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From tissue morphogenesis to homeostasis, cells continuously experience and respond
to physical, chemical, and biological cues commonly presented in gradients. In this article,
we focus our discussion on the importance of nano/micro topographic cues on cell
activity, and the role of anisotropic milieus play on cell behavior, mostly adhesion and
migration. We present the need to study physiological gradients in vitro. To do this, we
review different cell migration mechanisms and how adherent cells react to the presence
of complex tissue-like environments and cell-surface stimulation in 2D and 3D (e.g.,
ventral/dorsal anisotropy).

Keywords: surface topography, anisotropic materials, cell–biomaterial interface, cell–matrix anchorage, topo-
graphical cues

Introduction

When considering cell response to topographical cues, we initially think on classical contact
guidance to grooves. This was first reported in 1911, whenHarrison observed cells aligning to spider
silk (Harrison, 1911). In the 1950s, Weiss and Garber termed this phenomenon contact guidance
(Weiss and Garber, 1952). The field was popularized in the 1980s through a collaboration between
a cell biologist, Adam Curtis, and an electronic engineer interested in miniaturization, Curtis and
Wilkinson (1997), who observed that surface topography gradients can be sensed by adherent cells
at the microscale and later, the nanoscale.

In this article, we will focus on the design of novel anisotropic polymeric surfaces and how
different parameters influence cell fate. Then, we will review cell migration mechanisms in different
environments and the influence that bi-phasic (ventral/dorsal) gradients play on cell activity in
in vivo-like milieus.

Anisotropic Topography and Cellular Function

Anisotropic Biomaterials
The interplay between heterogeneity and anisotropy persists as the predominat strategy adapted by
nature to optimize the function of biological materials. The former relates to the spatial variation
(point to point) of the material properties, whereas the latter closely relates to the directional
dependence (Ranganathan et al., 2011). Material topography, and in particular micro and nanoscale
anisotropic structures, can affect cellular morphology as well as cellular behavior (Table 1) (Losert
et al., 2013; Cassidy et al., 2014; Londono et al., 2014; Azeem et al., 2015). It is thus necessary
to develop a fundamental understanding on the mechanistic processes induced by anisotropic
structures in cell biology, in order to gain further insights into the design of biological materials.
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TABLE 1 | Topographic characteristic of several of anisotropic polymer scaffolds and their influence on cellular differentiation.

Height/depth Width Pitch Cell type Differential function Reference

650 nm 500 nm 3.0 µm Upregulation of neuronal markers
β-Tubulin III and NeuN

Upregulation of neuronal markers β-Tubulin III Marino et al. (2013)

4.0 µm 2.0 µm 4.0 µm Primary murine neural progenitor
cells

Upregulation of neuronal marker TUJ1 Wang et al. (2012) and
Chua et al. (2014)

250 nm 250 nm 500 nm Human embryonic stem cell line, H1 Upregulation of neuronal markers MAP2 Ankam et al. (2015)

2.0 µm 2.0 µm 4.0 µm Murine neural progenitor cells Upregulation of neuronal markers TH, MAP2, and PITX3 Tan et al. (2015)

625 nm 1500 nm 3 µm Human neural stem cells Upregulation of neuronal Tuj1 and MAP2 and glial
markers GFAP, O4, and Olig2

Yang et al. (2014)

150 nm 250 nm 500 nm Human MSC Upregulation of fibro/superficial zone cartilage formation
markers PRG4 and COL1

Wu et al. (2014)

200 nm 415 nm 830 nm Human MSC No upregulation in the osteospecific marker ALP Janson et al. (2014)

A

B C D 

E F G 

FIGURE 1 | Traditional surfaces used to culture cells on 2D
without/with nano/micro topographic cues. (A) Flat surface, (B) contact
guidance lines, (C) grooves, (D) aligned fibers, (E) 2D confined environments,
(F) nano/micro pillars (G) nano/micro pits.

Novel techniques of nanofabrication and material processing,
such as lithographic (Diehl et al., 2005; Zhu et al., 2005; Dalby
et al., 2006; Smith et al., 2014) self-assembly (Tsai et al., 2014),
electrospinning (Gaharwar et al., 2014), and scratching techniques
(Peng et al., 2010; Wang et al., 2013a), offer the ability to create
anisotropic substrateswith feature widths and depths ranging from
themacroscale to the microscale down to features sizes as small as
5 nm, facilitating the aquisition of information to help understand
this field (Peng et al., 2010; Wang et al., 2013a) (Figure 1). These
techniques are particularly suited for the generation of anisotropic
micro-nanofeatures in polymeric formulations and in particu-
lar in thermoplastics. However, with specific reference to load-
bearing biomaterials, the topographical modification of metals
and their alloys has received much attention recently and several
novel techniques including electrical anodization (Xie et al., 2011),
acid etching (Att et al., 2009), and femtosecond laser processing
(Tavangar et al., 2013) have recently been described.

