Si/SiO2 substrates has been achieved in MW 

plasma torch operated at atmospheric pressure without an external heating source [44,45]. The 

characterization of the VA-MWCNT films by SEM, transmission electron microscopy (TEM), Raman 

spectroscopy and the influence of process parameters on the CNT growth were discussed in detail in our 

previous publications [3,46,47]. Typical SEM images of prepared VA-MWCNT film are shown in 

Figure 2. Although the cross-sectional view in Figure 2b confirms the vertical alignment of the CNT 

film, the top view (Figure 2a) reveals that the alignment at the end of nanotubes is not perfect. The CNTs 

having a high aspect ratio, less than 80 nm in the diameter and a length of about 16 µm, are curled at the 

top end due to different heights. Therefore, top view micrographs cannot provide sufficient information 

about the structure of all the CNT film.  

 

Figure 2. Typical SEM micrographs of the silicon substrate covered with VA-MWCNTs 

prepared in MW plasma torch (Ar = 700 sccm, H2 = 250 sccm, CH4 = 25 sccm, deposition 

time 60 s, deposition temperature 973 K): (a) top view of VA-MWCNTs and  

(b) cross-sectional view of the VA-MWCNT film. 
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3.2. Electrical Properties of CNTs 

The measured I-V characteristics of the VA-MWCNT samples were nearly linear as documented in 

Figure 3a for the sample shown in Figure 2. The resistance was in the range of 1–1.3 kΩ. The specific 

electrical resistance was about 0.5 Ω·cm as calculated from Van der Pauw measurement and the film 

thickness of 16 μm determined by SEM. A small nonlinearity was revealed when the difference of the 

sample resistance and its linear approximation was plotted (Figure 3b). The deviation from linear 

behavior was governed by an exponential growth with a small exponent. The nonlinearity of the CNT 

resistance did not exceed 6 Ω which corresponded to 0.5% of the film resistance. 

 

Figure 3. (a) I-V characteristic and (b) deviation of measured resistance from linear regression. 

Fitting of the impedance measurements confirmed a simple RC model of two resistances and 

capacitances in parallel (Figure 4). According to Plombon et al. [10], the contact pads added a significant 

part of the RC circuit element. The RC/CC circuit represents the contact impedance, and RCNT/CCNT stands 

for the impedance of the vertically aligned CNT film. The resistances of the contact and the CNT films 

were 500 and 700 Ω, respectively. The capacitance of the contacts was much higher, about 15 nF, than 

the capacitance of the CNT film, 3.5 nF. It means that the surface of nanotubes is not pure enough to 

create a good contact. Adsorbed molecules such as water, CO2 and O2 can create a dielectric film that 

contributes to its high capacitance.  

 

Figure 4. Impedance characteristics, crossed markers are measured data, dashed line is 

simulated according the inset equivalent circuit. 
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3.3. IR Absorption 

The results of the ATR-FTIR study are shown in Figure 5. They indicate that the VA-MWCNTs can 

be affectionately applied as a possible absorption layer for IR detection. The mean absorbance value of 

nearly 80% was obtained. In Figure 5, the interval from 2.5 µm to 7.5 µm represents the absorbance of 

substrate. The local low points of the curve at approximately 9.0 µm show the typical progression for the 

atmospheric humidity. The absorbance of the CNTs is mostly seen in the interval from 8 µm to 22 µm which 

therefore includes the atmospheric window for IR detection. 

 

Figure 5. ATR-FTIR spectra obtained for the substrate with the catalytic layer (red line), 

and the CNT structure (black line). 

From the physical principle of the material absorption, it has been well known the particle dipole 

moment is necessary. No modification is required for CNTs to create the dipole moment according to 

this measurement. The absorption in the IR region causes changes of vibrational and rotational status of 

the molecules. The absorption intensity depends on the IR photon energy which can be transferred to the 

molecule and this depends on the change of the dipole moment that occurs as a result of molecular 

vibration. As a consequence, a particle will absorb the IR light only if the absorption causes a change in 

the dipole moment. The absorption frequency is dependent on the vibrational frequency of the molecule. 

3.4. Electrochemical Properties 

A representative cyclic voltammogram recorded at 50 mV·s−1 with the VA-MWCNT electrode and 

2.5 mM [Fe(CN)6]4−/3− (1:1) solution in 0.1 M KCl is shown in Figure 6a. Two well-defined symmetric 

redox peaks separated by ΔEp = (Epa − Epc) = 83 mV were observed. The ratio of the anodic and cathodic 

peak currents reached unity (Ipa/Ipc = 1.01). The results indicated that the VA-MWCNT electrode 

promote electron transfer quite well. 

