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T
he successful design of sensor network architectures depends crucially on the

structure of the sampling, observation, and communication processes. One of the

most fundamental questions concerns the sufficiency of discrete approximations in

time, space, and amplitude. More explicitly, to capture the spatiotemporal variations

of the underlying signals, when is it sufficient to build sensor network systems that

work with discrete-time and -space representations? And can the underlying amplitude varia-

tions of interest be observed at the highest possible fidelity if the sensors quantize their obser-

vations, assuming that quantization is done in the most sophisticated fashion, exploiting the

principles of (ideal) distributed source coding? The former can be rephrased as the question of

whether there is a spatiotemporal sampling theorem for typical data sets in sensor networks.

This question has a positive answer in many cases of interest, based on the physics of the

processes to be observed. The latter can be expressed as the question of whether there is a
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(source/channel) separation theorem for typical sensor network

scenarios. We show that this question has in many cases a nega-

tive answer, and we show that

the price of separation can be

large. To illustrate the concep-

tual issues related to sampling,

source representation/coding

and communication in sensor

networks, we review the

underlying theory and discuss specific examples.

INTRODUCTION

To paraphrase Shannon, the goal of signal acquisition by means

of sensor networks is to reproduce at a read-out station a dis-

tributed signal (or some of its key characteristics) under a fideli-

ty constraint, using limited communication resources. In the

nondistributed setting, this problem elegantly decomposes into

a signal compression (or representation) problem and a com-

munication problem [1]. Consequently, signal processing and

communications have become separate topics over the past sev-

eral decades, developing in quite different directions. In signal

processing research, under the conventional paradigm, the data

is first brought into a central location, where it is then

processed jointly. Paradigmatic instances of this are signal

transform techniques, where typically a large portion of the data

(if not all of it) is processed simultaneously. The task of bringing

the data to the processor is analyzed separately in the frame-

work of communications research.

With the advent of sensor networks, a body of research has

begun to develop that addresses signal processing and commu-

nication jointly. This originates from the insight that the new

data sets look fundamentally different: sensors are capable of

acquiring vast amounts of data, and there is little hope of first

shipping all the data to a central location. Such undertaking

would immediately drain the power supplies of all sensors and

in a wireless setting would create major interference problems.

More specifically, it can be shown that sensor network

algorithms designed under such a paradigm may not

scale. To address this problem, it has become imperative

to process the data (at least partly) in a distributed fash-

ion at the sensors. Such an approach may drastically

reduce the communication needs.

In this article, we take a structure-driven, end-to-

end approach to the sensor network problem, illustrat-

ed in Figure 1. Underlying the whole problem is the

physics of the process of interest. This structures the

data sets, points to sampling schemes, and indicates

what types of correlation will be present in the sensor

data. After sampling using the sensors, we are faced

with the classic dilemma of the communication engi-

neer: “to separate or not to separate.” That is, we

either go to the digital domain and apply discretiza-

tion of the data through quantization and source com-

pression, or we keep data in analog form. The former

implicitly assumes a separation into source and chan-

nel coding and can be optimal in certain scenarios, while the

latter permits any form of joint source-channel coding. Thus,

the main focus and goal is to

show how the structure of the

distributed sensing and com-

munication problem dictates

new processing architectures.

The key challenge lies in the

discretization of space, time,

and amplitude, since most of the advanced signal processing

systems operate in discrete domain. In the sequel, we investi-

gate and illustrate the sufficiency of such discretization, but

also the lack thereof.

We will discuss the general framework, outlining that while

the temporal and spatial discretization can be understood from

(essentially) the same arguments as in the traditional signal

processing applications, the situation is different for ampli-

tude. We formalize this question in an information-theoretic

way as one of source-channel separation: Can an optimal cod-

ing strategy be implemented by first compressing the source(s)

into bit streams and communicate those via error-correcting

codes? This question has a positive answer for the point-to-

point link but not for general networks, and we outline some

of the well-known key arguments.

We will also discuss the spatial structure of sensor data. The

main insight is that this structure is governed by the physics of

the underlying process. As we illustrate, in some cases, this

leads to spatial sampling theorems, showing that a discrete-

space consideration is sufficient.

We will discuss and illustrate the sufficiency of discrete-

amplitude (digital) processing, i.e., the question of where and

when there is a source-channel separation theorem in sensor

network situations. We show that the answer crucially depends

on the interplay between the source structure, the source obser-

vation process, and the communication infrastructure. Via the

following two paradigmatic examples, we illustrate this issue.

[FIG1] The end-to-end  sensor network problem. (a) A physical
environment, possibly driven by sources, generates a distributed data set,
like a temperature distribution or a sound field. (b) A number of sensors
acquire, through spatial sampling, a discrete space version of the physical
data set (temporal sampling is typically also done). This leads to a
spatiotemporal discrete signal. (c) The data set needs to be conveyed to a
central location for reconstruction of the original field. This can be
accomplished with standard (albeit distributed) source compression and
appropriate communication or a joint source channel scheme.

(a) (b) (c)

IN SENSOR NETWORKS, A BODY OF
RESEARCH HAS DEVELOPED THAT
ADDRESSES SIGNAL PROCESSING
AND COMMUNICATION JOINTLY.



PARADIGMATIC SENSOR NETWORK EXAMPLE 1

The Expanding Sensor Network with Rich (e.g., Wired)

Communication Infrastructure

Consider the sensor network scenario of Figure 2, where we

assume that the (continuous-time) source signals

S1, S2, . . . , SM are sufficiently independent of each other.