Both micro (Itala et al., 2003; Germanier et al., 2006; Herrero-
Climent et al., 2013) and nanoscale (Biggs et al., 2008; Cassidy
et al., 2014; Azeem et al., 2015) groove/ridge topographies are well
documented as powerful modulators of contact guidance, being
relevant in tissue engineering and biomaterials manufacture. A
principal design tenet of anisotropic grating substrates is that
of biomimetic extracellular matrix (ECM) design, attempting to

mimic the topographical structures imparted by several fibrous
components of the ECM. Collagen, being the most abundant pro-
tein in the body, encompasses individual fibril elements (e.g., with
dimensions of 20–30 nm) to fibril bundles (e.g., from 15–400 µm
in diameter). Key to this is that nanogroove surfaces may promote
cellular polarization as well as promote aligned self-assembly of
ECM components with motifs critical in cell adhesion such as
fibronectin and vitronectin. Indeed, the elongated cellular mor-
phology and alignment induced by grooved substratesmay resem-
ble the natural state of tissue resident cell populations in vivo,
and studies indicate that most, if not all, cells, notably fibroblasts
(Dalby et al., 2003; Garland et al., 2014), osteoblasts (Lenhert et al.,
2005; Wu and Wang, 2013), neurons (Yim et al., 2007; Tonazzini
et al., 2014), andMSCs (Dalby et al., 2006; McMurray et al., 2013),
undergo significant morphological and functional responses to
anisotropic topographies.

The extent to which groove geometry and order can influence
cell function is an often overlooked consideration in designing
next generation biomaterials. Studies by Tonazzini et al. (2013)
show that the loss of neurite guidance is not linear with noise on
microgrooved topographies, but is a threshold effect, correlating
with changes in focal adhesion (FA) maturation and spatial orga-
nization. Here, the authors found that nanogratings with a con-
trolled amount of random nanotopographical noise – or defects –
influenced neurite contact guidance at a threshold noise level of
aproximately 40 to 50%. Interestingly, a further study by Gamboa
and colleagues have identified that the groove orientation does
not have to be linear; rather, cell can gain spatial information
from anisotropic features. Indeed, cells can cross over individual
grooves when they arranged in a waveform pattern, residing both
inside and outside of each wave pattern, yet aligning linearly along
the long axis of the pattern (Gamboa et al., 2013).

Anisotropic Topography on Cell Adhesion
Critically, nanogroove features seem to directly influence the
formation and orientation of FA in vitro (Teixeira et al., 2004),
probably due to the guiding of ECM proteins. A nice example has
been described in the case of fibronectin, a protein which has been
shown to selectively adsorb onto the ridge/groove boundaries (De
Luca et al., 2015). At present, no clear conclusions have been
reached regarding the absolute dimensions required for cellular
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and FA alignment; rather, this process is cell-specific and den-
sity dependent (Clark et al., 1990). It is probable, however, that
an interplay between groove width and depth regulates cellular
alignment, and a recent study by Crouch et al. (2009) indicated
that a grating aspect ratio (depth to width) of 0.16 was required
for 95% cellular alignment. Additionally, anisotropic topographies
can induce alignment of sub-cellular structures including filopo-
dia (Fujita et al., 2009), nuclei (McKee et al., 2011), and neurite
extensions (Tonazzini et al., 2013).

Recent studies indicate that FAalignment is generallymore pro-
nounced on patterns with ridge widths between 1 and 5 µm than
on grooves and ridged topographies with larger lateral dimensions
(Biggs et al., 2008; Yang et al., 2010). Moreover, cells cultured on
grooves with nanoscale widths produce FA that are non-polarized
(Kim et al., 2013) or almost exclusively oriented obliquely to the
topographic patterns (Teixeira et al., 2006). This occurs predom-
inantly on topographical ridges as opposed to grooves, effectively
limiting the length of FA formed perpendicular to the groove
orientation. Thus, it arises that grooved nanoscale topographies
can influence both the adhesion direction as well as adhesion
reinforcement (Biggs et al., 2010).

Anisotropic Topography and Cellular Function
The mechanisms by which anisotropic topography and ordered
protein deposition influence cellular proliferation and differenti-
ation require more research. Anisotropic arrays of topographical
micro and nanoscale gratings have been shown to be potent tools
in maintaining the phenotype of primary cells (Zhu et al., 2010)
and in differentiating stem cells toward expressing osteogenic
(Dalby et al., 2007; Biggs et al., 2009a; Watari et al., 2012),
tenogenic (Wojciak et al., 1995), neurogenic (Jeon et al., 2014),
adipogenic (Wang et al., 2012), andmyogenic (Wang et al., 2013b)
transcripts and proteins. The processes that mediate the cellular
reaction to anisotropic surface structures, however, are not well
understood and may be direct (Cassidy et al., 2014) or indirect
(where the surface structure has affected the composition, orienta-
tion, or conformation of the adsorbed ECM components)(Perez-
Garnes et al., 2011; Ballester-Beltran et al., 2012a).