The effect of varying scan rates was studied for the scan rate range 5–500 mV·s−1. The corresponding 

cyclic voltammograms are given in Figure 6b. The anodic (Ipa) and cathodic (Ipc) peak currents varied 

linearly with the square root of the scan rate (υ1/2), as shown in Figure 6c. It demonstrates that the 

electrode process is controlled by a diffusion. The stability of the VA-MWCNT electrode was studied 

for the [Fe(CN)6]4−/3− in 0.1 M KCl at 50 mV·s−1 using 10 cycles of CV. The results, depicted in Figure 6d, 

revealed that both, the oxidative and reductive, peak currents of the studied redox couple remained 
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practically constant throughout all 10 potential cycles and, therefore, the CNT-based working electrodes 

with the Ti/Ta adhesive interlayers are suitable for repeated measurements. 

 

Figure 6. (a) Cyclic voltammograms obtained for 0.1 M KCl and 2.5 mM [Fe(CN)6]4−/3− in 

0.1 M KCl at υ = 50 mV·s−1 using VAMWCNT-based working electrode; (b) Cyclic 

voltammograms obtained for 2.5 mM [Fe(CN)6]4−/3− in 0.1 M KCl at various scan rates  

(υ = 5, 10, 25, 50, 100, 200, 300, 400 and 500 mV·s−1) using VAMWCNT-based working 

electrode; (c) Ipa vs. υ1/2 and Ipc vs. υ1/2 curves; (d) 10 cycles of CV obtained in 2.5 mM 

[Fe(CN)6]4−/3− in 0.1 M KCl at υ = 50 mV·s−1 using VAMWCNT-based working electrode. 

Comparing the obtained results with the standard or MWCNT-modified screen-printed  

electrodes [53], the prepared VA-MWCNT electrodes indicate their high potential for construction of 

electrochemical sensors or biosensors detecting substances in aqueous solutions. 

3.5. Gas Sensing Properties 

The results of the CNT sensor response to NH3 at room temperatures and 200 °C are shown in Figure 7a. 

Since the sensor resistance increased during ammonia exposure, it is concluded that free carriers—the 

holes—in MWCNTs were neutralized by electrons coming from adsorbed NH3 and, therefore, 

MWCNTs exhibited p-type nature. This phenomenon has been already described in previous studies. 

Hoa et al. supposed that MWCNT is a p-type semiconductor and the adsorption of electron donor 

compound such as NH3 decreases the charge carrier concentration, thus inducing an increase of the 

resistance [54]. The same mechanism of interaction of adsorbed electron-donor compound with  
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p-type CNTs was also described in [34,55–57]. The main interaction mechanism of ammonia with CNTs 

is a reversible adsorption. Vikramaditya et al. assume that NH3 is physisorbed on non-doped CNTs [58]. 

Thus, the sensing mechanism of ammonia with CNTs consists of two main steps, (i) physical adsorption 

of gas molecules and (ii) a charge transfer between adsorbed molecules and CNTs [59,60]. Testing of 

the sensor sensitivity to isobutane was carried out at room temperature (Figure 8) and revealed that the 

sensor is insensitive to a non-polar molecule such as iC4H10. 

 

Figure 7. (a) Time dependent response of the CNT sensor to NH3 at room temperature and 

at 200 °C and (b) the response of the sensor determined after 10 min of the exposure as a 

function of NH3 concentration. 

 

Figure 8. Time dependent response of the CNT sensor to NH3 and iC4H10 at room temperature. 

According to the data presented in Figure 7b, the sensor exhibited higher response to NH3 at the room 

temperature than at 200 °C. Since the adsorption is an exothermal process, it is enhanced with the 

decreasing temperature. The response ΔR/R0 ranged from 0.87% to 1.9%. The dependence of the sensor 

response ΔR/R0 determined after 10 min of the exposure on the concentration of NH3 was almost linear 

at 200 °C whereas the relation became strongly nonlinear at room temperature. It can be linked to an 

incomplete desorption of NH3 at room temperature. 

The obtained response of the sensors to NH3 was quite high taking into account that MWCNTs were 

not treated or modified for sensing. The highest response, 1.9%, was achieved at room temperature for 

500 ppm of NH3. For comparison, Hoa et al. [54] achieved 8% response for 6% of NH3 in N2, i.e., for 
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60,000 ppm. Here, the reported sensor was not tested for such a high concentration of NH3 but its 

response to a 120× lower concentration was only four times lower. A response of 9%, but to a lower 

concentration of 1% (10,000 ppm), was reported by Cui et al. for Ag-decorated MWCNTs [37]. 

