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ABSTRACT Sensors are devices that quantify the physical aspects of the world around us. This ability

is important to gain knowledge about human activities. Human Activity recognition plays an import role

in people’s everyday life. In order to solve many human-centered problems, such as health care, and

individual assistance, the need to infer various simple to complex human activities is prominent. Therefore,

having a well defined categorization of sensing technology is essential for the systematic design of human

activity recognition systems. By extending the sensor categorization proposed byWhite, we survey the most

prominent research works that utilize different sensing technologies for human activity recognition tasks.

To the best of our knowledge, there is no thorough sensor-driven survey that considers all sensor categories in

the domain of human activity recognitionwith respect to the sampled physical properties, including a detailed

comparison across sensor categories. Thus, our contribution is to close this gap by providing an insight into

the state-of-the-art developments. We identify the limitations with respect to the hardware and software

characteristics of each sensor category and draw comparisons based on benchmark features retrieved from

the research works introduced in this survey. Finally, we conclude with general remarks and provide future

research directions for human activity recognition within the presented sensor categorization.

INDEX TERMS Sensor categorization, human activity recognition, public databases for human activity

recognition, physical sensors, sensor benchmark.

I. INTRODUCTION

‘‘In physical science the first essential step in the direction of

learning any subject is to find principles of numerical reck-

oning and practicable methods for measuring some quality

connected with it. I often say that when you can measure

what you are speaking about, and express it in numbers, you

know something about it; but when you cannot measure it,

when you cannot express it in numbers, your knowledge is of

a meagre and unsatisfactory kind’’ by Lord Kelvin (William

Thomson) [1]. Sensors are devices that can help to detect and

quantify physical aspects of the world around us. They can

measure the intensity of light, translate the degree of heat

into temperature, or turn mechanical pressure into a force

quantity. Sensors are all around us. One of the highest rates

of growth of sensor deployment have been in the automotive

sector. A modern automobile is equipped with an average

of 60 to 100 sensing devices with a rising trend mainly
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for functional aspects, such as the engine operation, brakes,

safety, or emission controls [2]. With the growing trend of

smart vehicles, the demand onmore sensing units is expected.

Also in the smart home domain, miniaturized sensing devices

are widespread. The distributed sensors build up an invisible

wireless network connecting everything together.

In order to facilitate a sensor comparison and obtain-

ing a comprehensive overview of the sensing technology,

researchers try to categorize them into different categories.

Sensor classification scheme can range in its complexity.

Simple general schemes commonly conclude three sensor

categories based on the nature of the sensed property (phys-

ical, chemical, and biological) [3]. However, a more com-

plex categorization is often required when addressing distin-

guished applications. This work focus on the sensing technol-

ogy deployed in academic research and consumer products

for Human Activity Recognition (HAR). To build our sensor

categorization within this field, we adopt the classification

scheme proposed by White [3]. This scheme is accredited to

be more flexible and intermediate in complexity. It is based
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FIGURE 1. The sensor categorization for HAR as presented in this work
and based (at the first categorization level) on the work by White [3].
We further extended this definition to include the measuring methods,
commonly used in the domain of HAR.

on the measurands or physical entity that a sensor actually

senses such as temperature, light intensity, or mechanical

stress. We present a first look at our categorization scheme

in Figure 1, wherewe show the first level categorization based

on the physical quantities followed by common sensor types

utilized to measure this appropriate physical quantity.

Although several surveys have been conducted for

HAR for specific sensor categories, such as surveys on

acceleration-based [4], [5], radar-based [6], radio-based HAR

[7] and camera-based HAR [8], these are all focusing on sin-

gle sensor technology based applications for a sub-domain of

HAR. A thorough comparison across these sensing technique

categories with a focus on the sensor advantages and disad-

vantages in specific tasks is still lacking. Other surveys focus

on algorithm-based methods (recent advances made in deep

learning [9], [10] and transfer learning [11] applied in the

domain of HAR). Hussain [12] combined several surveys and

proposed the first survey covering almost all the sub-fields of

activity recognition using device-free sensors. However, this

work was application-driven (rather than sensor-driven) and

largely focused on RFID technology in activity recognition.

Unlike other surveys regarding tag-based RFID applications,

they promoted the current development of using RFID as

device-free solutions for HAR. In contrast to previous works,

we are presenting a wide sensor-driven overview on HAR

without limitation to a certain sub-application or a certain

sensing technology (e.g. ambient sensors). Instead of count-

ing sensor technologies on specific sub-domains of HAR and

thus under representing certain sensor categories, we catego-

rize sensors based on its physical properties to adjudge its

membership to sub-domains of HAR. Tasks may differ, but

the sensor physical characteristics remain. The appropriate

sensor category to use is left as a design choice to the applica-

tion designers. Based on this survey, the application designers

should be able to consider the appropriate sensor category

with respect to specific task. This survey provides useful

insights for researchers and developers in the HAR domain

and provides a summary of existing works, including insights

into the current and future research directions.

This manuscript is organized as follows. In section II,

we present our sensor categorization scheme according to the

physical entity they measure and revise the most prominent

works utilizing these sensor categories in the domain of HAR.

In section III, we provide a detailed discussion of public avail-

able databases intend to help developing applications in this

research domain with the corresponding sensor categories.

In section IV, we present the common evaluationmetrics used

in the literature to evaluate and compare the performance

of the developed algorithms and systems. This is followed

by a thorough discussion (Section V) on the hardware and

software limitations we identified for each sensor category

based on the literature research conducted within this work.

Finally, in section VI, we provide the reader with insight into

possible solutions to the previouslymentioned challenges and

offer an overview on current and upcoming future research

directions in the domain of HAR with sensory data.

II. SENSORS

A sensor is in general a converter that turns a physical quan-

tity into electric values to be perceived by a digital system.

Its output changes according to the change of physical prop-

erties on the input side. Sensors integrated in smart environ-

ments can either unobtrusively perceive the environment or be

directly interacted with. Sensors that tend to sense the natural

human intention without direct interaction can be used to

design implicit interaction interfaces. Sensors that expect the

user to initiate a direct interaction is used to design explicit

interaction interface. To choose the appropriate sensor type

to design the corresponding interface requires a clear sensor

classification. Here we divide the sensor types into acoustic,

electric, mechanical, optical, and electromagnetic and intro-

duce its related physical sensing properties.

Typically, a sensor works in close collaboration with actu-

ators and control unit to build the full cycle of an automated

system, as illustrated in Figure 2.What a sensor measures will

be interpreted by a logic unit, which is the decision making

layer and leads to certain action triggered by it. An actuator

acts the correct response according to the measured entity

from the sensor.

In this survey, we only focus on the sensing part and

portray all possible physical entities, which are commonly

used to performHAR. The miniaturization of sensing devices

and the cheap production cost make smart sensing devices

widespread in the smart home domain in an aim to simplify

our everyday life. Voice assistants such as Alexa, Siri, Cor-

tana and more [13] can listen to our voice command and

control the lightening or other smart appliances. For human-

centred designs, it requires to understand the human actions
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FIGURE 2. A sensor plays an essential part in an automated system.
It senses certain properties of the environment and convert it to electric
input feed to the central control unit. The control unit makes a decision
based on the digital input data and makes the actuator act upon this
decision.

performed. Sensors can make the link between the human

actions and the interpretation unit. The same human action

can be measured by various sensor types, but the pool of

actions is wide, which makes an action-based comparison

more difficult. Therefore, in order to make a more easily

comparison across sensors, we make the sensor classification

based on the physical measures and provide related appli-

cations with this type of sensor used in the sub-domains of

HAR, such as indoor localization [14]–[19], home behav-

ior analysis [20]–[26], quantified-self [27]–[29], gestures,

postures recognition [30]–[37] and sensing of physiological

signals [32], [38]–[41].

Physical quantities, such as sound, light and pressure can

be measured by acoustic sensors, optical sensors and pressure

sensitive sensors. In the following sub-sections, we present

some detailed works with regard to the sensor categorization

given in Figure 1. The common structure for each sensor

category is organized as follows:

1) introduce the physical sensing principle,

2) survey the most prominent research works that utilizes

the questioned sensing category in activity recognition,

3) conclude and discuss the utilization of the sensing tech-

nology, including the advantages and disadvantages

within the application domain,

4) a summery of the discussed works with a clear

table-structured presentation of the main take-home-

messages.

A. ACOUSTIC

Acoustic sensors can measure mechanical or acoustic waves

traveled through certain materials. The transmission speed is

affected by the different material properties over the propa-

gation path in the transmission channel. Mechanical waves

traveled through solid materials, can be detected by a surface

acoustic sensor. Typical representatives of a surface acoustic

sensor are built by piezo-electrical elements. These sensors

are mostly operated in passive mode. Seismograph is a pas-

sive sensor, which could be used to measure the vibrations on

the ground surface caused by a step signal. Passive sensors

are compact, cost efficient, easy to fabricate, and have a

high performance, among other advantages. However seismic

sensors need a robust ground coupling to detect the vibrations

traveled in the surface. The better the coupling, the better will

be the signal to noise ratio of the received signals. Active

acoustic sensor canmeasure soundwaves transmitted through

the air channel. These sensors can generate an electric signal,

which will be converted to mechanical oscillation by using

a membrane to set the air around the transducer into motion.

This mechanical wave is modulated by the object or obstacles

close to the sensor and the back reflection is sampled by

an analogue digital converter (ADC) converting the echo

modulation back to electric signal. In this subsection we

will discuss three main categories of this sensing technology:

active acoustic, surface acoustic, and ultrasonic sensors. This

subsection will later include an overall discussion of the

technology and a final conclusion.

1) ACTIVE ACOUSTIC SENSORS

Sound events such as clapping, coughing, laughing and

yawning, besides natural speech languages carry additional

information for perceptual aware systems. Schroeder [20]

proposed using a microphone to detect four acoustic events

(coughing, knocking, clapping and phone bell). Several signal

processing steps and template matching from the frequency

spectral domain are necessary to extract useful patterns to

train the SVM classifier. Temko [21] focused on identifying

16 types of meeting room acoustic events, such as chair

moving, door slam, coughing, laughing, etc.. Their sources

of sound samples are acquired both from the public database,

such as RWCP [42], ShATR [43] database and the world

wide web. However the class distributions are highly imbal-

anced, since the database with the targeted classes are mostly

imbalanced.

One drawback of these acoustic sensor is, that these sound

information collected by a microphone may also contain

speech information and thus raise privacy issues. A viable

solution is to use surface vibrations instead of sound signals.

2) SURFACE ACOUSTIC SENSORS

Pan [44] built a person identification system that utilized

footstep induced structural vibration. The system sensed floor

vibration caused by footstep without interrupting human

activities. Gait analysis based on the characteristics of indi-

vidual footstep was then exploited to achieve an identifica-

tion accuracy of 83%. By further incorporating a confidence

level, the accuracy rate increased up to 96.5%. This was

done by using only the most confident traces above certain

threshold.