Multiple studies with mesenchymal stem cell populations point
toward the negative effects of micronscale grooves and pro-
nounced cell polarization on osteospecific differentiation (Biggs
et al., 2008; Watari et al., 2012), a process appearing to be more
influenced by sub 500 nm topographies. Conversely, more adi-
pospecific (Wang et al., 2012) and myogenic (Wang et al., 2013b)
differentiation is demonstrated to be enhanced by polarization
through micronscale grooved topographies. Periodicity has also
been shown to be important in modulating differential func-
tion in pluripotent cells. In particular, if mesenchymal stem cells
are cultured on grooves with a short feature pitch and become
highly aligned, this reduces osteogenesis. However, if the pitch is
increased so the grooves aremore step cues (around 50 µmpitch),
then osteogenesis is achieved with great efficiency (Biggs et al.,
2009b).

The mechanism by which anisotropic grating surfaces influ-
ence cell function, however, is still being resolved; multiple
studies suggest that cells cultured on topographical gratings
modulate transcriptional events through adhesion-dependent

phosphorylation of downstream signaling molecules (e.g., medi-
ated FA kinases, FAK) (Figure 2A). FA pathway signaling has
been shown to control essential cellular processes such as growth,
survival, migration, and differentiation. Interestingly, extensive
evidence has also been generated on the involvement of extra-
cellular signal-related kinase (ERK) 1/2 down-regulation follow-
ing integrin-mediated FAK activation, in response to grooved
substrates (Biggs et al., 2009b; Cassidy et al., 2014).

A Case of Study: Anisotropic Surfaces and Immune
Activation
Besides analyzing the influence of anisotropic features in adherent
cells, it seems that these surfaces can also induce a significant
response in several non-adherent cell types (Kwon et al., 2012)
(e.g., cells belonging to the immune system).

Several studies have reported on the effects of nanotopograph-
ical structures on immune cell motility (Song et al., 2012) and
actin rich structures (e.g., lamella and filopodia) are reported to
play a significant role in this process (Song et al., 2014). Emerging
data suggest that the proteins involved in adhesive processes in
cells of the immune system are analogous to those found in
FA in adherent cells (Hocde et al., 2009), and that leukocyte
binding to ECM components and adsorbed complement proteins
can induce FAK-mediated immune cell activation (Bhattacharyya
et al., 1999), phagocytosis (Kasorn et al., 2009), and chemokine-
mediated migration (Cohen-Hillel et al., 2009). Similarly, Bart-
neck and colleagues reported that a microstructured topogra-
phy of regular grooves induced a pro-inflammatory phenotype
in macrophages, which was not accompanied by release of pro-
inflammatory mediators (Bartneck et al., 2010).

Although the immune response is tightly regulated by the com-
plex interplay of events and interactions between its constituent
cells, preliminary studies suggest that anisotropic topographies
may be employed to induce cell activation and as in adherent cell
types, this may be through FAK-mediated activation of critical
signaling pathways.

Perspectives on Cell–Material Interactions
The interactions between cellular populations and engineered
substrates are bidirectional; e.g., a mechanical cellular mediated
deformation of the scaffold modulates the physical environmen-
tal properties. Consequently, in order to better understand the
dynamic nature of topographical mediated direction of cellular
function stimuli, responsive or “smart” materials are increasingly
being employed in cell studies. New reports demonstrate that
mechanically active anisotropic topographies can yield critical
insight into the role of groove dimension on cellular function
through dynamic modulation of the feature dimensions.

Shape memory polymers have recently been employed for this
purpose and can be designed with a physiological transition
temperature to provide an alternate morphology or topography
when subjected to physiological temperatures (e.g., between 32
and 37°C), providing dynamic mechanical cues or anti-adhesive
surfaces (Ebara et al., 2014). A study by Gong et al. investigated
microgroove surface patterns formed on a cross-linked poly(ε-
caprolactone) substrate. Here, a dynamic response to cyclic tem-
perature (e.g., between 32 and 41°C) resulted in the modulation
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FIGURE 2 | Schematization of the types of migration fashions described
in this review. (A) Cell migration mediated by the protrusion of lamellipodia
(mesenchymal migration). The circle shows a detailed structure of a focal

adhesion and adhesome. (B) Cell migration mediated by generation of blebs
(amoeboid migration) and (C) cell migration mediated by flux of ions and water
(osmotic engine model).

of the microgroove dimensions, influencing cell shape and the
cytoskeletal arrangement of adherent bone marrow stem cells,
which upregulated myospecific genes and proteins (Gong et al.,
2014).