Hence, this models the case where each sensor explores new ter-

ritory, and thus the sensor network is expanding. The base sta-

tion wishes to recover all of the (continuous-time) sensor

readings. For this to be reasonably possible, it is necessary that

the communication infrastructure be rich. In Figure 2, this

means that the matrix B characterizing the communication

channel is essentially of full rank. A special case is when B is a

diagonal matrix. Then, the sensors are individually connected to

the base station via wired links. To make matters somewhat

more specific, for the purpose of this article, we will measure

the quality at which the base station can recover the sensor

readings by considering the mean-squared error, even though

other distortion measures can be studied in an analogous fash-

ion. For a compact parameterization, we will focus on the nor-

malized sum of the M distortion terms, i.e.,

D =
1

M

M
∑

m=1

E

[

∥

∥

∥
Sm − Ŝm

∥

∥

∥

2
]

, (1)

where, in slight abuse of notation, we have used Sm to denote the

entire source signal (either discrete time or continuous time), Ŝm

to denote its estimate constructed at the base station, and

‖Sm − Ŝm‖ to denote the standard 2-norm between the two sig-

nals. The goal of our considerations is then to understand the rela-

tionship between the achievable distortion D, the source

characteristics, and the communication infrastructure (the total

transmitted power Ptot and the required bandwidth). We briefly

consider a sensor network of this kind in “Expanding Sensor

Network,” where we show that in a certain sense, there is a source-

channel separation theorem for such sensor network situations.

PARADIGMATIC SENSOR NETWORK EXAMPLE 2

The Refining Sensor Network

with Poor Communication Infrastructure

By contrast to the previous example, consider now the sensor

network scenario of Figure 3. There is a (relatively small)

number of underlying sources (or degrees of freedom) that

need to be observed, and each sensor picks up a merged and

possibly noisy version of all of these underlying sources. As

more sensors are added, a better and better reconstruction can

be provided at the base station. Therefore, this can be thought

of as a “refining’’ sensor network. Here, the interesting case is

when the communication infrastructure is relatively poor,

which, as expressed in Figure 3, we model by considering a

matrix B with low rank. An example is the standard (scalar)

multiple access channel where the rank of B is one. By analo-

gy, we again consider the mean squared error
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[FIG2] The expanding sensor network. Each new sensor also
adds new data of interest. In this example, the
communication infrastructure (the dashed box) is “rich,”
meaning that the rank of the channel matrix B is of the order
of M. An example is for B to be the M-dimensional identity
matrix, which represents the case of a wired sensor network.
A scaling-law separation theorem applies.
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EXPANDING SENSOR NETWORK

Consider the sensor network scenario illustrated in Figure 2,

and suppose that the sources Sm, m = 1, 2, . . . , M, are inde-

pendent and identically distributed Gaussian with mean zero

and unit variance, and that the matrix B is the identity matrix.

Then, it is immediate to see that D = 1/[Ptot/(M + σ 2
Z )],

hence the distortion scales like D(M) ∼ M/Ptot(M). (For scal-

ing law relationships, we use the notation f(x) ∼ g(x) if

limx→∞ f(x)/g(x) = c for a finite nonzero constant c.) Since in

this case, we simply have M parallel channels, it is equally

immediate to show that this distortion can be achieved via

separately designed source and channel codes, and hence, a

separation theorem applies. This insight can be extended to

more general cases: Whenever the covariance matrix of the

source vector (S1, S2, . . . , SM) has full rank (and bounded con-

dition number), and when the MIMO communication channel

matrix B has full rank (and bounded condition number), it can

again be shown that if Ptot ∼ M, then D(M) ∼ const. To show

that this is achievable, it suffices to combine standard distrib-

uted source coding (see, e.g., [47]) with standard channel cod-

ing. A lower bound follows from a consideration of the

idealized scenario where all sensors in Figure 2 are merged

into one “super sensor.’’ For the resulting scenario, optimum

performance is well known. Hence, this establishes a (scaling-

law) separation theorem for a certain class of expanding sen-

sor networks.
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D =
1

L

L
∑

ℓ=1

E

[

∥

∥

∥
Sℓ − Ŝℓ

∥

∥

∥

2
]

(2)

via the same slight abuse of notation as in (1). The goal of our

considerations is again to understand the relationship between

the achievable distortion D, the source and observation char-

acteristics, and the communication infrastructure (the total

transmitted power Ptot and

the required bandwidth). In

this article, we consider an

example where there is no

observation noise (see

“Camera Sensor Network”)

and one where the source

observation process is linear and the observations are noisy

(“Digital Architectures for Sensor Network Example” and

“Analog Architectures for Sensor Network Example”). We show

that in such sensor network situations, the price of separately

designed source and channel codes can be arbitrarily large.

In summary, in the sensor network models of interest to

our study, the observed source is (typically) continuous in

time, space, and amplitude. The data collection point is

required to reconstruct the entire source sequences, for all

time (and space), with respect to an average distortion crite-

rion, as expressed in (1) and (2) and subject to power con-

straints at the sensors.

It is important to point out that

this is not the only interesting way

of modeling sensor network situa-

tions. For example, one can remove

the requirement that the source

sequences must be estimated for all

time. Instead, one can consider a

(distributed) parameter estimation

problem, such as in [2]–[4], or a

(distributed) hypothesis testing or

detection problem, such as in [5]

and [6]. If the source sequence does

not need to be estimated for all

time, then it becomes interesting

and meaningful to replace the

power constraints with energy con-

straints, and to analyze the lifetime

of the network. Such a perspective

is taken  in [6] and  [7].

THE WAY OF THE BIT

The physical reality observed by a

sensor network typically lives in

time and space, both of which are

best thought of as continuous. The

measurements taken by the sensor

network are also often continuous

in amplitude (and potentially

phase). This is not different from

the well-studied common communication scenarios, such as a

telephone conversation across a wired or wireless connection.

In either case, due to the nature of the most interesting pro-

cessing devices available today, one of the key questions for the

engineer is whether discrete approximations in time, space, and

amplitude are sufficient and, if not (or not quite), what kind of

a loss they imply.

For the traditional point-

to-point communication

problem, this set of questions

has been well studied and has

led to a set of intuitively

pleasing (if initially some-

what surprising) answers.