The signal to noise level of the received structural vibration

signal is highly dependent on the sensor coupling to the

ground and the surface materials. A sound coupling provides

a higher signal to noise ratio. However, it is also possible to

increase the detection accuracy by performing more signal

processing on the input stage. Since these acoustic events con-

tain high frequency component, neglecting the low frequency
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FIGURE 3. On the right side, the principle of a surface acoustic wave is
depicted. Each footstep causes the surface to vibrate. This vibration can
be measured by a microphone or seismograph. On the left side, a pulsed
ultrasonic signal is depicted. Range information is unambiguous within
two subsequent pulses.

components of the vibration signal further concentrates the

signal energy to a smaller frequency bands and thus further

improves the signal to noise ratio. Mirshekari [45] managed

to improve the localization accuracy of indoor footstep sig-

nals in this way. They were able to achieve an average local-

ization error of less than 21 cm, resulting in an improvement

of 13 times compared to the use of the raw input data.

Alwan [22] proposed a work to detect the fall event by

leveraging a seismic sensor to catch the distinctive vibration

characteristic of a fall event. Falls are most common among

elders and are one of the leading cause of death for elders.

The authors worked to distinguish patterns from dropping

objects close to the sensor and simulated fall events from

a Rescue Randy up to 20 feet away from the sensor. The

detection of a fall event is based on the models according to

the vibration patterns, such as frequency, amplitude, duration,

and succession.

3) ULTRASONIC SENSORS

Ultrasonic sensors are active sensors, which actively trans-

mit and receive signal to remotely perceive its environment.

Ultrasonic spectrum starts from 20 kHz to 200MHz, that is

just above the human audible range. Ultrasonic sensing can

be conducted in several classical forms. Acquiring distance

information only, a pulsed sensor can be used to transmit high

frequency pulsed signals and await for the reflected pulse

bounced back off the measuring object. The operation fre-

quency for most of the ultrasonic distance sensor are chosen

to be 40 kHz. The time of flight, when the echo is registered

by the ultrasonic receiver are correlated to the distance. The

equation for calculating the object distance is thus D =
v0·t
2
,

where the speed of ultrasonic wave through the air is v0 =

340m
s
at a temperature of 20◦C. Notice the 2 indicates the

round-trip of the echo signal.

Acquiring motion information, such as the relative

speed or moving direction, the Doppler measurement is

required. To measure the quantity of Doppler broadening,

a continuous signal of 40 kHz is emitted by the transmitter.

The relative motion of a moving object is modulated above

this carrier frequency. The amount of the Doppler in fre-

quency shift can be calculated by using the Doppler equa-

tion, which then directly renders the information regarding

speed and the sign is related to the direction of the relative

movement.

TABLE 1. Table lists commonly used ultrasonic sensors used to build
human activity recognition system in indoor spaces. Det. Range is the
detection range, Field of view (FoV) and Op. Freq stands for operating
frequency.

Indoor activities, especially activities of daily living, such

as standing, sitting and falling, and quantified-self are the

most popular use-cases for using ultrasonic sensors. Notably,

for recognizing simple indoor activities, pulsed ultrasonic

sensors are often used to measure distance towards the

interacting object. Ghosh et al. [27], [46] mounted 4 HC-

SR04 sensors to cover a square of 70 cm x 70 cm with a LV-

MaxSonar-EZ0 in the middle to reduce the dead zone. Based

on the distance profile, they used the support vector machine

(SVM), k nearest neighbours (k-NN), and Decision Tree

approaches to classify the targeted activities. The activities

contain primitive activities such as sitting, standing and fall.

Using Hidden Markov Model (HMM), they later extended

their work to recognize these events for a group of multiple

person [47] and the transitions of these primary states. Patel

[48] targeted at a complete new set of activities of daily

living including (Nothing, Entered, Using Refrigerator, Used

Refrigerator, Appeared near burner, and Using burner) by

applying Fusion of sensor networks consisting of Infrared

Breakbeam Sensor, Ultrasonic sensor(HC-SR04) and Passive

Infrared sensor(HC-SR501). The sensor specifications for the

leveraged ultrasonic sensors are illustrated in Table 1. The

operation frequency of the sensor, its field of view and the

detection range are provided.

Physiological signals can likewise be detected by using

a ultrasonic signal measuring the distance modulation of

the chest movement during a respiration circle. Nandakumar

[38] developed a contact-free sleep apnea detector with an

off-the-shelf smartphone. They transformed the phone to an

active sonar system by emitting linearly frequency modulated

sound signals (from 18 kHz - 20 kHz) and extracted range

information from the reflected echo signal caused by the chest

movement. Hand gesture recognition task using a smartphone

device is further targeted by the project Dolphin [30] and

FingerIO [31]. Due to the limited detection range of a ultra-

sonic device, for close-range and fine-grained detection such

as hand gesture and chest movement, a mobile application is

more suitable than a fixed installation with a pulsed ultrasonic

device.

4) DISCUSSION

As stated in previously cited works in Subsection II-A, acous-

tic sensors, such as microphone, are mostly used to detect

sound events, such as coughing, chair moving, door slam,

transmitted through air. They are mostly used to infer sound-

based events in private or public areas, such as a meeting

room. Acoustic sound event is one of the most informative
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source besides natural speech to interpret a scene containing

human beings and their interactionwith the environment [20],

[21]. These sensors don’t require a solid coupling between

the transmit medium and the sensor itself. However due to

the nature of sound events, these sensors may raise privacy

issues, since the general speech could be interpreted by the

microphone.

Surface acoustic sensor measures the structural vibrations

transmitted through solid materials. Since the production cost

of these sensors are relatively low, they are often used to build

distributed systems. It is power-efficient and its sparsity can

further reduce the installation and computation costs. Appli-

cations built with this sensor type are mostly focusing on

events causing vibrations on the ground surface, such as step

signals [44], object dropping or fall events [22]. These events

form a primitive set of activities of daily living in a household.

However, sensors based on the structural vibration require

a solid coupling between the sensor and the solid material.

If the load on the ground surface is changed, the vibration

intensity and the pattern previously extracted will also be

deformed. These effects often lead to drops in the detection

performance and require sensor calibration.

Ultrasonic sensors overcome both disadvantages, by trans-

mitting and receiving high frequency signals to unobtrusively

perceive its environment. The operation frequency is above

the audible range of a human being and thus the audible

spectrum can be excluded for processing. Opposed to surface

vibration signals, no coupling to the ground is necessary.

Integrated into the environment, it can sense object up to 2m

with a pulsed sensor operates at 40 kHz. Based on the distance

profile, activities such as sitting, standing, and fall events can

be recognized [47]. Operating in close range, it can detect

fine-grained activities, such as gestures [30], [31] or even

respiratory rate [38].

The usage of these sensor categories in the domain HAR

are three-folds,

1) sound events detection related to natural sounds from

activities of daily living with microphones,

2) surface vibration detection due to step signals with

surface acoustic sensors,

3) dynamic activity recognition with ultrasonic sensors.

5) TAKE-HOME MASSAGE

One can notice that most works related to activities of daily

living requires a network of this types of sensors. Due to

the limited detection range of this sensor type, a full cover-

age of a room-scale requires multiple sensor fusion. Sound

events, such as coughing, chair moving, or door slam can

be detected by microphone arrays. Surface-bounded events,

such as steps or falls are mostly measured by surface acoustic

sensors. Fine-grained gestures or other delicate physiologi-

cal signals require a close sensing range and high resolute

senor system. For these applications, ultrasound sensors are

preferred. An overview of the cited literature can be found

in Table 2, where the previous works are introduced in terms

TABLE 2. Applications build on acoustic sensing.

of its application area, sensing device, processing algorithm,

sensor behavioral, database and a concluding remark.

B. ELECTRIC

The strength of an electric field is related to the amount of

charge produced by an electrified object. When a detection

electrode is placed close to an electrified body, an electric
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charge proportional to the amplitude of the electric field is

induced in the detection electrode. This physical effect is

called electrostatic induction. The electric field can also be

modified due to capacitive coupling with conductive materi-

als or any other materials with a dielectric constant other than

air. In the following, this subsection will introduce two main

categories of this sensing technology: capacitive proximity

sensing and electrostatic sensing with electric potential sen-

sors. This subsection will later include an overall discussion

of the technology and conclude with some final thoughts.

1) CAPACITIVE PROXIMITY SENSING

Capacitive measurement is based on electric field proximity

sensing relying on the fact that an electric field is perturbed

by the existence of a nearby conductive object, such as

part of a human body. Therefore, this technology is often

applied for remote sensing in the field of HAR. Capacitive

sensing principle can be further divided into three operation

modes, ranging from loading modes, shunt mode, and trans-

mit mode, according to Smith [49]. In capacitive proximity

sensing, the sensing category applies voltage to one side

of the sensing electrode generating a constant electric field.

The presence or motion of a conductive object close to the

sensing electrode perturbs this electric field. The amount of

the perturbation is directly correlated with the interactive item

placed close by the sensing electrode. In Figure 4, the three

operation modes of an active capacitive measurement are

depicted. In transmit mode, the object acts as a transmitter

and shortens the path of the electric field lines and amplifies

the electric field. When the object is far from the receiver,

the electric field weakens with 1
r2
, since the object acts as a

point source. Here r is the distance between the object and

the receiver. While the distance decreases, the electric field

weakens with 1
r
, as in this case the object acts as a parallel

plane object to the receiver. In the shunt mode, electric field

lines are partially occluded by the object and the electric field

strength is weakened. In the loading mode, one can measure

the displacement current from a transmitter electrode to a

grounded body part. Thismode is often used to get the relative

distance from the sensing platform to the object.

Nowadays, capacitive technology can be found in almost

every smartphone, tablet or touchscreen display. It is afford-

able and can detect the presence of fingers, hands or body

movement with high accuracy. The project Touché by Sato

[50] intended to enhance the touch interaction with capac-

itive sensing technique by leveraging the sweep frequency

capacitive sensing technique. Conventional capacitive sensor

operates at a certain frequency and can only detect touch

interaction based on the amplitudemodulation. By leveraging

multiple frequencies, a more advanced profile can be built

to include a variety of information, such as distinguishing

between not touching, touching, pinching, and grasping.

Enhancing the touch modality, researchers design applica-

tions leveraging the proximity sensing ability of capacitive

sensing. Proximity enables a more natural form of interaction

compared to basic touch interactions. Braun [51] proposed

a driver’s seat enhanced with capacitive proximity sensing

to detect a wide range of physiological parameters about

the driver and his sitting postures for activity recognition in

automobile applications. Identifying lying postures in bed,

such as supine, right lateral, prone, and left lateral has been

proposed by Lee [52] using the ECG signal of 12 capac-

itive coupled electrodes horizontally integrated into a bed

cover. Rus [53] proposed similar lying posture recognition

with mutual capacitance as sensor grid deployed under the

mattress. These applications integrate the sensor electrodes

into individual objects close to the sensing body.

Large-scale systems can also be built using capacitive

sensing technique. Steinhage [14] proposed a smart floor

using capacitive sensing that can be embedded under any non-

conductive surfaces such as carpet or stone.Multiple features,

such as person identification, persons path or trajectories

tracking and fall detection are developed for this application.

These features are especially useful to elderly care facilities.

Similar work, TileTrack by Valtonen [15] based on transmit

mode, measured the capacitance between multiple floor tiles

and the receiver electrode to perform indoor 2D localization.

The systemwith an operation frequency of 10Hz can localize

a standing human with an accuracy of 15 cm and a walking

person within an error range of 41 cm.

Applications with capacitive sensing introduced so far

are commonly focusing on static or stationary measurement

such as sitting or lying postures and thus more stationary

information are provided. Dynamic nature of the whole-body

interaction and other remote activity recognition is sparsely

exploited. This is partly due to the physical principle of static

field measurement, but also a lack in this research direction.