Although a large number of studies have reported the effects
of nanotopographical structures on modulations to cell function
in vitro (Dalby et al., 2007; Biggs et al., 2009b), a limited number
of studies in vivo have been conducted (Fernandez-Yague et al.,
2014), particularly in osteointegration and de novo bone forma-
tion (Xia et al., 2012b; Svensson et al., 2013). A recent study by
Yin et al. demonstrated the significant effects of anisotropy in
a rat Achilles tendon repair model. Here, anisotropic scaffolds
and enhanced alignment resulted in tendon regeneration, while
randomly ordered isotropic scaffolds induced ectopic bone forma-
tion. Interestingly, the influence of anisotropic micro and nanoto-
pography on osteospecific function seems to be most effectively
translated to an in vivo response when applied in combination
with microscale grating features, indicating a possible synergy
between the cellular (micro) and subcellular (nano) in directing
regeneration (Kim et al., 2014a).

Considering these indications, it appears logical to expect sig-
nificant efforts to translate findings from model (e.g., polymer)
surfaces into orthopedic materials such as ceramics and metals.
However, these materials are hard to manufacture due to the
hardness of the materials and the brittle nature of ceramics. Also,
while structural orthopedic ceramics, such alumina/zirconia, tend
to be highly bio-inert, metals such as titanium and its alloys are
highly adhesive to cells due to their reactive oxide layers and
both these low and high adhesion environments can mask topo-
graphical effects. However, recent advancements in pre-sintering
embossing of green ceramics have illustrated that groove patterns
in alumina with different widths can be used to influence fibrous
tissue (narrow width, 20 µm pitch) and hard tissue (150 µm pitch

with 100 µm groove/50 µm ridge) growth from human osteopro-
genitor cells (Nadeem et al., 2013), similarly to results observed on
polymers (Biggs et al., 2008).

Formetals, there is plenty of literature showing potential effects
onmore random topographies from etching, blasting, and anodiz-
ing (Anselme et al., 2000; McNamara et al., 2011; Sjöström et al.,
2012, 2013; Olivares-Navarrete et al., 2015) due to the need for
fast fabrication protocols. However, Anselme et al. have indicated
potential positive effects for grooves in metals (Anselme et al.,
2004).We further note that other cell types have been shown to be
responsive to topographies in metals – again though, roughened
rather than grooved (Lee et al., 2014; Kim et al., 2015).

As we can observe, anisotropic surfaces can stimulate in vitro
and in vivo cell activity. However, it is still unclear how cell
adhesion can be affected by topographic cues. In the next section
of this review, we will consider the best understood mechanisms
for cell adhesion and migration, focusing further discussions on
the influence of ventral and dorsal stimulation on adherent cells.

Cell Motility

During the last years, it has been demonstrated that cell anchorage
and motility play important roles in a wide spectrum of biological
processes, such as mechano and chemotaxis (Andreas et al., 2014;
Charras and Sahai, 2014), as well as wound healing and tissue
repair (Gattazzo et al., 2014). Furthermore, similar to tissue repair,
several diseases (e.g., cancer) have evolved to use adhesion and
migration as part of their pathogenic strategy (Farahani et al.,
2014), making research on cell migration an extremely relevant
field and showing the necessity to study this process in detail.

Since anisotropic surfaces play a potent role on cell migration,
in the next section we will briefly describe different mechanisms
used by migrating cells to displace into complex environments,
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putting into context topographic cues detected on 2D surfaces or
3D milieus.

Cell Migration on 2D: Following the Front
Cell Migration Mediated by the Protrusion of
Lamellipodia
One of the most researched migration mechanisms on flat
surfaces, at the single-cell scale, corresponds to mesenchymal
migration.

Mesenchymal migration is recognized by the presence, adhe-
sion, and protrusion of lamellipodium. From the molecular point
of view, this type ofmigration requires cell-matrix adhesion struc-
tures (e.g., protein clusters) named adhesomes, which are com-
posed by intra-, trans-, and extra- cellular proteins (Figure 2A).

The most important mediator between cells and their milieu
are heterodimer transmembrane proteins known as integrins.
Integrins comprises α- and β- chains. β-subunits interconnect
ECM proteins (e.g., collagen, fibronectin, elastin, etc.) with the
cytoskeleton (e.g., actin stress fibers), allowing the sensing of
elastic and topographical properties of the milieus where they
are anchored through the exertion of traction forces (Figure 2A).
Cell-matrix adhesion and mechanosensing are mediated by non-
receptor tyrosine kinases, the most notable of which is FAK, a
molecule constitutively associated with the β-integrin subunit.
FAK is localized at adhesion structures. It promotes talin recruit-
ment tomodulate adhesion reinforcement, and further unraveling
of these stimuli by intracellular kinases (e.g., FAK) bound to
transmembrane integrins and linking proteins (e.g., vinculin and
paxillin) (Ridley et al., 2003; Vicente-Manzanares and Horwitz,
2011; Leal-Egaña et al., 2013).

Adhesion Structures and Cell Polarization
Mesenchymalmigration is a cyclic process defined by cell polariza-
tion (Ridley et al., 2003). The first step consists in the protrusion
of the membrane in the direction of migration. Two different
types of protrusion have been identified: lamellipodia (large and
broad) and filopodia (spike-like). In both cases, they are driven
by actin polymerization and stabilized by their adherence to ECM
proteins.