In conclusion, the described sensor preparation technique is quite simple and allows achieving a 

sufficiently high response. The direct nanotube growth on the substrate allows managing the response 

by synthesis conditions that is critical for a scale-up production. The present CNT sensor can be further 

improved by a suitable functionalization and/or a decoration of the CNTs with metallic nanoparticles 

using the same set-up or a different procedure. 

3.6. Field Emission Properties for Pressure Sensing 

The measurements of field emission current were carried out multiple times at 10 emitter-to-anode 

distances from 84 µm to120 µm. The current density in dependence on the electric field intensity 

calculated from measured results is shown in Figure 9a and the corresponding Fowler-Nordheim (F-N) 

plot is in Figure 9b. Straight lines in the F-N plot indicates the quantum mechanical tunneling 

characteristic of the electron field emission and are based on the F-N equation 

)]/(Bexp[)/A( 2/3222 VxxVI βφφαβ −=  (2)

where I is the emission current, A = 1.56 × 10−6 A·V−2·eV, B = 6.83 × 109 eV−3/2·V·m−1, α is the emission 

area, β is the field enhancement factor, ϕ is the work function, x is the distance between the anode and 

the emitter, and V is the applied voltage. Emission of many electrons at a low applied voltage requires a 

low work function (ϕ) and a high field enhancement factor (β). Using the F-N plot, ln(J/E2) vs. 1/E, the 

field enhancement factor can be determined from the slope of the straight line. The measured data can 

be divided into two sections, below and above 0.9 µm·V−1, that have different enhancement factors. 

Such behavior of the plot is not unusual and can be caused by various reasons, such as resistance, gas 

absorption, localized states or interaction between emitters [61,62]. 

 

Figure 9. (a) Current density in dependence on field intensity for the CNT array field 

emitters; (b) The relevant Fowler-Nordheim curve. 

The turn-on field, defined as the field intensity enabling the emission current density of 10 µA·cm−2, 

was determined to be below 1 V·µm−1. The current density of hundreds of µA was achieved already at 

1.8 V·µm−1. The measured data follow the Fowler-Nordheim law in Equation (2) concerning the 
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dependence of the emission current on the electrode distance when the applied voltage is fixed. Similarly, 

for the fixed distance between the electrodes, the emission current increases with increasing voltage. 

This confirms the expected behavior of our field emission electrode as proposed in the pressure sensor 

design. From the measured characteristics, one could also conclude that it is of advantage to operate at 

a higher electric field and shorter distances. In these conditions, a bigger change of the emission current 

with changing diaphragm deformation (pressure) leads to the higher sensitivity of the sensor, i.e., higher 

ΔI/Δp with the identical Δd. This effect can be strengthened with the proper choice of diaphragm [49]. 

4. Conclusions 

Selected functional properties of VA-MWCNT films were investigated in different types of 

measurement devices that integrated CNTs prepared in a microwave plasma torch. The average diameter 

of prepared MWCNTs was lower than 80 nm and the thickness of uniform VA-MWCNT layers was 

about 16 µm. Electrical measurements of CNTs showed their resistive behavior with a low resistance of 

0.5 Ω·cm, and non-linearity of about 0.5%. A parallel capacitance proposed in previously published 

papers was confirmed by dynamic measurements. The FTIR analysis demonstrated a high absorption in 

the IR range of 8–22 μm allowing VA-MWCNT application in IR thermometers such as bolometers 

usually used in thermo-vision. Cyclic voltammetry using redox couple of [Fe(CN)6]4−/3− were used to 

investigate the electrochemical response of the working electrodes coated by plasma grown VA-MWCNTs. 

The obtained results indicated good electrochemical properties (Ipa/Ipc = 1.01, ΔEp = 83 mV) and 

confirmed that studied VA-MWCNT working electrodes can be successfully used in the construction of 

electrochemical sensors. 

The constructed resistive sensor based on VA-MWCNTs exhibited increasing resistance of the  

VA-MWCNT layer when exposed to NH3 that must be explained by the p-type semiconducting behavior 

of CNTs when adsorbed ammonia gas molecules donate electrons to CNTs. The field emission properties 

of the electrode with VA-MWCNTs grown directly on silicon were investigated with the aim to use the 

electrode in pressure sensing applications. The measured dependencies showed that emission current 

from the CNTs is stable, and a relatively low noise can be achieved for smaller electrode distances and 

higher voltage between the electrodes. The characteristics were reversible, with low turn-on field (1 V·µm−1), 

and current of hundreds of µA for the electric field was around 1.8 V·µm−1. It indicated that plasma-grown 

VA-MWCNTs are well suited for pressure sensing. 
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