2) ELECTROSTATIC SENSOR

Electric potential sensor is an electrostatic sensor. Unlike

capacitive sensing actively keeps a constant electric field to

the sensing electrode, electrostatic sensor works with station-

ary electric charges. Electrostatic involves building up charge

on the surface of objects due to contact with other surfaces.

This charge induces an inverted charge on other opposite

surface. Therefore electric potential sensors can be operated

more power efficient due to the passive measurement of

induced charges. However this induced charge is only notice-

able, if the other surface has a high resistance to electrical

flow and thus making the process of discharge remains long

enough to be observed. Passive electric field measurement on

the opposite is strongly dependent on the dynamic nature. The

measurement solely based on body movement to generate

body charges induced onto the sensing device. In case of

electric field sensing, no constant electric field is applied on

the sensing electrode. The sensing is merely based on the

modulation of the existent ambient electric field caused by

charge redistribution due to humanmotion. Thus, this sensing

technology is strongly coupled to the ambient changes. The

advantage of the electric potential sensors are light weight,

large detection range, and high sensitivity. By using an ultra-

high impedance sensor at the input stage, even the smallest
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FIGURE 4. Figure depicts the three operation modes of an active capacitive measurement [49]. The electric field lines are depicted in black and are
orthogonal to the surface.

FIGURE 5. Figure shows the working principle of an electric potential
sensor on the left and a typical step signal induced by the displacement
current from the body motion [16].

displacement current caused by the body motion can be reli-

ably measured. The working principle of such an electric

potential sensor is viewed in Figure 5. The modulation of

body induced current is illustrated by using an oscillating

voltage source vB and it is changing over time. The dis-

placement current from the body motion is coupled between

the body’s surface and the sensor’s metal surface with a

capacitance Cc, which is typically in the order of 0.1− 10 pF

[54]. This weak capacitive coupling requires a very high input

impedance to reliably detect the minor displacement current

generated by the body movement. Normally it is in the order

of 1012 − 1015�, to keep the output voltage vs stable.

Prance [32] presented the ability of using an electric poten-

tial sensor to remotely detect physiological signals, such as

the heart beat or respiration rate in a distance up to 40 cm from

a seated subject. Rekimotor [55] built an enhanced game-

pad using electrostatic potential sensing to allow whole-body

input interactions such as (jumping, landing, foot lifting and

foot touch) besides the general key press input modality.

However, since the sensing principle is based on body charge

modulation via body motions, most applications are focused

on wearable designs, such as the work by [56]–[58].

Cohn [33] used a human body as an antenna for

whole-body interaction in an indoor environment, by plac-

ing a miniature device on the body to collect the exis-

tent environmental ‘‘noises’’, such as AC power signal at

50Hz or 60Hz or other higher frequency signals from appli-

ances and electronic devices. They leveraged the modulation

of these electronic signals specific to differentiate activities

caused by the body motion. They are able to sense 12 activi-

ties with an accuracy of 93%.

Remote and embedded installation for this sensing tech-

nology have been developed mainly for indoor localization

purposes, such as in the works [16], [17]. In the project

Platypus, Grosse-Puppendahl [17] showed that by installing

four ceiling mounted electric potential sensors covering an

area of 2m x 2.5m, they were able to track people in a

nearly empty office room around 16m2 with a mean local-

ization error of below 16 cm. They found out that the elec-

tric pattern for each step for different person are distinctive

within a short time window. Thus making use of the pattern

recognition with handcrafted features by integrating priors

from domain expert knowledge and based on some com-

mon features from literature regarding gait analysis, they are

able to re-identify four users with an accuracy of 94% and

30 users with an reduced accuracy of 75%. Fu [16] deployed

the measuring electrode in a grid-wise layout under a non-

conductive floor covering to perform indoor localization.

With a sensor electrode spacing of 20 cm and an system

operation frequency of 10Hz only, they achieved a mean

localization error below 12.7 cm by leveraging a weighted

mean position estimation method. The sensing area covers

an area of 240 cm x 360 cm in a simulated living laboratory

environment. The author stated, that this sensing technique is

strongly dependent on the foot-wear of the users. The strength

of the induced charge is strongly dependent on various

aspects, such as the clothing, weather condition and foot wear,

which makes the sensing system extremely susceptible to

environment noise.

3) DISCUSSION

According to the cited works in Subsection II-B, capacitive

proximity sensing is commonly used to sense direct inter-

action modality such as touch interactions. It can also be

applied to detect conductive objects up to 15-50 cm and thus

enabling other applications expand the touch interaction. The

sensing technique is well suited for measuring stationary

objects, such as postures or other stationary information in

close range to the sensing electrode. Thus for close range

activities and stable detection, the active capacitive technique

is more preferable. Capacitive technology is widely used in

touch screen technologies of the most current smart screen

devices [59], such as smartphones, tablets or touch screens.
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Besides the basic touch interaction, the most common usage

of capacitive proximity sensing is in static posture detection,

such as sitting postures [51], lying postures [53] or falling

events [14]. Large-scale installation is leveraged for indoor

localization task [15] or reasoned to build system performing

recognition of activities of daily living [14].

Technique of electrostatic sensing is used to better mea-

suring the dynamic activities. In this case, the sensing is

based on surface charge generation caused bymovement. The

produced surface charge induces an inverted charge on the

opposite surface that is measured by a sensor with a relatively

high input impedance. This type of sensor is light-weight,

easy to deploy and power efficient, since no active electric

field is generated and only the existent ambient electric field

is exploited. This kind of sensor is applied in various use-

cases ranging from sensing of physiological signals [32],

to dynamic human activities [55], such as jumping, step-

ping or walking. Room-scale activity recognition [16], [17]

with this kind of sensor is also possible. Even with a relatively

low system operating frequency of only 10Hz, an accurate

indoor positioning system is achievable. Build upon this

trajectories, researchers can easily conduct other extended

researches such as gait analysis or behavioural analysis of

the inhabitants. Combined with a reasoning system, Kirch-

buchner [60] carried out predictions for early detection of

dementia or other mental deceases based on these position

contexts.

The usage of this type of sensors in the domain of HAR are

two-folds:

1) close-range postures and stationary action detection

with proximity capacitive sensors,

2) passive, far-range dynamic activity detection with elec-

trostatic sensor.

4) TAKE-HOME MESSAGE

Capacitive sensing technique is commonly used to detect

stationary activities in close range, either direct touch or prox-

imity up to 15 cm. Most common applications are finger

touches, human postures or indoor localization. The resolu-

tion and detection range is directly related to the size, material

and applied voltage on the sensing electrode. Capacitive sen-

sor can produce ambiguous measurements. Placing a small

object close-by results in the same measurement as a large

object placed at a distant distance. This problem should be

considered during the design phase. However the signals are

consistent, such that it provides reproducible signals for same

object under same measuring condition.

Electrostatic measurement of the electric potential sen-

sor is commonly used to detect dynamic changes, such as

body movements. The detection range of up to 2m based

on the hardware application is huge with respect to capac-

itive proximity measurement. However, the disadvantage of

this sensing technique is that it is extremely susceptible to

environment noise, which should be considered in the data

processing stage. The signal patterns within a very short win-

dow is only reproducible, thus making it difficult to extract

robust features directly from the signal pattern in time. The

binary information of movement or non-movement can be

leveraged to build precise indoor localization systems. Based

upon the trajectories further applications can be researched.

An overview of the cited literature can be found in Table 3,

where the previous works are introduced in terms of its

application area, sensing device, processing algorithm, sensor

behavioral, database and a concluding remark.

C. MECHANICAL

Mechanical signal often indicates the force applied to a sur-

face. The quantity of surface deformation is hence related to

the impact of the interactive object. This can be expressed by

the termP =
F
A
, whereP is the pressure,F is the force applied

in the normal direction to the surface and A represents the

area of contact. The force induced deformation of the sensing

surface, generates an electric signal, which is sampled by an

analogue to digital converter to a quantitative measure. There

have been many developments of pressure sensors in the past,

which vary in terms of performance, technology, design and

cost [61]. Its main application areas can be found in industrial

monitoring, such as flow measurement or leakage detection

[61]. In this subsection wewill discuss twomain categories of

this sensing technology: resistive pressure sensing, and room-

scaled pressure sensing with piezoelectric or fiber optical

sensors. This subsection will discuss these two categories and

later include an overall discussion of the technology and a

final conclusion.

1) RESISITIVE PRESSURE SENSING

Applications for HAR with pressure-based sensing has been

proposed in [23], [28], [62]. Xu et al. designed a eCushion to

detect sitting postures. They used the resistive technology to

measure the surface deformation by integrating fiber-based

yarn which is coated with piezoelectric polymer [63]. The

initial resistance of an unstressed surface is relatively high.

With force applied to the textile, the intra-fiber distance is

squeezed which makes the resistance to drop. By performing

signal matching with dynamic time warping method, they

achieved an overall recognition accuracy of 85.9% for 7 sit-

ting postures.

For quantified-self applications, Sundholm [28] developed

a flexible textile equipped with a thin layer of conductive

polymer fiber sheet consists of resistive pressure sensor

matrix. The conductive sheet is positioned between 80 par-

allel stripes of conductive foil on each side (horizontal and

vertical), resulting in a 80 cm × 80 cm sensor mat. The vol-

ume resistance of the fiber sheet changes locally, when the

material is pressed. As output, a 80 × 80 pixel frame of

the applied pressure can be sampled at 40Hz. They recorded

10 exercises of 7 users, each exercise repeated 10 times over

2 different sessions per subject. These exercises included

workouts such as push-up, quadruped, abdominal crunch,

bridge, etc, and additional weight training such as chest press

with dumbbell and biceps curl with dumbbell. An overall
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TABLE 3. Applications build on electric field sensing.

classification accuracy of 88.7% for the person dependent

and 82.5% for the person independent case were achieved

with a k-NN classifier. Template matching with dynamic time

warpingmethodwas applied to count the repetitions. An aver-

age counting accuracy of 89.9% across different subjects was

achieved.

2) ROOM-SCALE INTEGRATED PRESSURE SENSING

Other installed and embedded applications are focused on

indoor positioning or detection of activities of daily living

[64]. Integrating pressure sensors into furniture and floors

in home environment, Lim [24] was able to recognize daily

activities such asmeal, sleep, exertion, go-out, and rest based

on the object usage information. If anomalies in a healthy

daily living style were detected, a warning sign was provided

to care-givers or doctors without intrusion.

Similarly theGravitySpace [18] is an instrumented space

used to track the user’s location and their poses based on

the physical imprints of the human force impact left on the

sensing ground. Integrated with other modalities such as

marker-based motion capture systems, audio-sensing equip-

ment and video-sensing technology, Srinivasan [34] provided

the pressure information as an additional input modality to

enhance the application for interactive media usages.

Finally, the pressure can be measured not only with resis-

tive technology, but also with fiber optics, as demonstrated

in multiple works [65]–[67]. Feng [65] used floor pressure

imaging for posture-based fall detection with fiber optic

sensor grid-layout embedded under the floor space. People

identification based on gait analysis problem has been tar-

geted in the work by Qian [68]. Using a large area, high

resolution, pressure sensing floor, they were able to provide

3D information of each footstep (containing the quantity of

force and the 2D positional information). Applying the fisher

linear discriminant classifier on the collected patterns from

these 3D data points over time for each participant, they

obtained an average recognition rate of 94% and a false alarm

rate of 3% by using pair-wise footstep data from 10 subjects.