To understand the sufficiency of discrete-time approxima-

tions, the central result is the well-known sampling theorem

for band-limited functions and extensions to other linear

subspace cases [8]. When the functions of interest do not fit

the model (for example, they are not bandlimited) then pre-

processing (like low-pass filtering) has to be applied. This

may or may not always be possible.

The problem of the sufficiency of discrete-space approxima-

tions bears some formal resemblance to the case of discrete-

time approximations. From a practical point of view, however,

the two problems are quite distinct. While discretization in

[FIG3] The refining sensor network. A vector source (with arbitrary distribution) is observed M-
fold through a vector-valued function A (for example, A could be a matrix) and in additive
noise, independently by M sensors. The M sensors communicate over an additive noise MIMO
channel, characterized by the matrix B, to a base station that houses the central estimation
officer. The sensors may have (generally limited) cooperation capabilities. No scaling-law
separation theorem applies.
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THE QUESTION IS WHETHER THERE
IS A SOURCE/CHANNEL SEPARATION

THEOREM FOR TYPICAL SENSOR
NETWORKS.



time can be seen as an engineering choice, discretization in

space really is a physical necessity in most cases: sensors are

spatially localized objects, and this leads necessarily to spatial

sampling. However, one can again ask the question under what

conditions discrete-space considerations are sufficient and

what loss they imply otherwise. The fact that no spatial low-

pass filtering is possible in general shows how critical spatial

sampling and aliasing can be. 

The remaining issue, then, is the question whether discrete

in amplitude (often referred to as digital) is sufficient if the

original data is analog in amplitude (such as a temperature, a

sound pressure waveform) and if the communication medium

is analog in nature (such as a voltage or an electromagnetic

field). By analogy to spatiotemporal sampling, the question is

again whether it is without loss of optimality to pass from an

infinite set (continuous data) to a countable set (a set of
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One of the most studied networks in multiuser information

theory is the multiple access channel (MAC). A simple MAC is

the scenario where two terminals transmit with power P each

on the same frequency band to a single receiver (base station),

subject to additive white Gaussian noise of variance σ 2. The

capacity region C is the set of rate pairs (R1, R2) satisfying

R1 ≤ (1/2) log2(1 + (P/σ 2)), R2 ≤ (1/2) log 2(1 + (P/σ 2), and

R1 + R2 ≤ (1/2) log2(1 + (2P/σ 2)). This leads to a pentagonal

shape [9, Fig. 14.17].

Recently, a scaling-law perspective has been developed in

multiuser information theory: How does capacity behave as the

number of users in the network increases? For the Gaussian

MAC, it is easy to see that the sum of the rates grows logarithmi-

cally in the number of nodes [9, p.407]. Recent work has shown

that for the Gaussian (multiple) relay channel, it also grows loga-

rithmically [10], [11]. Finally, for an ad hoc network scenario, the

sum of all the rates grows like the square-root of the number of

nodes [12]. These results are sometimes interpreted in a pes-

simistic fashion as saying that in all these networks, the rate per

user vanishes as the number of nodes tends to infinity.

On the rate-distortion side, an interesting scenario for which

a solution has been found is the so-called CEO problem [13].

Here, M agents all observe independently noisy versions of

one and the same source and have to produce separate

descriptions. If a total rate R bits per source sample is avail-

able, it has been shown that as the number of agents becomes

large, the attainable distortion behaves inversely proportional

to the rate. One interesting way of understanding this result is

by noting that in the standard single-source rate-distortion

problem, the distortion usually decreases exponentially in the

rate. Some other interesting cases are discussed in “A Glimpse

at Distributed Source Coding.”

Unfortunately, even if the rate-distortion region R for any

source coding problem and the capacity region C for any chan-

nel network were known, this would not solve the overall joint

source-channel communication problem. A classical example

illustrating the fact that source-channel separation does not

hold for networks is usually given as follows [14]: The channel is

the binary adder multiple access channel, taking two binary

{0, 1} inputs and outputting their sum {0, 1, 2}. The capacity

region C of this channel has the pentagonal shape given in

Figure 4; see [9, Fig.14.13] for more details. Now suppose that the

two transmitting terminals each observe a binary sequence, call

them Sn
1 and Sn

2 . The two sequences are correlated with each

other such that for each time instant, the events

(S1, S2) = (0, 0), (0, 1), and (1, 1) are all equally likely, and (1, 0)

does not occur. Clearly, at least H(S1, S2) = log2 3 ≈ 1.58 bits per

source sample are required. The full Slepian-Wolf rate region R

is also given in Figure 4; the point labeled x is log2 3 − (2/3). The

two regions do not intersect, and hence, one is tempted to

guess that these two sources cannot be transmitted across this

MAC. However, this conclusion is wrong: While there is no “digi-

tal’’ architecture that achieves this, there is a simple “analog’’

strategy: pure uncoded transmission will always permit to recov-

er both source sequences without error, due to the fact that the

dependence structure of the sources is perfectly matched to the

channel. This illustrates that no separation theorem applies to

general networks. An example where the gap between the best

digital strategy (along the lines of the separation theorem) and

the optimum scheme increases as the number of nodes in the

network becomes large is analyzed in detail in “Analog

Architectures.”

While the general answer is unknown, there are also net-

work cases known where a separation theorem of the

shape of (5) can be given, including the transmission of

independent sources with respect to independent fidelity

criteria across any multiple access channel, see e.g., [15,

Thm.1.9], and the error-free transmission of discrete corre-

lated sources across separate (parallel) channels, see [16].

MULTIUSER INFORMATION THEORY AND SOURCE-CHANNEL SEPARATION

[FIG4] Capacity region C and rate-distortion region R do not
intersect in this example.
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messages). The simplest example is scalar quantization, a more

sophisticated version being vector quantization. For the point-

to-point communication problem if we allow any vector quan-

tizer and any error-correcting code, even the abstract,

information-theoretic ones, then it is well known that the

answer to the above question is positive; it is given by

Shannon’s celebrated joint source-channel coding theorem,

often referred to as (source-channel) separation theorem. 