Differences in function have been observed between these pro-
trusions: while filopodia are constituted by parallel actin fibers
and are well designed to serve as “sensors” and explore the envi-
ronment, lamellipodia are constituted by branched actin capable
of supporting traction forces involved in cell displacement.

After generation of mature adhesions at the lamellipodia in the
cell edge, traction forces generated by the actomyosin network
pull the cell body in the direction of the lamellipodia, producing
the unidirectional displacement of the cell. During this process,
the Arp 2/3 complex plays a preponderant role, inducing actin
polymerization at the lamellipodia and generating dendritic actin
networks (branches) with pre-existing filaments at the cell front.
This polarization defines the final direction of the migration.
Simultaneously, during the translocation of the cell body, the Arp
2/3 complex is inhibited at the trailing edge of the cells, inducing
detachment of adhesomes and release of the rear part of the
cells from the substrate (Vicente-Manzanares and Horwitz, 2011;
Hanein and Horwitz, 2012).

Adhesomes attachment/detachment and cell polarization are
regulated by two families of GTPases with antagonistic activity
and localization in the cell: Rho and Rac. While Rho proteins
activate actin polymerization, promote cell adhesion, and generate
a leading edge due to their interaction with the Arp 2/3 complex;
Rac GTPases produce the disassembly of the actin fibers and the
detaching of integrins from ECM proteins, as observed at the
trailing edge (Vicente-Manzanares and Horwitz, 2011; Petrie and
Yamada, 2012).

Finally, it is important to indicate that, even though it seems that
the biological machinery involved in cell migration could also be
related to the sense of topographic cues, there is not clear informa-
tion about the mechanisms by which cells can sense differences in
structure and geometrical organization of 2Dmilieus during their
displacement.

Cell Motility Within Complex 3D Milieus
During recent years, several biophysicalmechanisms used for cells
during migration have been studied, which are described in the
next section of this review. These migration mechanisms, mostly
observed in migrating cells within complex environments (e.g.,
micro-channels, filamentous 3D milieus), can give us clues about
the way cells could interact with topographic cues found in 3D
milieu.

Cell Migration Mediated by the Protrusion of
Lobopodia
When cells migrate within 3D elastic environments, a special
type of protrusion, named lobopodia, can be observed. Lobopodia
are mostly represented as non-sharp cylindrical protrusions that
might be driven by intracellular pressure rather than actin poly-
merization (Petrie and Yamada, 2012). Moreover, and although it
has been shown that lobopodia contraction is mediated by RhoA-
ROCK-myosin II signaling, this type ofmigration still remains less
understood and poorly characterized (Petrie et al., 2014).

With respect to lobopodia, there is little information about
structure and composition, although it has been proposed that
the myosin IIa acts through vimentin filaments (polarized to the
anterior of lobopodial cells and anchored to the nucleus, likely by
nesprin-3) easing cell migration (DeSimone and Horwitz, 2014).
Particularly, Petrie et al. (2014) suggests that the nucleus physically
divides the cell in two compartments, maintaining differences in
hydrostatic pressure between the leading and the rear parts of
the cell.

Cell Migration Mediated by Generation of Blebs
Displacement through plasma membrane blebbing is one of the
simplest biological mechanisms used by migrating cells (Charras
and Paluch, 2008; Fackler and Grosse, 2008). Traditionally named
amoeboidmigration, this process is characterized by the formation
of spherical membrane protrusions (e.g., blebs) (Figure 2B), pro-
duced by contraction of the actomyosin cortex. This phenomena
is dependant on cortical tension and the integrity of actin cortex
(Charras and Paluch, 2008).

From the molecular point of view, amoeboid migration is
dependent on the activity of Rho GTPase and actomyosin con-
tractility. However, it is noteworthy to remark that, differently to
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mesenchymal migration, the blebbing mechanism generates low
traction forces since the Arp 2/3 complex is not required (Bergert
et al., 2012). As bleb motility requires less energy than mesenchy-
mal cell translocation, this mechanism has been mostly studied
on metastatic cells, due to their capacity to escape from anti-
tumor treatments based on protease inhibitors, or during their
speedy migration onto low adherent surfaces and/or confined
environments.

It is important to indicate that, although several cancers exhibit
only one migration style, several cancer lines can easily switch
from mesenchymal to amoeboid displacement when they are
embedded within three-dimensional (3D)matrices (Bergert et al.,
2012; Paluch and Raz, 2013). Moreover, Bergert and colleagues
demonstrated that when the Arp 2/3 complex is inhibited (e.g.,
by using the compound CK-666 in Walker cells cultured on 2D
surfaces), lamellipodia are replaced by bleb formation, probably by
controlling the actin cortex and/or cortical tension (Bergert et al.,
2012).