3) DISCUSSION

Based on previously discussed works in Subsection II-C,

we identified that pressure sensor arrays integrated into flex-

ible textiles can be used in the applications for posture sens-

ing or activity sensing. Build upon sitting posture recognition,

researchers retrieve high-level contexts based on these pri-

mary information. Mota [69] tried to associate these naturally

occurring postures and corresponding effective states relate

to a child’s interest level while performing a learning task on

a computer. Features were extracted by leveraging a mixture

of 4 Gaussian to express the force distribution on the back of

a chair. A 3-layer feed forward network was used to train the

classifier for nine postures and an overall accuracy of 87.6%

was achieved for testing on new subjects excluded from the

training set. A set of independent Hidden Markov Models

was used to link to three categories related to a child’s level

of interest. An overall performance of 82.3% with posture

sequences from known subjects and 76.5% with unknown

subjects were realized.

Textiles-based prototypes are flexible and easy to transport,

however, they suffered from the problem of maintainability.

Since the force is directly applied to the sensing surface,

a flexible surface could be slightly deformed every time, it is
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used. Cheng [23] also noted that every time the Smart-Surface

is installed and used, it was twisted slightly differently, which

leads to a different default pressure distribution asserted by its

own weight and folding. Further problems of textile sensors

noted by Almassri [70] such as non-linearity, drifting and

hysteresis could also influence the generality of the developed

model for the target application.

Pressure sensors embedded under any floor cover-

ing or integrated into furniture as part of a distributed sen-

sor networks can provide large-scale sensing in contrast to

portable systems. They can be used to sense room-scaled

indoor information such as location or other activities of

daily living. Integrated into furniture or objects, theses objects

can provide usage information to be accessed for smart

home applications. Based on footstep force profiles, Orr

[71] proposed a floor-based system to identify users in their

everyday living and working environments. Creating user

footstep models based on footstep profile features allowed

them to achieve a recognition accuracy of 93%. They’ve

further shown, that the effect of footwear is negligible on

recognition accuracy, in contrast to other sensor types, such

as electrostatic sensing technique. Thus pressure sensors

installed as a floor-based system enables a more robust and

natural identification of users.

The usage of this sensor category in the domain of HAR

are two-folds:

1) close-range posture, or action detection with flexible,

resisitive textiles,

2) room-scale sensingwith either distributed pressure sen-

sor networks or installed floor-based applications.

4) TAKE-HOME MESSAGES

Mechanical sensor works with pressure profiles caused by

impact. Hence direct interaction is required. It is simi-

lar to active capacitive measurement by leveraging station-

ary force impact. Therefore, mechanical measurements are

ideally used to measure postures or stationary activities.

However, the proximity sensing would provide more infor-

mation, including close range interaction as an additional

input modality complementing the direct touch. Compared to

passive electric fieldmeasurement, the foot-wear is negligible

on the recognition accuracy for pressure sensing applications

[71]. Thus this type of sensing technique is more error-

resistant to the surrounding environmental noise, but bears

the inherent problem of easier deformation. An overview of

the cited literature can be found in Table 4, where the previous

works are introduced in terms of its application area, sensing

device, processing algorithm, sensor behavioral, database and

a concluding remark.

D. OPTICAL

Optical sensors can quantify the intensity of light. Opti-

cal spectra cover a wide frequency range, from ultraviolet

(280 nm - 360 nm) to visible (380 nm - 750 nm) to infrared

(800 nm - 1000 nm). Invisible infrared light spectrum can

TABLE 4. Applications build on mechanical sensing.

be detected by infrared sensors, while visible light can be

measured by the charge-coupled device (CCD) of a standard

camera. In this subsection, we concentrate on the imaging

ability of these optical sensing devices with the focus on

83800 VOLUME 8, 2020



B. Fu et al.: Sensing Technology for Human Activity Recognition

HAR. We discuss three main categories of this sensing tech-

nology: visible imaging, depth imaging, and thermal infrared

imaging. This subsection will later include an overall discus-

sion of the technology and a final conclusion.

1) VISIBLE IMAGING

Vision-based HAR is probably one of the most well

researched area in the field of computer vision, for enhanc-

ing the human machine interaction interface. Vision input

compared to time series from sensor data provides more

contextual information. From outdoor security applications

[73], integrated with virtual reality techniques for entertain-

ment purposes [74], monitoring and analysing sport activities

[75]–[77], to medical applications [78], the demand on

mature computer vision algorithms is growing.

Starting from segmentation [79] and recognition of human

poses [80], towards continuous HAR [81], the full chain has

been well studied. The most difficult part is to find feature

representations in images to help developing robust human

action modeling and thus improving the ability of algorithm

to classify the correct activities. Unlike 2D image space, chal-

lenges in video sequence classification may include different

appearances, shapes and poses in video frames over time and

problems of occlusion from subsequent frames. From care-

fully handcrafted feature representations with expert prior

knowledge [82]–[85], to the earlier stage of the deep learn-

ing era, a lot of efforts were made on developing robust

models and generalized feature representations for accurate

activity classification. Convolutional neural networks (CNN)

like AlexNet [86], showed its superior ability to automati-

cally extract useful feature representations from the underly-

ing data structures. Other generative models, such as sparse

autoencoders [87], and generative adversarial networks [88],

are representatives of methods able to automatically learn the

embedding representations of data.

Tran [89] studied a deep learning architecture for video

action classification by extending a conventional 2D-CNN

with a third convolution direction over time. The structure

is called C3D. Their work demonstrated that this type of

network is especially designed to extract features that model

appearances and motion simultaneously. Input to the network

is video clips of the dimension lxwxh, where l represents

the number of frames per clip, wxh stands for the width

and height of a frame and the output is the class proba-

bilities of each activities. The network consists of several

consecutive convolution and pooling layers to extract the high

level appearance features and expand the field of view of the

locally connected convolution features. However, it is to note

that the first pooling layer only reduces the spatial dimension,

but not the time dimension in order to preserve the temporal

information further in the network. The performance was

evaluated on three public available video databases: Sports-

1M [90], UCF101 [91] and YUPENN [92].

Another common design for video classification is the

Two-Stream approach by Diba [93]. They showcased a simi-

lar model using two streams of 3D CNN. Such architectures

are intended to solve the problem of insufficient training data

as well as noise introduced by different view points, perspec-

tives and variation in motions. The first branch, referred as

the appearance stream, implemented the regular C3D net-

work, while the second one, referred as the motion estimation

stream, used optical flow as input. The features from the

two streams were concatenated and feed to a softmax layer

to infer the probability distribution of the classes. While

testing on the UFC101 dataset [91], the two stream model

outperformed the C3D network by 5% with a 20% decrease

in processed frames per second. It confirmed the assumption

that using optical flow helped the network recognize motion

and complemented the appearance and spatio-temporal fea-

tures learned by the standard C3D, however at the cost of

decreased computational performance.

2) DEPTH IMAGING

The skeleton offers a more compact representation of the

human body and enables simplified segmentation task and

estimation of pose. Commercial products such as Microsoft

Kinect makes visible images with depth information afford-

able. These devices can be used to capture human motions

and provide the 3D coordinates (x, y, z) and the angle of the

joints of the skeletons. The development of these skeletons

over time in successive frames can be used to classify human

activities of subjects within the measuring area. Compared to

2D images, the depth information facilitates the extraction of

fore- and background.

Mostly, Microsoft Kinect is used to provide a depth chan-

nel in addition to visible channels. Official algorithm are

provided to determine the skeletons and joint positions as

features for various activity recognition tasks. Mettel [94]

introduced a fall detection service using a single depth camera

installed on the ceiling. Combining static and dynamic meth-

ods, a fall detection servicewas achieved by using aMicrosoft

Kinect. A random sample consensus (RANSAC) method was

used to estimate the ground plane. Static detection verified

whether the person was lying on the floor by tracking posture

based on skeleton joint data. Dynamic detection examined

whether a person is previously falling to the ground by thresh-

olding the speed of the previous joint motion towards the

ground plane. However, by placing only one single depth

sensor in the room, the sensing area was restricted thus lead-

ing to performance degradation, when the skeleton tracking

was occluded by obstacles within the sensing area. Author

proposed to use fusion of multiple installations to reduce false

positives.

Cippitelli [95] proposed an activity recognition framework

to exploit skeleton data extracted by RGB-depth camera for

recognizing activities relevant for assisted living. Their pro-

moted use-case was to provide help to monitor aged people

in home environments. Their main contribution was able to

automatically extract key poses without a learning algorithm.

The key poses were extracted using a clustering algorithm

to assign each human posture to the most important posture

for certain activity. The key poses were then concatenated to
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build a feature vector that was used for the multiclass SVM to

perform activity classification. The proposed algorithm was

evaluated on five public available databases (KARD [96],

CAD-60 [97], UTKinect [98], Florence3D [99], and MSR

Action3D [100]) and showed promising results especially on

a subset of basic activities designated from ambient assisted

living scenarios.

GymCam [29] is a camera installation in a unconstrained

environment, such as a university gym, which are then able to

unobtrusively and simultaneously recognize, track and count

fitness exercises performed by multiple persons. The pro-

moted use-case is for quantified-self applications. It involves

several computer vision tasks such as correctly segmenting

exercises from other activities, recognizing and tracking users

performing the exercise by following the trajectories of the

interest points and counting the number of repetitions. Based

on motion trajectories from key-points tracking using dense

Optical Flow method, they were able to classify different

activities from these features extracted by these motion tra-

jectories. The repetition counting was based on template

matching with an average trajectory of each exercise.

3) THERMAL IMAGING

Images from visible light spectrum, such as visible images,

may face a problem in object segmentation, if the appear-

ances of the human subject, e.g. the color of the clothing

is indistinguishable from the background. Thermal infrared

imaging is resistant to this effect and can provide comple-

mentary advantages. Thermal cameras are passive sensors to

measure infrared radiations emitted by any warm objects.

Therefore, human motion can be easily detected from the

background regardless of lighting conditions and appearance

changes [101].

To use computer vision in pervasive health care is not new.

Camera system installed in a living environment to detect

activities of daily living is introduced in the work [25], [102],

[103]. Person identification can be realized not only based

on biometric trait such as face images, but may also based

on soft biometric traits, such as gait pattern [104] or pos-

tures. To reduce the privacy concern regarding using cameras

in domestic environments, low resolution thermal imaging

method can be applied to achieve the detection of activities

of daily living without revealing a wide range of private

information. Shelke [26] used two low-resolution (4x16) and

contact-free thermal imaging sensors (MLX90621) to clas-

sify four different activities such as stand, sit on chair, sit

on ground, and lay on ground. For static activities, such

as sitting on a chair or standing still, frame-wise classifica-

tion were applied using conventional multiclass classifiers.

Dynamic changes were observed via shape changing effect

from consecutive frames due to motion relative to the sensor

according to lens projection equation. The shape was detected

by using connected component labeling approach [105] to

group the corresponding pixels. The disadvantage of using

the MLX90621 thermal sensor is its limited field of view

(FOV). It has a 120◦ horizontal FOV, but only 25◦ vertical

FOV. Therefore, a careful arrangement of sensor placement

is required to achieve good performance.