More precisely, the source coding problem can be character-

ized in terms of a rate-distortion function, often denoted as

R(D), and the channel coding problem in terms of a capacity-

cost function, denoted as C(P). The separation theorem then

states that a distortion D is attainable if

R(D) < C (3)

and cannot be attained if

R(D) > C. (4)

The case R(D) = C is attainable in some cases but not in all.

(This issue shall not be discussed in any detail in this article.)

Owing to the stunning success of the digital communica-

tion paradigm in practical systems, it is clear that the same

approach has been taken to the design of communication

networks. Along the lines of the development for the point-

to-point case, one can now consider the rate vectors

(R1, . . . , RL), in bits per source symbol, required to main-

tain prescribed distortion levels on all sources. Generally,

many different rate vectors will be permitted to achieve this,

and one usually thinks of the corresponding rate-distortion

region, denoted by R. Similarly, for the communication net-

work, one can determine the number of bits per channel

used that can be simultaneously pushed through the inputs

of the network. The vectors of reliably achievable rates can

be captured in terms of a capacity region C . It is then easy to

see that a set of prescribed distortion levels is attainable if

R ∩ C �= ∅, (5)

but this is not a necessary condition. In other words, even if the

intersection of the rate-distortion region and the capacity region

is empty, there may exist a code that achieves the prescribed dis-

tortion levels. However, that code is not a digital code; that is, it

cannot be understood in terms of source compression followed

by reliable communication across noisy channels. Rather, it

requires joint source-channel coding.

DISCRETE SPACE: SAMPLING OF DISTRIBUTED SIGNALS

Sampling is so common that we sometimes forget it is a little

miracle and that it comes with a few strings attached. In the

case of sensor networks, the critical issue is certainly the sam-

pling in space, inherent in the discrete nature of the sensors.

Also, distributed signals exist in time and space and are thus

inherently multidimensional. Distributed signal acquisition is

thus the spatiotemporal sampling of such signals. Of course,

the field of array signal processing has dealt with such prob-

lems in the past (see, e.g., [17]) but with a perspective that is

different from the one used in sensor networks. In typical

array signal processing, the array is one dimensional, regular,

and the signals are often narrow band. In sensor networks, the

array is irregular and two dimensional (random sensor place-

ment on a plane), and the signals can be wide band (e.g.,

sound, images). The obvious question is one of spatial sam-

pling, with the twist that there cannot be any spatial low-pass

filtering before sampling. Thus, most sensor network data is

aliased with respect to spatial frequency.

In “The Plenacoustic Function,” we discuss the interaction

between the physics of the process and spatial sampling, in

particular in the case of distributed audio signals and the ple-

nacoustic function [18]. Other examples of interest where

such an analysis can be applied include distributed camera

systems, where the plenoptic function [19] plays a key role.

This function can be used as an underlying model for distrib-

uted image or video acquisition.  Interestingly, a sampling

theorem for spatial sampling can also be derived in this case

[20]. Finally, the distribution of temperature, where the heat

equation is central, has been considered in [21].

From the above, we can summarize the methodology. First,

consider the physical process producing the quantity of interest

for the sensor network. This leads to a specific spatiotemporal

behavior. From there, analyze the possible sampling and alias-

ing, especially in the spatial dimension.

A final question of interest is if sampling can be considered

in isolation, without referring to compression and communica-

tion issues. This is certainly of great interest but does not have a

simple answer. Clearly, if we have the freedom to place sensors

at will, we can optimize sensor placement so that energy usage

is reduced, for example. At the same time, putting all the sen-

sors close to the base station will lead to a very ill-conditioned

interpolation of the original data, something to be avoided in

the presence of noise. From results on irregular sampling, it is

intuitively clear that to first order, it will not be possible to sub-

stantially deviate from uniform placement, and therefore, only

limited gains are possible.

DIGITAL ARCHITECTURES

The term digital has become so pervasive that it is sometimes

assumed to be given. That is, we go from whatever analog values

to some discrete representation. This is what we will assume in

this section. But then, in the next section, we will show that

things are not always so simple in general.

To discuss digital architectures, we need to define them

somewhat more formally. A digital architecture is a two-

stage procedure, where each stage is designed independent-

ly, the only link between the two stages being digital rate

constraints. Intuitively, any scheme whose performance can

be expressed in terms of a rate-distortion behavior combined

with a capacity region will  be considered a “digital”

architecture. In more detail, this can be described as follows:



1) The source code is designed with only the capacity (region)

of the channel network available. No further information

about the finer structure of

the channel can be used.

2) The channel code is

designed without any

knowledge about the

source at all. Its goal is to

communicate messages in such a way as to avoid errors.

It is perhaps worth illustrating what constitutes digital

architectures according to this definition and what does not.

Clearly, any traditional digital communication strategy falls

under this category, such as a system where the source is first

passed through a vector

quantizer, followed by, for

example, an entropy coder,

and where the resulting bit

stream is communicated via

an error-correcting code

that avoids (block) errors on the noisy channel. On the other

hand, a strategy where the channel provides soft information,

and the source code is designed to work with such soft
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THE SENSOR NETWORK
PERFORMS SAMPLING BUT

WITHOUT SPATIAL FILTERING.

To make matters specific, we first consider the concrete case of

acoustics signals and microphone arrays. The sound field, be it in

open space or inside a room, is the solution of a second-order

partial differential equation called the wave equation. The driv-

ing term in the differential equation is given by the various

sound sources. The key is thus the kernel of the wave equation,

since the source distribution is convolved with the kernel to pro-

duce the actual acoustic field. This kernel, also known as the

Green function, has a particular form. Its Fourier transform for a

particular temporal frequency is essentially band-limited in spa-

tial frequency. For a concrete example, consider a line in a room,

and the spatiotemporal room impulse response h(x, t) with

respect to a source. The Fourier transform H(ω) is essentially sup-

ported on a triangle with

φ ≤
ω

c
, (6)

where c is the speed of sound and φ and ω are the spatial

and temporal frequencies, respectively. Figure 5 shows a

simulated and a measured spectrum of the Green function

or plenacoustic function of a room, indicating clearly the

bow-tie shape of the spectrum that can be used in sam-

pling. For details, we refer to [18].