However, it is important to indicate that even though current
research has demonstrated the use of blebs as a mechanism for
cell migration, there is a lack of information concerning the
mechanisms involved in translocation and forces implied in cell
movement (Charras and Paluch, 2008; Paluch and Raz, 2013).
Then, and although it is still unclear, the mechanisms by which
cells translocate themselves using blebs appear related to period-
icity in the formation of protrusions and the regular generation of
small pseudopodia on the leading edge allowing the translocation
of the cytosol and intracellular organelles through them (Charras
and Paluch, 2008; Paluch and Raz, 2013).

It is important to indicate that, although migration mediated
by blebs have been mostly studied on scaffolds exhibiting topo-
graphic cues (e.g., micro channels, fibrous matrices), there is no
information regarding the influence that these topographic cues
play on cell migration. However, and as was previously noted, first
attempts to solve this question have been focused on immune-cells
exhibiting an amoeboid migration fashion.

Cell Migration Mediated by Flux of Ions and Water
Recently, Stroka and colleagues demonstrated in vitro that
neoplastic cells migrating in confined 3D matrices use an
actin/myosin-independent mechanism based on the permeation
of ions and water through trans-membrane channels (Figure 2C).
This new translocation strategy, named the osmotic engine model
(Papadopoulos and Saadoun, 2014; Stroka et al., 2014a), can
explain cell displacement within 3D environments (e.g., 3 µm-
wide channels) in the presence of myosin, Rho/Rock kinase,
and/or β1 integrin inhibitors (Balzer et al., 2012; Stroka et al.,
2014b).

Although this process is currently under study, mathematical
and biochemical analysis have revealed that this type of migra-
tion requires the coordinated activity of polarized ion channels
and aquaporins, which modulate fluxes of ions and water from
the leading (flux in) to the trailing edge (flux out), where the
sodium hydrogen exchanger-1 (NHE-1) and aquaporin 5 (AQP5)
–recruited by cortical actin polymerization – seem to play a pre-
ponderant role on cell motility and regulation of intracellular pH
(Stroka et al., 2014a,b).

Role of the Nucleus on Cell Migration Within 3D
Milieus
The nucleus is the largest and stiffest organelle in cells. Since
cell migration within 3D matrices is restricted by the pore cut-
off/size distribution, cells need to squeeze the nucleus through via
myosin-II mediated contraction (Friedl et al., 2011).

During the lobopodia-based migration, via the actomyosin
contractility, the nucleus acts as a piston pressurizing the leading
compartment. This results in bleb formation, lobopodia forma-
tion, and protrusion, and finally cell migration. Recently, Petri
and colleagues compared the intracellular hydrostatic pressure in
front of the nucleus, for cells cultured on/in 2D and 3D environ-
ments, finding differences of approximately 10-fold between these
two systems (from approximately 300 to 700 Pa in lamellipodia
compared to approximately 2200 Pa in lobopodia). According to
the authors, when cells are confined within defined 3D micro
channels (approximately 20 µm diameter), the nucleus compart-
mentalize the intracellular volume, this then acts as a piston,
which enhances the hydrostatic pressures at the frontal edge of the
cell with respect to the rear edge (approximately 2400 vs. 900 Pa).
This results in bleb formation, lobopodia formation, and pro-
trusion, and finally cell migration. Molecularly, the actomyosin-
vimentin-nesprin-3 complex (e.g., intermediate filaments) seems
to be responsible for pulling the nuclei to the front of the cell, and
its influence on the cell displacement within 3D channels (Petrie
et al., 2014).

Cell Migration on Nano/Micro Topographic Designed
Environments
It is known that cells can switch spontaneously between different
migration mechanisms after remodeling cytoskeleton arrange-
ment depending on their environment. Thus, in vitro and in vivo
gradients may lead to changes in cell migration among other
important cellular processes. In almost all cases, the migration
fashion will be dependent on the balance between actin poly-
merization, rear contractility, and adhesion. First attempts to
explain this behavior have been done in 3D micro-channels after
analysis of actin organization at the leading edge. According to
the authors, there are two different F-actin networks involved in
cell sensing and migration: one polymerizing at the cell-matrix
interface (Wilson et al., 2013) and a “free” fragment growing on
the leading edge. Both structures can communicate and interact
mechanically (Wilson et al., 2013), suggesting that cytoskeleton,
compartmentalization, and hydrostatic pressures produced by the
nucleus as well as sensing of topographic characteristics of the
cell milieu by migrating cells are intimately related. However, as
was previously discussed, the biological mechanism bywhich cells
recognize topographic cues, and their influence on cell migration,
is still far away for being explained.