Hevesi [106] leveraged a cheap (30USD), small, low

power sensor array of 8x8 thermal sensors to unobtrusively

and remotely detect a wide range of activities of daily liv-

ing. The system can track people within the accuracy range

below 1m and detect the usage of electric appliances, such as

toaster, water cooker or egg cooker. Basic activities, such as

opening a refrigerator, the oven or taking a shower can also be

detected. Due to the sparse sensor resolution by 8× 8 pixels,

the authors claimed that the system can be installed in the

bathroom to recognize bathroom activities without invading

privacy.

Kawashima [107] proposed a Deep Learning-based

approach for action recognition method with an extremely

low-resolution thermal image sequence. The hardware used

is a grid of 16x16 far-infrared sensor array (Thermal sen-

sor D6T-1616L by OMRON Corp.) mounted on the ceiling

(around 220 cm above the floor) of a room. They focused on

recognizing daily activities, such as walking, sitting down,

standing up etc. and abnormal activities (e.g. falling down).

The authors combined feature extraction method based on

shallow CNN structure (consisting of only 3layers), with a

sequence layer based on long short term memory (LSTM) for

extracting spatio-temporal representation. With a frame rate

of 10 fps, the overall accuracy for the targeted activity classes

were 85.75%. Data collection consisted of sequences from

day and night times. The superiority against visible light is

that the night vision for thermal imaging can make a ‘‘falling

down’’ action in the dark visible in contrast to a total black

visual input in visible light spectrum.

4) DISCUSSION

In accordance with the cited works in Subsection II-D, cam-

era systems provide richer information compared to other

non optical sensors accompanied with the cost of more com-

putation efforts. Recent advances made in computer vision

domains ignite more interests in this field. Especially, faster

progress was made in object detection and localization with

algorithms such as YOLO [108] to faster YOLO [109], and

Fast R-CNN [110] to Faster R-CNN [111]. The tendency is to

work on faster algorithms, which can be embedded on hard-

ware with limited resources. The development from semantic

segmentation with Mask R-CNN [112] and Eye-MMS [113]

to instance segmentation with DeepMask [114] also allows

formore precise information retrieval for separating instances

from the same class. Video sequence processing with C3D

network or attention network for sequence input [115] make

activity recognition in complex scene possible. Despite the

advanced algorithms, challenges such as occlusion, change of

appearance and prone to illumination changes, are only partly

resolved for camera systems.

To reduce the negative effect of illumination changes, addi-

tional channel of depth can be integrated. The information

of depth is used to resolve the ambiguity in two dimensional

image space. Commercial products from Microsoft and Intel
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make depth camera accessible for researchers to conduct

experiments in the field of computer vision with depth chan-

nel. Microsoft Kinect automatically comes with the joint

positions of the skeleton model. The skeleton representation

is more sparse and compact, thus enabling more efficient

processing on embedded hardware entities. Skeleton-based

processing is commonly applied for human action recog-

nition. Based on handcrafted features extracted and well-

designed classifiers, human skeleton can be used to extract

spatial structure and temporal dynamics specific from human

actions. Lately, research interests shift to consider end-to-end

learning to avoid handcrafted features andmodel construction

with prior knowledge. Du [116] proposed an approach based

on hierarchical recurrent neural network to learn represen-

tations of skeleton poses hierarchically fused from sub-nets

to automatically form action models fitted for the separate

action classes. Skeleton-based approaches for HAR to build

assisting system for elderly monitoring was introduced in

[94], [95]. Activities of daily living, such as sitting, standing,

walking, and falling are the most often targeted classes.

Thermal infrared imaging is another sensing form operat-

ingwith near to far infrared light spectra. The operatingwave-

lengths enable the system to observe radiations emitted by

objects with a temperature above zero. Therefore it facilitates

the segmentation process from human object to background.

Night vision capability of infrared sensors even enable action

recognition in the dark opposed to image data from visible

light spectrum. It also enables the reconstruction of visible-

like images from thermal captures [117]. Infrared sensor

arrays used in the cited works are mostly sparse and can

be applied to reduce the resolution to protect users privacy.

Sensor array of 4×16, 8×8 or 16×16 pixels are used. These

installations are often applied in home environments to build

systems for tracking and evaluating activities of daily living.

The usage of these sensor categories in the domain HAR

are three-folds,

1) camera-based action recognition in public areas,

2) depth-based action recognition and tracking on embed-

ded hardware platforms,

3) low resolution thermal infrared imaging in home envi-

ronments to build ambient assisted living systems.

5) TAKE-HOME MESSAGE

Action recognition in computer vision can be performed on

images, videos, or life streams. Each of the target domain

bears its own challenges. Image covers only one instance

in time and thus context can be missing if the decision is

based on only one single image. Action recognition in video

requires more complex network architecture to integrate the

time component. Real-time assessment of human activities

can enable robots to operate intelligently in interaction with

humans. Part of these challenges have been already solved

by the modern deep learning methods. By using 3D net-

work structures or sequence modelling methods, the aspect of

time is considered. Knowledge distillation [118] or network

pruning [119] can decrease themodel capacity andmake real-

time assessment possible.

Despite the rapid development in computer vision, one

of the biggest drawbacks of camera based solutions is the

low user acceptance in private sectors, as cameras typically

raise concerns about privacy [120]. Therefore, either using

depth channel or using thermal imaging can help resolve

some of the mentioned challenges for visible spectral input.

An overview of the cited literature can be found in Table 5,

where the previous works are introduced in terms of its

application area, sensing device, processing algorithm, sensor

behavioral, database and a concluding remark.

E. RADIATION

Radiation, in the form of electromagnetic waves, works with

high frequency electric field modulations. Common custom

radar in the automotive domain operates at a typical fre-

quency of 24GHz [121] and 76GHz [122]. On the other

hand, according to WiFi standard 802.11n [123], domestic

WIFI frequency bands operate at 5GHz for close range and

2.4GHz for far range. The operating frequency of 2.4GHz

grants for better penetration through solid objects and thus

provides a wide coverage of WIFI signals. In the following,

this subsection will introduce two main categories of elec-

tromagnetic sensors: radar sensors and WiFi sensors. This

subsection will later include an overall discussion of the

technology and conclude with some final thoughts.

Sensor devices generating a high frequent electromagnetic

field, such as a radar, can operate in two different modes,

in continuous wave (CW) mode and frequency modulated

continuous wave (FMCW) mode. In the CW mode, only

relative speed toward the receiver can be measured, while the

FMCW can also provide distance information with the time

beacon information encoded in the start frequency. In Fig-

ure 6, the two operation modes of radar are visualized. For

continuous wave radar depicted on the left, if the transceiver

and the distant object are both stationary, the received signal

is not modulated. If the distant object is moving with a speed

of v relative to the receiver, then a positive or negativeDoppler

shift can be measured for an approaching or departing object.

Since there is no timing information available, only the rela-

tive speed represented by a Doppler profile can be extracted

from the continuous signal. For frequency modulated contin-

uous wave case depicted on the right, based on the time shift

of the received signal with respect to the transmitted signal,

a distance profile can be generated in addition to the speed

information.

WiFi sensing also depends on similar sensing proto-

cols. However, it can further access the channel state infor-

mation to infer HAR. Channel state information (CSI)

describes the channel property between the transmitter and

the receiver. Radio signal from the transmitter can travel

directly to the receiver (LOS), but may also be scattered

by objects or reflected by walls and ceiling before reach-

ing the receiver. CSI can be represented by the channel

transmission matrix, describing these different effects, such
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TABLE 5. Applications build on optical sensing.

as fading, scattering, and multi-path fading, by the physi-

cal environment between transmitter and receiver. Common

WiFi systems use Orthogonal Frequency-DivisionMultiplex-

ing (OFDM) [124] to divide the wide spectrum band into

around 30 non-overlapping subcarriers. In this case, CSI con-

tains complex values, which represents the channel properties
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FIGURE 6. Figure shows the two operation modes of a radar. On the left side, if both transmitter and object are stationary, then no Doppler shift can be
measured. In case of a moving object with a speed v , a positive or a negative Doppler broadening will be measured relative to the motion direction to the
transmitter. On the right side, the FMCW mode is depicted. Based on the time shift, the distance of the object towards the transmitter can be calculated
using the time of flight. The transmitter signal is shown in red, while the receiver signal is depicted in green.

of each subcarrier. Take a WiFi channel in the 2.4GHz band

with multiple inputs and multiple outputs (MIMO) mode,

containing 3 Transmitter and 3 Receiver antennas, the CSI

Tool can capture 30 OFDM subcarriers, resulting in 3 ×

3x30 CSI data points in each received packet for processing

[125] at each time instance. By collecting these CSI data

points over time, we can build a CSI profile used to capture

the changes in the physical environment. A moving object

such as a human being in the receiving path can affect the

channel response and be measured on the receiver side.

1) RADAR SENSORS

We start introducing the radar sensing, which has the

advantages of insensitivity to environment conditions and

robustness in different weather conditions. This makes radar

applications in HAR a suitable candidate. It can transmit

signal through walls, thus no direct line of sight is needed

compared to vision-based systems. Using millimeter waves,

the resolution is so fine that it can even detect the smallest fin-

ger movement in the order of sub-millimeter. Motion sensing

with Soli [35], a tiny radar chip to detect and recognize hand

gestures developed by Google has now been commercialized

and integrated into Google’s new smartphone Pixel 4 [126].

Rahman [39] proposed yet another contact-free measurement

of respiration rate by leveraging the phase shift in Doppler

radar signal caused by the chest movement and allow person

identification based on the subtle body kinematics of six

individuals. A 2.4GHz quadrature system is used to reduce

the DC offset to allowmore amplification and thus increasing

the dynamic range of detection.

Seifert [127] used radar-based applications to perform

unobtrusive person identification based on In-home gait anal-

ysis. A K-band radar was used to collect data from four

test subjects. K-band operates in the frequency range of

18–26,5GHz, the radar used here is at 24GHz. In their pro-

posed work, different walking styles were further clustered

into five different gait classes including normal, pathological

and assisted walks. By leveraging the radar micro-Doppler

signatures, an average identification accuracy of 93.8% was

achieved across the classes and a classification rate of 98.5%

was achieved for a single gait class. A performance drop

to 80% accuracy was expected for unknown individuals.

Features from both the spectrogram and cadence velocity

diagram were extracted based on prior expert knowledge.

A simple classifier using nearest neighbour (NN) approach

was applied to the handcrafted features condensed by the

principle component analysis technique (PCA).

Liu [128] leveraged a dual Doppler radar system for fall

detection operating at 5.8GHz covering a detection range

of 6m. They used the Mel-frequency cepstral coefficients

(MFCC) [129] to extract features from the Doppler signa-

tures caused by different activities. The decision of fall/non-

fall detection was then based on fusion of multiple trained

classifiers output.

Deep learning technique has also found its way to radar

signal processing as in computer vision applications. Most of

these methods are directly applied on time-frequency spec-

trum (spectrogram). Similar to computer vision tasks, where

CNN is applied on images to extract features for object recog-

nition, CNN can analogously be used on spectrum images

to extract spectral patterns resulting from specific activities.

Kim [130] proposed a deep convolutional neural network

architecture for human detection and activity classification

based on Doppler radar operating at 7.25GHz for outdoor

and 2.4GHz for indoor activity recognition with direct line of

sight. This network jointly learned the feature representations

and classification in one single network based on the raw

Doppler spectrum. Activity classes included running, walk-

ing, walking while holding a stick, crawling, boxing while

moving forward, boxing while stand in place, and sitting still.