Now we are in a position to address the sampling question.

First, it is worth remembering that while the temporal frequency

can be limited using low-pass filtering, there is no such possibility

over space. That is, spatial sampling cannot be preceded by any

spatial filtering. Nonetheless, thanks to the shape of the spec-

trum, if the maximal temporal frequency is ω0, then the spatial

spectrum is limited to ω0/c. That is, spatial sampling with a dis-

tance between microphones of the order of d = c/ω0 is ade-

quate to obtain a good representation of the acoustic field. Such

a rule of thumb is well known in array signal processing [17]. A

precise analysis is given in [18], where the decay of the spectrum

and the analysis of the resulting signal-noise ration is given. It is

to be noted that the discrete spectrum over time and space is

not white, and thus residual correlation is present and can be

used in distributed compression. One such scheme is analyzed in

[22], where it is shown that distributed compression using quin-

cunx sampling achieves the same D(R) as centralized compres-

sion. This points to the close interaction of signal structure,

spatiotemporal sampling, and distributed compression.

[FIG5] The Fourier transform of the plenacoustic function, with spatial and temporal frequencies. (a) Simulated and (b) measured
plenacoustic function of a room. The triangular shape of the Fourier transform is clearly visible, which leads to a sampling theorem
over space when the temporal frequency is limited.
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information, is not considered a digital architecture since the

two stages are not truly designed independently of each other.

It is clear that such a strategy really constitutes a joint source-

channel code.

In this section, we discuss

some of the key aspects of dig-

ital architectures, focusing

primarily on the source cod-

ing side. To compress a single

source, one can think of applying a suitable vector quantizer

to an entire vector of source symbols. Unless the vector quan-

tizer is an information-theoretically optimal construction, the

resulting quantization indices still have redundancy in them,

and it is customary to pass them through an entropy coder.

An alternative and very popular approach known as transform

coding consists in applying a suitable (linear) transform to

the vector before quantizing each transformed component

independently and, in the case of jointly Gaussian vector, it is

well known that the optimal transform is the Karhunen-Loève

transform (KLT). To be more precise, if we denote the covari-

ance matrix of the input vector S by �S and assume that the

vector is jointly Gaussian, then the optimal transform coder

operates as follows: The input vector S is first transformed

with a KLT, then the transformed components are quantized

independently, and more rate is allocated to the components

related to the largest eigenvalues of �S. 

Let us now consider the sensor network problem where we

have multiple correlated sources that need to be compressed

in a distributed fashion. Specifically, consider the source cod-

ing problem illustrated in Figure 6. If sensors could collabo-

rate among themselves (at no cost), then the distributed

source coding problem would be mute: we could merely apply

the same algorithms as in the single-source case. However,

such sensor collaboration is usually not feasible since it would

require an elaborate intersensor communication and would

consume most of the power of the sensors. In other words, it

is no longer possible to apply a vector quantizer or a trans-

form coder to the entire source vector. Instead, these algo-

rithms have to be approximated in a distributed fashion.

Suppose that each sensor has applied a suitable vector quan-

tizer to its observed data and is now left with quantization

indices. There are two different kinds of redundancies that can

still be exploited. On the one hand, each sensor’s indices may

be dependent; on the other hand, and more interestingly, the

quantization indices of sensor 1 may be correlated with the

indices of sensor 2, and so on. This type of redundancy can be

removed in a very elegant fashion, pioneered by Slepian and

Wolf [23], and further developed (and extended to the case of

lossy compression) by Wyner and Ziv in [24]. An overview of

these fundamental results on distributed source coding is

given in “A Glimpse at Distributed Source Coding.”

Constructive distributed encoders have been developed more

recently in [25]–[33].

This leaves us with the question of how the transform

coding paradigm changes in this new distributed context.

Namely, if each sensor were to apply a transform to the

observed subvector, should this transform be the same as in

the single-source case or should it be modified, and should

the quantization and bit allo-

cation strategies be modified

as well? The interesting

answer is that, in the new dis-

tributed scenario, the optimal

solution usually requires not

only a modification of the structure of the KLT (leading, for

instance to the conditional KLT) but also to a modification

of the bit allocation strategy and of the quantization process

[34], [35]. Extensions to the centralized transform coding

paradigm have also been investigated in [36].

Let us now return to the overall design of the digital archi-

tecture, specifically to the interactions between the observa-

tion process, the source coding, and the channel coding. While

the general problem is hard and comes in many flavors, we

want to consider three special cases. The first special case is

discussed in “Expanding Sensor Network” and is related to the

expanding sensor network of Figure 2. We show that, in this

case, the architecture scales properly with the number of sen-

sors and that separation holds in a scaling-law sense.

The two examples found in “Camera Sensor Network” and

“Digital Architectures for Sensor Network Example” show, how-

ever, that there exist other instances where separation does not

hold. In particular, in “Camera Sensor Network,” we assume

sensors are digital cameras, and we show that we incur a small

penalty by doing separation. “Digital Architectures for Sensor

Network Example,” finally, concerns the wireless sensor net-

work (WSN) with a structure as given in Figure 3. For this case,

we explicitly evaluate the performance to compare it to analog

architectures. As it will become evident in the next section, the

digital architecture of this second example does not scale prop-

erly with the number of sensors and this leads to vastly subopti-

mal performance.

[FIG6] Distributed transform coding: The full data vector
(S1, . . . , SM) is observed in multiple partitions. Each terminal
provides a compressed version of its observation.
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The case of transmission of correlated sources through net-

worked independent channels has been investigated in [16],

[37], and [38]. Other digital

approaches have been studied

for example in [39]–[42].