Physiological Gradients and Bi-Phasic
Biophysical Stimulation

Traditionally, cell culture has been performed on 2D substrates
where cells sense and respond to ventral stimulation (e.g.,
topographical cues). However, standard flat surfaces differ from
in vivomilieus, where cells are subjected to complex 3D gradients,
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FIGURE 3 | Cell culture systems developed to mimic the physiological environment in vitro. (A) Air-liquid interface culture and (B) cell culture under fluid flow
conditions. (C) Cell-sheet engineering, (D) sandwich culture, and (E) localized dorsal stimulation using an AFM cantilever.

such as differential ventral/dorsal exposure to liquid-gas phases
(e.g., lungs), shear stress produced by fluid flow (e.g., endothelial
tissues), or surrounded by an ECM (e.g., parenchymal tissues)
(Figure 3).

These complex environmental stimuli have been reconstituted
in vitro, with the purpose to study cell behavior in physiological-
like conditions. Here, we will focus on the simultaneous ven-
tral/dorsal stimulation of cells, seeking to recapitulate the phys-
iological cell behavior.

Fluid Dynamic Stimulation
This type of stimulation can be divided in two groups, according
to the physical sub-phase involved in cellular stimulation:

Liquid-Gas Phase Stimulation
The epithelium is a polarized tissue where cells are ventrally
anchored to the ECM and dorsally contacting a gas phase.
Thus, fully immersed epithelial cells cultures (e.g., traditional
culture strategy on 2D substrates) differ from the physiological

environment. Consequently, alternative methods allowing dorsal
contact to a gas phase have been developed (e.g., roller bottles,
rocking platforms, and inverted cultures) (Voisin et al., 1977).

Nowadays, the use of the air-liquid interface culture (ALI,
Figure 3A) has become a traditional system used to cultivate
epithelial cells because it resembles the physiological condition
(Voisin et al., 1977; Zamora et al., 1983, 1986; De Borja Calle-
jas et al., 2014) and thus makes possible to perform drug test-
ing, among other analysis, in physiologically relevant environ-
ments (Kooter et al., 2013; Kim et al., 2014b; Ashraf et al.,
2015).

Dynamic Fluid Flow Stimulation
Blood vessels are internally covered by endothelial cells, exposing
their ventral surfaces to parenquimal tissues (e.g., ECM), and
dorsally to the lumen of the vessels: being stimulated by forces
produced by fluid displacement (e.g., shear stress). Therefore, new
in vitro culture systems providing constant flow or even pulsatile
stress have been performed (Table 2; Figure 3B).
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TABLE 2 | Effect of fluid flow on different cell lineages.

Cell type Effect of fluid flow Reference

Endothelial cells Cell alignment Ishibazawa et al. (2011)
and Vozzi et al. (2014)Release of vaso-active substances (e.g., endothelin-1) and nitric oxide synthase

Vascular smooth muscle cells Decrease cell proliferation Papadaki et al. (1998) and
Lindner et al. (1991)Increase NO production

Increase of fibroblast growth factor (FGF)-2 production

Osteoblast cells Induction of NO and prostaglandin E2 production Smalt et al. (1997) and Jia
et al. (2014)Activation of growth factor signaling pathways

Alteration in the Wnt/β-catenin and bone formation signaling pathway

Stem cells Cell alignment Metallo et al. (2008),
Huang et al. (2005), Lim
et al. (2013), and Potter
et al. (2014)

Increase in the angiogenic and vasculogenic potential of endothelial cells derived
from human embryonic stem cells (hESC)
Positive modulation of the stem cell proliferation and differentiation

It is now well characterized that the excitation of the dorsal
receptors stimulates protein kinase C (PKC) and the mitogen-
activated protein (MAP) kinase pathways, resulting in gene tran-
scription modulation and control of e.g., endothelial growth
and vaso-active substances secretion such as endothelin-1 and
endothelial nitric oxide synthase-3 (Vozzi et al., 2014).

The influence of shear stress has also been studied on additional
cell lineages, such as vascular smooth muscle cells, since these can
be encounter in endothelium-desquamated injuries and are there-
fore involved in the response to vascular wounds. Furthermore,
the effect on osteocytes has been studied, since the fluid flow over
the osteocyte network has been suggested to be the main cellular
signal-generating factor (e.g., as a result of mechanical loading of
bone) (Piekarski and Munro, 1977; Cowin and Weinbaum, 1998;
Knothe Tate et al., 1998, 2000) (Table 2).

Solid Phase Stimulation
Cells embed within 3D milieus are subjected to physical (e.g.,
stiffness and pores), chemical (e.g., cytokines and growth factors),
and biological (e.g., cell-cell contact and cell-ECM adhesion) gra-
dients during tissue morphogenesis and homeostasis. Among the
strategies developed to recreate this environment, hydrogels rep-
resent a convenient andwell-studied systemdue to their structural
and compositional similarities to natural ECM and the advances
in material chemistry that allow tunable physical, chemical, and
functional properties (Sant et al., 2010; Pedron et al., 2015).

Here, we will focus on cell culture systems that trigger bi-phasic
adhesion signaling such as, sandwich culture, cell sheet engi-
neering, and dorsal stimulation [e.g., by atomic force microscopy
(AFM)] (Figures 3C–E, respectively) (Takahashi et al., 2013). In
these systems, even if cells are not completely embedded within
a 3D matrix, the stimulation of dorsal cell receptors triggers cell
adhesion and specific signaling pathways that determine cell fate
as a balance between ventral and dorsal stimulation.