Similar to time series for natural language processing,

recurrent neural networks (RNN) can support the decision

making stage of activity classification by considering the time

aspect of the signal progress. However for radar images, a 2D-

CNN layer is often applied prior to the RNN layer in order to

extract robust features from the time-frequency spectrogram.

The follow up work of using Soli, a customized, miniaturized

radar chip to resolve sub-millimeter gesture motions, showed

such a network structure in [36]. Their network consisted

of two stages including the representation learning stage by
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using a CNN network, followed by the dynamic sequence

modelling stage of using a long short term memory (LSTM)

network prior to the classification stage with a Softmax

layer. They achieved a per frame accuracy of 79% and a

per sequence accuracy of 88% on a set of 11 hand gestures

across 10 different users.

Ultra-wide band (UWB) is a radio technology that is

used at short-range, high-bandwidth communications. It has

been widely used in radar imaging domain. Compared to

CW radars, it exceeds in terms of range resolution. Com-

pared to FMCW radars, the UWB transmission is able to

send very short pulses mitigating the multi-path inference

problem. UWB operates commonly in the frequency spec-

trum of 3.1GHz to 10.6GHz, a broad frequency bandwidth

of more than 500MHz and a very short pulse duration of

(< 1 ns) [131]. This property makes the signal hard to detect

and thus it is immune from detection, jamming, and inter-

ference. Lai [132] leveraged a UWB random noise radar to

characterize human activities and through-wall imaging. So-

far, the use-cases for radar imaging with UWB radars are

mostly concentrated for military purposes or served for law-

enforcement. They can be used in the search and rescue oper-

ations. Ding [133] conducted a thorough investigation on a

large number ofmotion types based on anUBW radar system.

They clustered different motions into two main categories of

motion, including in situ motions and non-in situ motions.

They leveraged physical empirical features for classifying

in situ motions, such as standing, bowing, squatting etc.,

and the PCA-based feature extractions for inferring non-in

situ motions, such as walking, jogging, jumping forward and

falling forward. They reported a final classification accuracy

of up to 94.4% and 95.3% for in situ motions and non-

in situ motions, respectively. They claimed that their pro-

posed method could be used in smart homes and senior care

domains.

Radar is good for dynamic activity recognition, because of

its robustness and its high resolution, as they operate at sev-

eral gigahertz range, but it comes with the price of high power

consumption and complex hardware design. WiFi devices are

much more power efficient compared to radar sensors, if one

can accept the comparable lower resolution.

2) WIFI SENSORS

Most radar comes with a high specialization and integra-

tion between hardware and software packages. In order to

fulfill certain task specification, a separation between the

software layer and hardware layer are often needed. This

makes embedded radar packages difficult to be specialized

for a broad range of applications in the HAR domain. There-

fore, researcher tried to find a replacement which has similar

physical behaviours, but are easier to modify and access.

Researchers state that the channel state information (CSI)

from a WiFi signal can be leveraged to passive and unob-

trusively monitor the presence or motion of a human being.

Popular application of usingwireless devices for indoor local-

ization based on WiFi fingerprint is quite common, such as

introduced in [19]. When a person comes in the way between

aWiFi transmitter and receiver, it changes the received signal

strength (RSS) transmitted to the receiver. This modulated

RSS profile can be used to extract useful information with

respect to activity classification.

WiGest [37] is a ubiquitous wifi-based gesture recognition

system to sense in-air hand gestures by leveraging the mod-

ulation in WiFi signal strength around a mobile device, such

as a consumer smartphone. Based on three basic primitives,

such as approaching, removing, and holding above the device,

they were able to composite high level gestures without

training for gesture recognition. With only one Access Point,

they were able to detect the basic gestures with an accuracy

of 87.5%. To further include three Access Points, they were

able to increase the accuracy to 96%. Adding preambles

as the start of a intended gesture, additionally improved

the recognition accuracy and reduced the interference from

multi-user scenario.

Accessing only the CSI of a WiFi signal, Zeng [40] built

an application to monitor human respiration even when the

target is far away from the WiFi transceiver pair. Common

WiFi based application needs the object to be close to the

transceiver, because the attenuation of radio frequency (RF)

signal operating at 2.4GHz is around 6 dB for a solid wood

door with 1.75 inches and almost 9 dB for an interior hollow

wall with a depth of 6 inches [41]. Instead of working directly

with the raw CSI signal, they leveraged the CSI signals from

two transmitters to cancel out the environmental noises and

benefited from the phase information of the cleaned signal.

WifiU [134] is a gait recognition system that uses an

commercial off-the-shelf (COTS) WiFi devices to leverage

the channel state information to capture fine-grained gait

patterns for person identification. In contrast to expensive

Doppler radars, the channel state information can provide

similar information such as motion from echos caused by

back-scattering from different body parts.WifiU consisted of

a router and a receiver to collect the modulated CSI due to

human motions. A WiFi device sends continuously signals

to its environment which are scattered by moving objects,

such as a human within the transmission path. The scattered

signals are then received by a laptop. A PCA-based tech-

nique is used to reduce the environmental noise signals by

extracting the principle components from the correlated CSI

signals. The true movement resulted in dominant components

within each sub-carriers and uncorrelated noise components

were suppressed by using the PCA method. After applying

PCA, the time echo was still composed of reflections from

various body parts. The decomposition of such a time signal

was performed by using a frequency-time spectrum (STFT)

method. The reason of using Fourier transformation on the

time signal was that different body part moves at different

speed resulting in different Doppler shifts. The main goal

was thus to transform the received CSI signals to the Doppler

spectrum similar to other radar-based applications with high

fidelity to extract Doppler motion information. Higher speed

corresponded to higher Doppler shift and vice versa. Feature
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extraction was then performed on the cleaned Doppler shift

profiles.

WiSee [135] is another application for sensing whole-body

gesture recognition by leveraging wireless signals in an office

environment or a two-bedroom apartment. Pu leveraged the

frequency-time Doppler shift profile from various body parts

while performing specific tasks, to achieve an recognition

accuracy of 94% on a set of nine gestures such as push,

pull, circle, dodge, drag, punch, strike, kick, and bowling.

Adib [41], developed by MIT researchers, showed various

interesting use-cases by leveraging COTSWiFi devices. They

were able to count persons, locate their relative positions,

measure vital signs such as respiration rate and heart beat

rate even from an adjacent room or behind closed doors.

By treating a moving human as a moving antenna array,

they were able to build an inverse synthetic aperture radar

(ISAR) technique to enable radar-like vision. They can scan

the movement of the human in time by only using one single

antenna.

WiFi-based activity recognition utilizes existing wireless

transceiver infrastructure in the environment to measure

activity induced WiFi signal variations. Compared to radar-

based applications, WiFi application is more power efficient

and preserves user’s privacy, since no physical sensing mod-

ule is required except the already existing WiFi communica-

tion route.

3) DISCUSSION

As reported by the cited works in Subsection II-E, electro-

magnetic sensors are resistant to different weather condi-

tions or environmental noise at certain operating frequencies.

In contrast to optical vision-based system, high frequency

electromagnetic waves do not require a direct line of sight and

can even penetrate throughwalls. In addition their robustness,

safety, and reliability make them perfect to serve as an effec-

tive device for contact-free and ubiquitous motionmonitoring

of objects in the surrounding.

Due to its robustness against extreme weather condi-

tions and large detection range, radar-based applications

are already widespread in automotive sector for envi-

ronment sensing and perception. Operating in the sec-

tor of HAR, the operating frequency and the transmit

power should be reduced to adapt to indoor applications.

Most use-cases work with radar sensors operated around

5.8GHz, 7.25GHz or 24GHz. Human motions such as gait

[127] or other whole-body interactions [130] can be leveraged

to developed human-centered smart home appliances. Even

sub-centimeter resolution of finger gestures can be observed

with the specialized and miniaturized radar device Soli [35]

integrated into a smartwatch or smartphone device.

For close range radar applications, UWB radar are often

applied. Its advantages include low power consumption and

is more secure due to extreme short pulses, high transmission

rate, noise resistant due to ultra wide-band. Related to its

superior physical properties, UWB can be used to perform

exact indoor localization. The short duration of UWB pulses

make them robust to multipath effects, since the identification

of the main path from other multipath signals is more evident

and thus allowing a more precise detection of the time of

flight [136]. Through the wall object imaging [132] is another

useful task for UWB imaging radar, especially in situations

where a direct line-of-sight is not possible. For example, it can

be used in rescue operations or finding tracked person in a

collapsed buildings.

WiFi application is more power efficient compared to

general radar applications or UWB radars. Most WiFi-based

applications work with modified WiFi access points. Com-

pared to integrated hardware and software solutions of most

radar applications, it is easier to modify the WiFi access

points to adopt to specific tasks designed for HAR. Common

applications build with modified WiFi devices are targeted

at tracking and recognition of indoor activities. Close range

applications include near device in-air hand gesture recog-

nition [37]. Room-scaled applications are commonly focus-

ing on indoor localization [19] and tracking of human [41].

Based on Doppler profiles, whole-body gestures [135] can

be targeted even when the sensor is placed behind the walls.

Applied for localization tasks, the maximum detection range

is up to 250m outdoor and 35m indoor [136].

The usage of these sensor categories in the domain HAR is

three-folds:

1) dynamic fine-grained whole-body activity recognition

with radar-based sensors,

2) close-range fine grained activity recognition and imag-

ing with UWB radar,

3) more power efficient whole-body activity recognition

with WiFi signals.

4) TAKE-HOME MESSAGE

Radar applications are mostly used in outdoor environ-

ments with large operation frequencies, large detection range

and high operating power such as environment sensing and

perception of a vehicle on a motorway. Applications in

indoor environments in case of human activity classification

need to operate with lower frequencies and lower operat-

ing power. Most use-cases work with radar sensors oper-

ated around 5.8GHz, 7.25GHz, or 24GHz. In case of CW

radar or FMCW radar, a continuous signal is transmitted

all the time, making these applications less power efficient.

For close range detection and sensing UWB radars are often

applied due to its preferable physical properties.

However, most radar hardware are difficult to build. Com-

mercial radar solutions have hardware and software packages

strictly coupled such that an easy modification of radar soft-

ware adapting to specific use-case is not accessible. One alter-

native is to use the channel state information of a commercial

WiFi system. WiFi signals are easy to access and more power

efficient compared to radar based applications, but operate

at much narrower operation frequency bandwidth of only

20MHz compared to 1.79GHz for a FMCW radar, resulting

in lower time resolution than radar applications. An overview

of the cited literature can be found in Table 6, where the
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previous works are introduced in terms of their application

area, sensing device, processing algorithm, sensor behavioral,

database and a concluding remark.

F. OTHERS SENSOR TYPES

Other physical quantities, such as temperature, chemical

composition, and magnetic field modulation can be mea-

sured by dedicated sensors. However these sensors are not

often used as a single sensing entity in the field of HAR

[137]. Human activity is complex and it requires to capture

information from multi-sensor networks to infer the correct

actions [138]. Variables such as temperature may add low

level information to the process of activity reasoning, how-

ever, information fusion is needed to integrate the data in

the high level decision making process. Magnet sensors can

be placed on furniture, drawers, or doors to provide binary

information when users directly interact with these objects

[139]. Temperature, light, pressure, humidity, or CO2 sensors

are all components that can be used to build a wireless sensor

network for smart home systems [140]. ZigBee [141], for

example, is used as a low cost, low power, less complex wire-

less communication standard to connect such sensor nodes

with the main processing unit in a smart home system.