ANALOG ARCHITECTURES

By contrast to the digital

architectures discussed earlier, there are ways of “coding’’

that are not based on the representation of all information

in terms of discrete messages (such as bit streams). For

the purpose of this exposition, we will refer to any such

approach as analog architecture. Specifically, it should be

noted that analog is not taken to imply linear processing

nor any other constraint of this form. Rather, analog

should be defined negatively

as nondigital, and the point

of the article is to show that

some sensor network sce-

narios  s tr ict ly  require

nondigital  architectures.

Such nondigital architectures are, in certain contexts, also

referred to as joint source-channel coding.

As we have argued, a set of powerful tools has been

developed over the past five decades that facilitates the

design of algorithms for handling discrete information,

Consider two discrete memoryless sources X and Y that have to

be encoded at rates R1 and R2, respectively. Clearly, this can be

achieved with no loss of information using R1 ≥ H(X) and

R2 ≥ H(Y) bits where H(·) denotes the source entropy. If X and

Y are correlated and a single encoder has access to both sources,

lossless compression is achieved when R1 + R2 ≥ H(X, Y).

Now assume that these two sources are separated, and two

separate encoders need to be used as illustrated in Figure 7(a).

Slepian and Wolf [23] showed that lossless compression can still

be achieved with R1 and R2 satisfying:

R1 ≥ H(X|Y), R2 ≥ H(Y |X), R1 + R2 ≥ H(X, Y).

This means, surprisingly, that there is no loss in terms of the over-

all rates even though the encoders are separated. The Slepian-

Wolf rate region is sketched in Figure 7(b).

Of particular interest is the asymmetric case

(R1, R2) = (H(X|Y), H(Y)). Since R2 = H(Y), Y can be assumed

available at the decoder and the only challenge is to find an effi-

cient way to encode X. This is normally known as the source cod-

ing problem with side information at the decoder. This case is

important because, if we can show that the rate pair

(R1, R2) = (H(X|Y), H(Y)) is achievable, then by exchanging the

role of X and Y we can achieve (H(X), H(Y |X) as well and, final-

ly, all the points on the line connecting  (H(X|Y), H(Y)) with

(H(X), H(Y |X)) can be achieved using time-sharing arguments.

The proof of Slepian and Wolf of the achievability of

(H(X|Y), H(Y)) is based on classical information theoretic

arguments. However, it contains already all the main

ingredients and intuitions that have been used  more

recently to design practical distributed source codes. The

Slepian and Wolf main intuition goes along the following

lines: Since X and Y are correlated and Y is available at the

decoder, one can view X as the input and Y as the output

of a noisy communication channel. To quote [23, p. 474]:

“from the fact that pX,Y (x, y) = pY |X(y|x)pX(x) ,  we can

think of the Y-sequences of the correlated source as being

generated by applying successive characters of the X-

sequence as inputs to a discrete memoryless channel with

transition probabilities pY |X(y|x).”

This means that, if we  design a capacity-achieving chan-

nel code for that channel, we can ensure reliable transmis-

sion of a sub-set of X. More precisely, a capacity-achieving

code contains on average 2I(X,Y) = 2H(X)−H(Y |X) elements that

can be used as inputs to this channel and decoded with van-

ishing error probability when Y is observed. Now, the good

news is that we can design many such codes and, since the

source X produces on average 2H(X) different symbols, by

designing 2H(Y |X) disjoint capacity-achieving codes, we can

A GLIMPSE AT DISTRIBUTED SOURCE CODING

[FIG7] (a) The Slepian-Wolf problem: distributed encoding of
X and Y. (b) The Slepian-Wolf rate region.
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including source codes as well as channel codes. No simi-

larly general tools are known for the design of analog

architectures. Rather, these

techniques are usual ly

designed on a case-by-case

basis, and it is often hard to

analyze their performance

in a precise fashion.

We focus on paradigmatic exemplary cases that illustrate the

need for the development of a more systematic framework for

the design of nondigital communication system architectures.

The key case is the wireless refining sensor network exam-

ple that was introduced earlier. In  “Digital Architectures

Sensor Network Example,” we used known techniques to

bound the best possible performance of any digital architec-

ture. Specifically, from (10),

we concluded that as the

number of sensors becomes

large, the distortion decays at

best like 1/ log(MPtot) . The

question, then, is whether

there is any nondigital approach that can outperform this or

whether this is a fundamental bound for the considered com-

munication problem. While the optimal strategy for this case

to date is unknown, we consider a very simple analog architec-

ture: Each sensor basically scales its noisy observation by an

associate any symbol produced by X to one capacity-achiev-

ing channel code. Then the coding strategy is as follows:

Encoder 2 transmits Y using R2 = H(Y) bits. Encoder 1 does

not need to send the code word representing X, instead the

encoder simply indicates which channel code X belongs to.

This requires on average H(X|Y) bits. The receiver can then

use the decoder appropriate for the channel code specified

by Encoder 1 to retrieve X from Y with no error. The rate

pair (H(X|Y), H(Y)) is thus achievable.

This connection between source coding with side infor-

mation and channel coding principles, which is highlighted

in Figure 8, was made more evident by Wyner [43] and

Berger [44], and has been used recently to design construc-

tive distributed codes, see [25],

[28], and [29] for early examples.

Extensions to an arbitrary number

of correlated sources and ergodic

processes were presented by

Cover in [45], [46].

The case of lossy coding of corre-

lated sources, in particular, of con-

tinuous-valued sources is more

involved and much less is known.

An important case studied by

Wyner and Ziv [24] is the one

where Y is available at the

decoder and X has to be recon-

structed within a certain distor-

tion D. Even though the minimum

rate R1 necessary to achieve this

distortion is usually greater than

the rate used in the case where

Y is  available at both the

encoder and the decoder, Wyner

and Ziv showed that there is no

rate loss in the particular case of

MSE distortion and jointly

Gaussian sources. In particular, if

X ∼ N (0, σ 2
X
) and Y = X + U with U independent of X and

U ∼ N (0, σ 2
U
), we have that

RWZ(D) =RX|Y (D)

=
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2
log2
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The exact solution to the fully distributed compression prob-

lem (i.e., when both X and Y are compressed) is unknown to

date. The best known bounds where provided by Berger in [44].