Sandwich cultures involve confining cells within two sub-
strates – dorsally and ventrally – with the same or different prop-
erties. One of the best known examples are collagen constructs,
used preferentially in culture of hepatocytes since these cells
lose their metabolic functions when attached to 2D substrates.
However, the use of sandwich cultures made of ECM proteins
(e.g., collagen on the top and the bottom), allow hepatocytes to
maintain their polarization and metabolic activity (e.g., albumin,

urea, transferrin, fibrinogen, and bile salt secretion, as well as
cytochrome activity (P450 activity) restored (Swift et al., 2010 and
Dunn et al., 1992, respectively). Furthermore, this type of culture
allows hepatocytes to generate bile canalicular networks (Bi et al.,
2006). Thus, this system is a very straightforward tool to study
in vitro hepatocellular function, such as protein synthesis and/or
drug metabolism (Xia et al., 2009, 2012a).

Cell-sheet engineering techniques are based in stacking 2D cell
layers, including the underlying ECM, to generate a 3D tissue
that consists of alternate layers of cells and ECM. The technique
enables the study of more complex environments, mimicking
the multidimensional organization of some tissues and organs.
This system stresses the key role of dorsal stimulation for hep-
atocyte cultures and shows that the 3D coculture of hepatocyte
and endothelial cells results in a powerful tool to gain more
comprehensive knowledge of liver metabolism, detoxification,
and signaling pathways in vitro (Harimoto et al., 2002; Kim and
Rajagopalan, 2010).

We, among others, have been involved in the research of new
alternatives for sandwich cultures, such as the use of ventral and
dorsal surfaces with different properties/characteristics (e.g., stiff-
ness and/or topological patterns) (Ballester-Beltrán et al., 2015).
This system has shown cell morphology to be related to sub-
strate rigidity and the ability of cells to reorganize ECM proteins
adsorbed to these surfaces (Beningo et al., 2004; Ballester-Beltran
et al., 2012b; Ballester-Beltrán et al., 2014). Furthermore, it has
been shown that sandwich-like cultures can modify cell spread-
ing/elongation and migration rates depending on the substrates
properties, resulting in closer 3D environment behaviors (Beningo
et al., 2004; Ballester-Beltrán et al., 2015).

Cells cultured within these bi-phasic systems adhere to the ven-
tral and dorsal substrates, exerting tensional forces on each sur-
face (e.g., spatially tunable mechanotransduction). This was first
observed when osteosarcoma U2OS cells were ventrally attached
to 2D fibronectin-coated glass. In this configuration, cells were
dorsally stimulated by AFM using a fibronectin-coated cantilever
(Figure 3E). In response to this stimulus, cells adhered and spread
on the cantilever forming new fibrillar actin fibers connecting
both surfaces, which enabled the cells to contract and pull the can-
tilever (Chaudhuri et al., 2009). Hence, cell interaction mediated
by dorsal stimulation triggers changes in the cytoskeleton arrange-
ment and generates new adhesion structures. This might link
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ventral and dorsal sides, allowing a complex response to bi-phasic
stimuli, such as the fact that dorsal stimulation induces modifi-
cation of ventral adhesions (Fuentes et al., 2011; Ballester-Beltrán
et al., 2015), indicating the existence of a clear balance between
ventral and dorsal stimulation.

When aligned electrospun fibers are used to stimulate dor-
sal cell adhesion, cells elongate and align in the direction of
the fibers. Interestingly, when sandwich-like cultures consist of
aligned fibers contacting cells ventrally, and a flat surface stim-
ulating cells dorsally, cells remain aligned to ventral fibers. These
results suggest that the topographical cues play a major role irre-
spective of which surface they are presented to (Ballester-Beltran
et al., 2013). As expected, this alignment is depending on the cell
adhesion to fibers, since cells were not able to alignwhen theywere
coated with non-adhesive proteins (e.g., albumin).

Outlook and Conclusion

In this review, we have shown the important role gradients have
in vivo and differentmethods to recapitulate them in vitro.We had

special attention to the study of topographical cues since its ability
to mimic the fibrillar structure of the ECM is key to unravel cell
biology in vivo.

Novelmethodologies would allow studying these surface gradi-
ents in closer 3D physiological environments. For example, here
we have shown those offering a bi-phasic stimulation (adhesion-
gas, adhesion-fluid flow, and adhesion-adhesion). These technical
strategies could be combined with 2D gradients on both dorsal
and ventral sides, in order to investigate 3D environments-like
e.g., topographical gradients on a 2D ventral substrate and fluid
flow through the z axis. These studies would set up the basis
to answer complex biological questions as well as new methods
to mimic the micro/nano pathological surroundings and drug
assessment.
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