Applications integrating magnetic sensors into MEMS

placed in initial measurement units (IMUs) are used for pose

and acceleration measurement, mostly in wearable devices,

such as smartphones, smartwatches, or other miniaturized on-

body devices. Altun [142] used five bodyworn sensors placed

on the chest, the arms, and the legs to classify daily and sports

activities of eight subjects. Each sensor integrates a triaxial

gyroscope, a triaxial accelerometer and a triaxial magne-

tometer. Combining feature dimension reduction techniques,

such as PCA and sequential forward feature selection (SFFS)

methods with Bayesian decision making classifier, they were

able to balance between a high correct classification rate with

relatively low computational cost with regard to real-time

application.

Fusion multiple sensor categories to infer human actions is

advantageous, because different sensor type provides differ-

ent context (place, time, situation, etc). To ease the decision

making process, a richer context is beneficial. Even combin-

ing multiple sensors from the same category, such as combin-

ing multiple acceleration-based sensors on the human body

can increase the recognition accuracy of complex human

activities. Maurer [143] investigated the classification accu-

racy of wearable sensor on different body position. Results

demonstrated that the sensor placement strongly affected the

recognition performance and could lead to misclassification

if not properly placed.

Bao [144] revealed that two out of five bi-axial accelerom-

eters were enough to recognize a set of 20 activities including

ambulation and daily activities such as scrubbing, vacuum-

ing, watching TV, and working at the PC. By only using

the sensors on the hip and wrist as a sub set of all loca-

tions, the accuracy only decreased around 5%. An increased

accuracy of 25% was achieved over the best performing

single acceleration sensor. The fusion was performed on the

feature-level by concatenating extracted raw features from

the acceleration data time windows. However activities such

as stretching, scrubbing, riding escalator and riding elevator

were often confused. To overcome this issue, they required

additional sensor modalities. Heart rate data can for example

reveal the intensity of physical activities and GPS location

data can provide the information whether the individual is at

home or at work, and thus add a probabilitymeasure to certain

set of activities.

Chernbumroong [145] proposed a multisensor framework

for activity recognition with genetic algorithm (GA) [146] to

determine the fusionweights of themultisensor platform. The

multisensor platform consists of accelerometer, temperature

sensor, and an altimeter on a CC430F6137 Microcontroller

with MSP430 CPU from Texas Instruments. Pressure sen-

sor, gyroscope, barometer, and light sensor are integrated

on Gadgeteer FEZ Cerberus board. In addition, a heart rate

monitor is fixed on the chest with a chest strap. The sen-

sor fusion was performed both on the feature and decision-

level (classification-level). To compensate for sensors that

are less dependant in making decisions by themselves, such

as altimeter and temperature due to their low-level context,

these outputs were fused at feature-level to provide a richer

context. The used feature selection was based on the feature

importance. On the decision-level fusion, the outputs of mul-

tiple classifiers were fused using GA method to fine-tune the

fusion weight parameters. The sum fusion on the decision-

level improved the classification accuracy from 96.9662%

of the best single classifier to 97.3096%. In 98% of the

experiment trials, the GA fusion method outperforms the one

best single classifier.

Similar fusion methods are reported in the field of multi-

biometric fusion [147], where other methods that take advan-

tage of multi-decision coherence [148], variations in infor-

mation source trust [149], or relative relation between con-

fidence levels in multiple sources [150], can be mapped into

the multi-sensor fusion in HAR applications.

Therefore, the context provided by one sensor category is

limited. To infer complex human actions, richer context is

required which can only be done by fusion of different sensor

modalities. Integrating additional sensor or sensor categories

can boost classification accuracy by achieving the following

gains as reported in [151] and initially defined by Bellot

et al. [152]:

1) Accuracy gain: accuracy of decisions and representa-

tions after the fusion process is improved. Noise and

errors are reduced in comparison to single source infor-

mation.

2) Completeness gain: the information after the fusion

process is less redundant and more complete.

3) Representation gain: the information after fusion is

more granular compared to each of the single fused

sources.

4) Certainty gain: the belief in the fused information is

increased.

83808 VOLUME 8, 2020



B. Fu et al.: Sensing Technology for Human Activity Recognition

TABLE 6. Applications build on electromagnetic sensing.

III. POPULAR DATABASES

In this section, we introduce several publicly available

databases for the task of HAR, which are commonly used

as baseline for researchers. They can be divided – based on

our discussed sensor categories – into three groups: the single

non-vision sensor category, the multiple sensor category, and
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the vision-based datasets. An overview of these databases can

be found in Table 7.

A. DATASETS USING ONLY ONE SINGLE SENSOR

CATEGORY

In the Intel Research Lab dataset [158], the authors used

the RFID technology to recognize routine morning activities.

They installed 60 RFID tags in the kitchen on objects touched

by the user during a practice trial. The user wore two gloves

built by Intel Research Seattle to detect that an object has

been touched. However, unlike bar-codes, RFID tags can

not specify uniquely which instances of objects have been

touched, rather that some objects have been touched.

The UCI daily and sport dataset (DSADS) [154] consists

of 8 subjects performing 19 different activities by wearing

acceleration sensors on 5 body parts. Besides the more sta-

tionary classes such as sitting, standing, or lying, they also

include dynamic exercises such as ascending and descending

stairs, and exercising on a stepper or a cross trainer. However

this dataset is only restricted to on-body wearable devices,

where each wearable has a gyroscope, an accelerometer and

a magnetometer.

The PAMAP2 dataset [155] aims at physical activities

such aswalking, cycling, playing soccer, etc. It composes of 9

subjects performing 18 activities with 3 inertial measurement

units and a heart rate monitor. Compared to DSDAS, this

dataset fused another sensor category by integrating the heart

rate monitor to provide additional information. As stated in

[145], fusion of several sensor modalities can provide richer

context to improve the performance of recognition on more

complex human actions.

B. DATASETS USING MULTIPLE SENSOR CATEGORIES

Previous cited databases are either ubiquitous or wearable.

However they only used one single sensing category and

thus the provided context was limited. Thus, other databases

also use a composite of object sensors and ambient sensors

to further incorporate more sensing modalities. The MIT

PLIA dataset [157] are collected in a real experimental envi-

ronment of 1000 sq.ft. apartment. PlaceLab is a new live-

in laboratory for studying ubiquitous technologies in home

settings. Approximately 214 sensors such as state sensors,

accelerometer, camera, ambient sensors and object sensors

were installed in the laboratory environment. During a 4-hour

period, 89 activities are manually labeled from the collected

sensor data.

TheCMU-MMAC dataset [163] is another database lever-

aging multi-modal sensor data input for detecting tasks

involving cooking and food preparing. Modalities collected

are video, audio, motion capture, IMUs and two wearable

devices. The dataset consists of five subjects cooking five

recipes, in average 15minutes/recipe. In this database, people

and objects are visually instrumented and thus making the

videos less realistic. The limited number of only 5 dishes

with very similar ingredients and tools lead to restricted data

variances.

TheMPII Cooking Activities Dataset [164] tried to close

this gap of limited and constrained variations by providing a

large database withmore realistic, fine-grained activities. The

database contains 65 different cooking activities performed

by 12 participants. Instead of recording individual activity,

the participants were asked to perform actions in sequence

and recorded by video to reflect a more realistic behavior.

TheTUMKitchen dataset [139] aims to provide a compre-

hensive collection of sensory input data, to serve researchers

in the field of marker-less human motion capture, segmen-

tation and activity recognition. It collects of video data with

four fixed overhead cameras, RFID tag readings andmagnetic

sensors detecting when a door or drawer is opened. All four

subjects perform the same high level activity of setting a table.

The dataset was constructed such, that it tackled challenges

which is not covered in other available datasets. Those chal-

lenges are such as inter-class variability, change of human

silhouette while interacting with objects, human performing

several actions in parallel, occlusion by furniture, and subtle

actions.

TheAmsterdam dataset [156] records the in house activity

data of a 26 year old man, living alone in a three-room

apartment monitored by 14 state change sensors placed in

different locations, such as on doors, cupboards, refrigerators,

and a toilet flush sensor. Authors stated that the upgrade

ability of their system is advantageous compared to other

datasets [157] where sensors should be installed during the

contraction time for intended locations especially build for

research purposes. They claimed that if people are living

in an unfamiliar environment, the action collected are not

representative. Their solution is to leverage sensor network

consists of wireless network nodes to which simple off-the-

shelf sensors can be integrated. In such a way, they can easily

upgrade the user’s living environment with wireless sensor

networks. However, the dataset of only one person is limiting

the results of its general validity.

TheOpportunity database [153] is often used as a baseline

dataset for HAR collected fromwearable, object, and ambient

sensors. It consists of 4 users performing activities of daily

living in an indoor environment. They deployed a wide range

of 72 sensors of 10 different modalities in 15 wireless and

wired networked sensor systems. The authors claimed that

most existing datasets [156], [157] are not sufficient enough

to investigate opportunistic activity recognition, where a large

amount of sensors is required not only in the environment, but

also on the body and in objects.

C. VISION-BASED DATASET

Image based databases for HAR tasks are not rare. Datasets

with constrained whole-body interactions, or the target on

outdoor sport activities are provided in [160], [161], [165].

The KTH database [160] currently contains 2391 sequences

and is collected under four different scenarios with 25 per-

son performing six different activities, including walking,

jogging, running, boxing, hand waving, and hand clap-

ping. This dataset only includes simple, isolated actions
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TABLE 7. Popular time series databases for activity recognition tasks.

in staged data. No complex actions or multiple person

case are targeted in this dataset. The data acquisition

process is performed under constrained scenarios. The

task of simple action recognition can be considered as

‘‘solved’’, since most techniques already report nearly perfect

results [166], [167].
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Compared to theKTH database, theURADL dataset [162]

contains high resolution video sequences of complex actions.

It includes 10 different activities such as answer phone, chop

banana, drink water, eat snack, look up in phone book, etc.,

and are collected with high-resolution videos installed over-

head. Even some classes are very similar, thus introducing

more inter-class similarity, the scenes per video are con-

strained and each containing only one specific task.

Fully unconstrained datasets in the wild are collected in

[90], [91]. The Sports-1M is a database [90] collected from

the web, containing 1,133,158 video URLs, which has been

automatically annotated with 487 labels. Also, the UCF101

dataset [91] consists of 101 action classes, over 13k clips and

27 hours of video data. This dataset contains user uploaded

activities with unconstrained data collection process, contain-

ing camera motion and cluttered background. The uncon-

strained setting poses a challenging task for precise action

recognition with computer vision methods.

Research in vision-based action recognition has made a lot

of progress with the advances in deep learning and computer

vision methods. Researchers moved on from recognizing

simple, constrained actions to more complex actions or inter-

actions with multiple person under unconstrained environ-

ments. Therefore, such databases containing unconstrained

conditions and multiple complex scenarios, are considered to

be more useful in this regard.