[FIG8] Channel coding and distributed source coding. In channel coding, the syndrome of
Y is used to retrieve the original symbol X. In distributed source coding, the syndrome of
X is transmitted to the decoder. By observing Y and the syndrome, the decoder can
reconstruct X.
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appropriately chosen factor

and transmits this on the

channel. This generates very

strong interference between

all the sensors, but this inter-

ference is designed so that a

cooperation gain results. To make this explicit, we reconsider

the simple version of the WSN example that we studied in

detail in the context of digital

architectures in “Digital Archi-

tectures for Sensor Network

Example.” Specifically, in

“Analog Architectures for

Sensor Network Example,” we

present a detailed argument that shows that there is an analog

architecture that incurs a distortion that scales like

IEEE SIGNAL PROCESSING MAGAZINE [80] JULY 2006IEEE SIGNAL PROCESSING MAGAZINE [80] JULY 2006

Consider the simplified camera sensor network setup shown

in Figure 9. There are M digital pinhole cameras that are

located along a line. We assume that camera locations are

known and denote with α the distance between two consecu-

tive cameras. The visual scene that is perpendicular to this line

is made of L Lambertian planes. Plane locations are unknown,

but the minimum and maximum possible distances of the

planes to the line are known and are denoted by zmin and

zmax (zmax can be infinity and zmin > 0). Cameras communi-

cate to a single base station through a classical multiaccess

Gaussian channel with capacity C = 1/2 log2(1 + [Ptot/σ
2])

where σ 2 is the variance of the noise and Ptot is the total

power used by the sensors (see “Multiuser Information

Theory and Source-Channel Separation” for more details).

Because of the pinhole model, each camera observes a

perspective projection of the visual scene. Since the scene is

made of Lambertian planes, these projections are piecewise

constant functions. The acquisition process at each camera

can be modeled as a linear filtering followed by sampling

(we assume noiseless measurements for the sake of simplici-

ty). Thus, each camera observes a blurred and sampled ver-

sion of the original piecewise constant projection, and it is

possible to show that, in many cases, exact reconstruction

of the original projection from the samples is possible [48].

The reconstruction of the original visual scene is then

obtained by back-projecting the reconstructed perspective

projections and is exact when there are at least M ≥ L + 1

cameras observing the visual scene without suffering occlu-

sion. This means that, in this particular context, there exists

an exact answer to the sampling problem.

Now assume that no occlusion occurs at any of the M cam-

eras. The perspective projections have been reconstructed

and each projection is piecewise constant

with L pieces and 2L discontinuities. Each

projection is therefore specified by 3L

parameters. The distributed compression is

then performed as follows: each sensor

quantizes the 3L parameters independently

and then a Slepian and Wolf (S-W) encoder

is used to remove the remaining redundan-

cy. The interesting element here is that the

design of the S-W encoders depends on the

properties of the physical phenomenon

and, since we are assuming that zmin, zmax

and α are known, the practical implementa-

tion of the S-W encoders is almost straight-

forward [49]. It is then possible to show

that, if the total bit budget is R, the distor-

tion-rate behavior at high rates is given by

D(R) ∼ c12−2Rγ̃ ,

where γ̃ = 1/[9L + (36/5)L2] [50]. Notice that D(R) does not

depend on the number of sensors involved, but only on the

total bit budget. We thus have an exact bit conservation

principle in this case.

Since we can transmit only R = C = (1/2)

log2[1 + (Ptot(M)/σ 2)] bits per channel use, we obtain that

the distortion at the base station behaves like

Ddigital(M) ∼ c1(1/(1 + Ptot(M)/σ 2))γ̃ , which implies the fol-

lowing scaling behavior for a (distributed) digital code:

Ddigital(M) ∼
1

(Ptot(M))γ̃
. (7)

A lower bound to the distortion can be obtained by considering

the scenario where all the cameras are linked with ideal cables.

For this idealized scenario, it can be shown that the optimal dis-

tortion behaves like

Dlowerbound(M) ∼
1

(MPtot(M))γ
, (8)

where γ = 1/(9L).

[FIG9] Our camera sensor network configuration.
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Danalog(M) ∼
1

MPtot(M)
. (11)

To compare this to the digital architectures discussed earlier,

suppose now that a minimum tolerable distortion D0 and a

power budget Ptot(M) = P0 is fixed. How many sensors Manalog

and Mdigital do the analog and the digital architectures, respec-

tively, require? By comparing (10) and (15), we find that

Mdigital ≈ e
Manalog . (12)

That is, the digital architecture will require exponentially more

sensors than the analog.

This shows that the question of how much information is

acquired by a sensor network cannot be generally expressed

in terms of bits, a somewhat counterintuitive insight.

Assessing in an operationally meaningful way the “amount’’

of information depends on the overall structure of the net-

work under consideration.

The fact that pure analog transmission outperforms the most

sophisticated digital architecture may seem counterintuitive at

first, but there is definitely no reason to believe that pure analog

transmission should be the best possible strategy. The latter is

unknown at this point, and one has to resort to lower bounds to

the distortion instead. The currently available tools to develop

such lower bounds are rather limited in their generality.

Specifically, the only general techniques are of the cut-set type,

i.e., they essentially partition the network into two sides and ana-

lyze the performance of the resulting point-to-point system. That

performance cannot be worse than the performance of the origi-

nal network. In fact, it will generally be much better, leading to

overly optimistic bounds. This is discussed in more detail in [54].

Somewhat surprisingly, in spite of the overly optimistic nature of

the bounds, they are sufficient to confirm that for the sensor net-

work of Figure 3, the “scaling behavior’’ of the simple analog

architecture considered above, i.e., the dependence of its perform-

ance on the number M of sensors as given in (11), coincides with

the optimum scheme insofar as the dominant term is concerned.