D. DISCUSSION

Datasets with only single sensor category provide limited

context and thus making it difficult to tackle more complex

human actions. Therefore, databases composited of multiple

sensor modalities or even the same sensing modality on mul-

tiple locations help to solve more naturalistic and complex

human actions. Common hybrid databases use composition

of sensor modalities with low level information, such as state

sensors, acceleration sensors, temperature sensors, and RFID

tags. Image-based or video-based databases can provide rich

context, however, often suffer from the problem of occlusion

and privacy issues. If taken in private sectors, users may feel

observed and thus do not act naturally or not representative

of their usual behaviours.

Capacitive sensors or radar sensors can provide com-

plex high-level information without violate the privacy.

However, most of radar application did not make their

databases public. Ideally, a composition of these high-level

information reasoned from capacitive, radar or WiFi sen-

sors can be fused with low-level binary sensors instead

of using vision-based systems, especially given the pri-

vacy concerns connected to vision-based sensors. The abil-

ity of these sensor to observe activities even through walls,

makes them strong against occlusion and the line-of-sight

problem. High frequency radar devices could resolve fine-

grained action within sub-centimeter range and thus making

the recognition of fine-grained and more complex actions

possible.

IV. EVALUATION METRICS

HAR can be treated as a pattern recognition problem, with the

patterns related to specific actions. A list of the commonly

used classifiers in the literature separated according to its

categories can be found in Table 8. The most used classifiers

and action detection methods in HAR can be divided in three

large categories,

• Generative models: A generative model is a probability

based method to learn the statistical distribution of the

underlying data distribution. Generative model is able to

create new samples based on the learnt statistics of the

data distribution.

• Deterministic models: Deterministic models are static

classifiers trying to learn the hidden feature represen-

tations from the labeled training data. Discriminative

model is intended to determine the membership of each

sample to a certain class.

• Others: Other methods include non-parametric methods.

Non parametric methodsmake no assumption of statistic

distribution from the given data. They try to draw con-

clusions about the data from data with similar patterns.

Novel methods like the compressed sensing based HAR

classification methods are currently drawing more and more

attentions. These methods work with sparse representation

and benefit from correlations in data to increase the pro-

cessing speed and enable designers to place applications on

devices with limited computing power. Examples of that

are the works [168] and [169] where the authors explored

compressed sensing based HAR classification methods and

achieved satisfactory results.

Evaluation metrics are needed to compare different

approaches and performances of action recognition systems.

Though, the most metrics are defined for binary classifica-

tion problem, they can be easily extended to fit multiclass

classification problem. In this case, the multiclass problem

can be divided into several binary classification problems.

In Table 9, the most used evaluation metrics are given.

As reported by Ward et al. [180], a valid methodology for

performance evaluation should fulfil two main criteria:

1) The metric should be objective and unambiguous. The

outcome should not dependent on random assump-

tion or parameters.

2) It should provide a quantitative measure to give a hint

to the strengths and weakness of the system or method.

V. DISCUSSION

Physical sensors are limited by its hardware and software

characteristics. In the following, we discuss the hardware

features related to the introduced sensor categories. We then

identify some general challenges while performing software

processing for these sensor categories.

A. SENSOR HARDWARE CHARACTERISTICS

Each sensor technology has its own advantages and disadvan-

tages, limiting its use in various specific target applications.
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TABLE 8. Some of the most popular algorithms used for action recognition and classifiers in HAR along with examples of the works that utilized them.

TABLE 9. Some evaluation metrics commonly used in HAR along with examples of the works that utilized them.

To select the appropriate sensor category or a combination of

sensor categories for a specific task is a design choice based

on various aspects. To better compare sensor categories to

each other, standardized sensor specifications can be taken

into considerations. In Table 10, we introduce some feature

matrix denoting capabilities required for a certain rating.

We grade the features into five categories, ranging from (−−,

−, o, +, to ++). The scoring is based on the research papers

collected in this manuscript and sensor specifications found

from sensor data sheets. Some features depend on the use-

cases and the form factor of sensor categories. Power effi-

ciency for instance, is thus strongly dependent on the under-

lying system setup and not solely on the sensor technology.

Similarly, the sensitivity is also a feature strongly related to

how the sensor is applied in the specific system setup. Some

of the discussed features are not quantitatively evaluated in

previous works or are not measurable as a scalar. Therefore,

we introduce our ranking for these features as a relative mea-

sure based on the description of the user experience. These

features are, such as calibration complexity, weather depen-

dency, form stability, electric noise coupling and occlusion.

According to the assessment criteria presented in Table 10,

the different sensor categories are graded in Table 11.

Acoustic sensors can work both contact-based or contact

free according to the specific task requirements. Contact-free

sensors, such as microphones can classify human activities

by leveraging acoustic events, but may raise privacy issues

similar to a vision-based imaging system. Ultrasonic sensors

on the other hand work in close range up to 5m even in dark-

ness. Thus, it is invariant to illumination changes and weather

resistant. However, since these systems are active, the power

efficiency is worse than other electric field measurement sen-

sors, such as capacitance sensor or electric potential sensors.

Active capacitive sensing can work up to 15 cm in close

range, but it is more noise prone, as noisy detection in far

range can not be resolved by the sensing system. Passive

electric field measurement is purely passive and is sensitive

up to 2m in range. Electrostatic sensors work purely passively

and are thus more power efficient. As the sensor is extremely

sensitive to the ambient electric field, the system is prone

to electric appliances or ambient power lines. This requires

hardware filters in the electronics design phase to reduce the

power-lines coupling around 50Hz.

Mechanical sensors respond to direct touch and are thus not

susceptible towards power-lines and less susceptible towards

other ambient noise. Pressure signals are reproducible when
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TABLE 10. Feature matrix denoting capabilities required for a certain rating. List of Features are Resolution (res), Update Rate (upd), Detection
Range(det), Unobtrusiveness (unob), Processing Complexity(proc), Calibration Complexity (calco), Sensitivity (sens), Life span(ls), Weather Dependency
(wi), Form stability (fs), Electric noise coupling (enc), Occlusion (occ), Power Efficiency (pe).

TABLE 11. Benchmark sensor system with respect to feature matrix given in Table 10.

the same force is applied, unlike electrostatic sensors which

strongly depend on the varying ambient electric field. On the

other hand, mechanical sensors are more susceptible towards

form stability. Especially, pressure sensors integrated into

flexible textiles are prone to deformation. Deformation may

easily break the pressure sensor or lead to performance degra-

dation.

Vision-based systems are one of the most demanding

research areas for HAR.With techniques based on deep learn-

ing and large amount of online image resources, researchers

are able to build robust segmentation and action detection

algorithms. But the hardware limitation of the imaging sys-

tem in visible spectrum, such as incapability of illumination

resistance, occlusion, and change in object appearances over

time, makes vision-based system still a challenging topic.

Electromagnetic sensors are more resilient to environment

coupling than any other treated sensor categories. They are

robust against weather or climate changes operating at cer-

tain frequencies. They can cope with changing illumination

or even occlusion cases, because signals can even penetrate

through walls at certain operating frequencies. The hardware

is designed such that the life span is long and the form

stability is high. To reduce the power consumption of radar-

based devices, a modifiedWiFi access point can be leveraged

to perform similar dynamic activity recognition tasks. Com-

mon commercial radar sensors closely connect hardware and

software solutions together, such that an easy modification

TABLE 12. Research fields in human activity recognition with some
common applications.

of the software with respect to a custom specification is

not possible. WiFi devices, on the contrary, can be easily

modified to gain access to the channel state information. The

resolution accuracy of WiFi devices is lower in comparison

to high frequent radar applications, but with much reduced

power consumption.

Therefore, how to choose the appropriate sensor category is

strongly dependent on the design choice. According to range,

obtrusiveness, robustness, and resolution, multiple sensor cat-

egories can be leveraged. Complementary sensor categories

can be fused to provide richer context information to adapt to

more complex human actions.

B. SENSOR SOFTWARE CHARACTERISTICS

Regarding the software processing step, data-driven mod-

els extremely rely on the underlying data distribution. The
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TABLE 13. It illustrates the sensor categories used for each application in the domain of human activity recognition. We can easily identify missing
application domains with certain types of sensor categories and future research directions.

performance is thus directly related to the data availability

and data acquisition process. We identified some data-related

challenges and software design issues encountered in the

domain of HAR with sensor data. The following challenges

are mainly divided into

• computation time,

• data acquisition process,

• database availability,

• data distribution,

• data augmentation ability,

• the intra-class and inter-class variability.

These aspects are considered to be important while design-

ing a robust model to perform HAR with sensor data. In gen-

eral, the process of data acquisition and the labeling task for

HAR system are tedious and expensive. Extensive manual

labelling and expert knowledge are required. While image-

based data are easy to acquire from the web or public

databases, other non-visual data is less frequently available.

There are several officially available databases with the focus

on activity recognition for image or video data as introduced

in section III. Images can be easily augmented using simple

computer vision techniques, such as rotation, zooming, ran-

dom cropping or applying noise filters to increase the amount

of the training data. But it is not the case for time series.

Time series are special, because the sequential information

encoded in the time series can not be easily ignored. During

the research phase, we identified that most of the applica-

tions with non-visual sensors collected their own database

within a moderate test study and have not made it publicly

available. Therefore, either unsupervised machine learning

techniques should be applied to cope with the problem of

missing labels, or shared database as benchmarks especially

for time series data is desirable.

VI. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

HAR is the key to enable human-centered application

and natural interaction in a smart environment. To solve

this challenge, the ability to learn the knowledge about

human activity from raw sensor inputs is of vital impor-

tance. Therefore, we revised various research activities in

this area and defined a number of sensor categories to

perform this task. In Table 12, sensor-driven applications

with respect to the target domain in the area of HAR are

depicted.

According to the surveyed most prominent research works

in this manuscript, we summarize in Table 13 the different

sensor category used for certain applications in the domain

of HAR. Given an illustration like this, it is easy to identify

missing application domains and provide some ideas for

future research directions.

We further identify some challenges to be faced in this

research field of action recognition with the previously intro-

duced sensor categories. The main challenges can be catego-

rized as follows:

1) Real-time detection, instead of offline processing: This

requires smaller models, which can be applied on

embedded devices with less computation powers. The

capacity of the models should still be big enough to

catch the underlying data representation.

2) Online-learning: Most of the machine learning models

trained today are based on a fixed amount of training

data and thus do not generalize well on new data. The

ability to cope with new, unseen data, without the need

to train the model again is thus a new requirement on

the current model. Themodel should possess the ability

of progressive learning.

3) Transfer learning and cross domain adaptation: The

process of labeling HAR tasks is tedious and expensive.

Therefore, if we can transfer knowledge from existing

domain into a new domain with only less or mostly

unlabeled data, it will save a lot of time and human

resource of labeling.

4) Target the problem of inter-class and intra-class vari-

ability: Human motion is highly complex and pos-

sess a high degree of freedom. This can be expressed

with the term user-diversity. Therefore, to design a

robust model to cope with every possible situations,

researchers should first target the problem of reducing

the intra-class variability and increase the inter-class

variability.

With the recent advances in computer vision and deep

learning, we are convinced that the above mentioned chal-

lenges can be efficiently targeted and solved. Different sensor

categories provide its own advances and disadvantages. Dur-

ing the design phase, researchers should weigh their choices

according to the design goals required. Fusion of comple-

mentary sensor categories can sometimes also increase the

performance and provide additional information to overcome

their individual limitations.
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