Consider the sensor network topology illustrated in Figure 3

with L = J = 1 and A = BT = (1, 1, . . . , 1), and let the underly-

ing source sequence {S[i]}∞
i=1 be a sequence of independent

Gaussian random variables of mean zero and variance σ 2
S

.

Consider the analog architecture where each sensor, at time n,

transmits Xm[n] =

√

Ptot/M(σ 2
S

+ σ 2
W

)Um[n]. Hence, the receiver

observes

Y[n] =Z[n] +

M
∑

m=1

Xm[n]

=Z[n] +

√

MPtot
(

σ 2
S

+ σ 2
W

)S[n] +

M
∑

m=1

√

Ptot

M
(

σ 2
S

+ σ 2
W

)Wm[n].

(13)

Clearly, for this scenario, the optimum estimator of S[n] given

the entire received sequence {Y[i]}∞
i=1 needs to only take

into account Y[n] and due to the fact that all random vari-

ables are jointly Gaussian, it is merely a linear operation,

given by Ŝ[n] = (E[SY]/E[Y2])Y[n]. The resulting distortion is

the well-known formula

D = σ 2
S

−
(E[SY])2

E[Y2]
, (14)

where we can evaluate (E[SY])2 = MPtotσ
4
S
/(σ 2

S
+ σ 2

W
) and

E[Y2] = σ 2
Z

+ MPtotσ
2
S
/(σ 2

S
+ σ 2

W
) + Ptotσ

2
W

/(σ 2
S

+ σ 2
W

), leading

to the following overall distortion:

Danalog =
σ 2

S
σ 2

W

Mσ 2
S

+ σ 2
W











1 +
M
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σ 2
S
σ 2

Z
/σ 2

W

)

Mσ 2
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σ 2
S

+ σ 2
W

Ptot(M) + σ 2
Z











. (15)

The information-theoretic optimality of this simple approach

was first pointed out in [10].

For the sensor network topology illustrated in Figure 3, suppose

that we use a digital architecture. The corresponding (sum-)rate-

distortion function for the case L = 1 and when S is distributed

according to a Gaussian law is called the quadratic Gaussian CEO

problem [51], [52] and can be expressed as

R
CEO(D) = log2

(

σ 2
S

D

)

+ M log2







Mσ 2
S

Mσ 2
S

− σ 2
W

(

σ 2
S

D
− 1

)






. (9)

The rate available is no larger than the capacity of the

Gaussian MIMO channel with input vector (X1, . . . , XM) and

output vector (Y1, . . . , YJ) , with reference to Figure 3.

Assuming that J is held fixed, this rate increases logarithmical-

ly with M. Then, it can be shown easily that the distortion, as

a function of the number of sensors M and the total sensor

power Ptot behaves as

Ddigital(M) ∼
1

log(MPtot(M))
. (10)

The same scaling behavior can be established for the case where

the distribution of S is more general [53]. This example is

explained in more detail in [54].

DIGITAL ARCHITECTURES FOR SENSOR NETWORK EXAMPLE

ANALOG ARCHITECTURES FOR SENSOR NETWORK EXAMPLE
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CONCLUSIONS AND KEY CHALLENGES 

FOR FUTURE RESEARCH

We have considered sensor networks acquiring data from the

physical world to reproduce a physical phenomenon at a cen-

tral location. Since discrete representations of information

are at the heart of current technology, a fundamental ques-

tion concerns the problem of whether any signal can be suffi-

ciently characterized in discrete form. For sensor networks,

there are three fundamental dimensions: time, space, and

amplitude. All three are typically best thought of as continu-

ous initially, and we have illustrated that there are reasons to

believe that in interesting cases, discrete-time and discrete-

space representations are sufficient. The question of discrete-

amplitude representations is a more subtle one, and, in the

WSN case, a double answer must be accepted. In some cases,

discrete-amplitude representations are sufficient, but in other

cases, analog architectures using joint source-channel com-

munication perform optimally in a scaling sense, while digital

architectures would lead to a vastly suboptimal solution.

The challenge now is to understand precisely when a separa-

tion principle holds in a scaling sense. While the fully general

solution to this problem is still open, our findings suggest the

following overall picture:

■ Expanding sensor network (with rich communication

infrastructure): For the example presented in “Expanding

Sensor Network,” we were able to show that the distortion

behaves at best like D(M) ∼ M/Ptot(M), which can be

achieved via separately designed source and channel codes.

Hence, it appears that for such scenarios, a (scaling-law) sepa-

ration theorem holds.

■ Refining sensor network (with poor communication infra-

structure): If the number of degrees of freedom in the source

network increases slowly with the number of sensors, then

— If the sensor observations are noiseless, a conclusive

answer appears more difficult to obtain in general.

However, as the example presented in “Camera Sensor

Network” suggests, separately designed source and chan-

nel codes incur a polynomial gap, and hence, a slightly

weaker form of a scaling-law separation theorem may

apply. In our example, we showed that a distortion that

behaves as Ddigital (M) ∼ 1/(Ptot(M))γ̃ is achievable, and

that the distortion may scale no better than

Dlowerbound (M) ∼ 1/(MPtot(M))γ . If we assume that

Ptot(M) ∼ M and that γ ≪ 1 (as in the specific example

in “Camera Sensor Network”), then these two bounds are

not far apart from each other, suggesting that an approx-

imate (scaling-law) separation theorem applies.

— If the sensor observations are subject to noise, then

no (scaling-law) separation theorem seems to apply.

Indeed, the example discussed in “Digital Architectures

for Sensor Network Example” and “Analog Architecture

for Sensor Network Example” shows that a distortion

that behaves like D ∼ 1/(MPtot(M)) is optimal, but sepa-

rately designed source and channel codes only achieve

Ddigital(M) ∼ 1/ log(MPtot(M)).

When separation does not hold, the exponential gap between

the two architectures points to a vast space for new, creative

designs. Are there multiuser joint source-channel codes that

could reap some of that exponential gain? These are certainly

among the most intriguing research challenges for WSNs.
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