
REVIEW

Sensing the fuels: glucose and lipid signaling in the CNS
controlling energy homeostasis

Sabine D. Jordan • A. Christine Könner •

Jens C. Brüning
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Abstract The central nervous system (CNS) is capable of

gathering information on the body’s nutritional state and it

implements appropriate behavioral and metabolic respon-

ses to changes in fuel availability. This feedback signaling

of peripheral tissues ensures the maintenance of energy

homeostasis. The hypothalamus is a primary site of con-

vergence and integration for these nutrient-related

feedback signals, which include central and peripheral

neuronal inputs as well as hormonal signals. Increasing

evidence indicates that glucose and lipids are detected by

specialized fuel-sensing neurons that are integrated in these

hypothalamic neuronal circuits. The purpose of this review

is to outline the current understanding of fuel-sensing

mechanisms in the hypothalamus, to integrate the recent

findings in this field, and to address the potential role of

dysregulation in these pathways in the development of

obesity and type 2 diabetes mellitus.
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Introduction

Precise control of energy intake, storage, and expenditure

is indispensable in keeping body weight and blood glucose

concentrations within physiological ranges. Dysregulation

of these homeostatic processes is associated with the

development of obesity and type 2 diabetes mellitus;

however, the exact underlying mechanisms leading to these

diseases are still not fully elucidated.

Communication of the body’s nutritional state by feed-

back signaling of peripheral organs to the CNS and the

appropriate behavioral and metabolic responses initiated by

the brain are pivotal processes in maintaining energy

homeostasis. The hypothalamus, and in particular the

arcuate nucleus (the most external hypothalamic nucleus),

are located close to the median eminence, a site charac-

terized by a discontinuous blood–brain barrier, allowing for

direct access of circulating hormones and nutrients to the

CNS [1]. Thus, the hypothalamus is a potential primary site

of convergence and integration for nutrient-related signals,

which include central and peripheral neuronal inputs as

well as hormonal signals [2]. Besides fuel-communicating

hormones such as insulin and leptin, increasing evidence

indicates that glucose and lipids are detected by specialized

fuel-sensing neurons that are incorporated in critical

hypothalamic neuronal circuits. Hence, circulating nutri-

ents cooperate with hormones, such as insulin, leptin, and

ghrelin, to regulate the activity of distinct neuron popula-

tions that control food intake, energy expenditure, and

glucose homeostasis. Thus, this review aims to provide an
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updated view of the pathways of glucose and lipid sensing

in the hypothalamus and to delineate the contribution of

impaired neuronal nutrient sensing to the etiology of

obesity and type 2 diabetes mellitus.

Central glucose sensing

Glucose sensing in the hypothalamus

The earliest demonstration that the brain is involved in the

control of blood glucose levels was provided by Claude

Bernard, who showed that hypothalamic lesions induce

hyperglycemia in dogs [3]. In 1953, John Mayer proposed

that cells located in the hypothalamus could be specialized

to monitor variations in blood glucose concentrations and

further postulated that these cells translate these variations

in glucose concentrations in electrical or chemical signals

that control feeding behavior [4]. About 10 years later, two

groups indeed demonstrated the presence of such special-

ized glucose-sensing neurons by electrophysiological

analysis of hypothalamic slides. Anand et al. and Oomura

et al. independently identified hypothalamic neurons that

are able to modulate their firing activity in response to

changes in extracellular glucose concentrations [5, 6].

Essentially two different types of glucose-responsive

neurons can monitor changes in blood glucose levels:

glucose-excited (GE) neurons, whose firing rate is

increased by elevation of extracellular glucose concentra-

tions, and glucose-inhibited (GI) neurons, which are

activated when glucose concentrations decrease [7]. Both

types of neurons are widely distributed throughout the

brain but highly represented in hypothalamic nuclei, which

are involved in the control of energy homeostasis. GE

neurons are most abundant in the ventromedial nucleus

(VMN), the arcuate nucleus (ARC), and the paraventricular

nucleus (PVN), whereas GI neurons are mostly located in

the lateral hypothalamus (LH), the median ARC, and the

PVN [8]. In the ARC, the presence of GE and GI neurons

responsive to glucose over either a low range (0–5 mM) or

a high range (5–20 mM) of glucose concentrations has

been described, the latter are referred to as HGE (high

glucose excited) or HGI (high glucose inhibited) neurons,

respectively [9, 10].

GE and GI neurons are also present in the brain stem, in

particular in the area postrema (AP), the nucleus of solitary

tract (NTS), and the dorsal motor nucleus of the vagus

(DMNX) [11]. The NTS represents a critical node of

convergence that integrates various signals from the

periphery and relays them to the hypothalamus. Neurons in

the NTS are sensitive to small variations in blood glucose

concentrations and may regulate the activity of hypotha-

lamic neurons since they project widely into hypothalamic

nuclei implicated in the control of blood glucose levels and

food intake [12].

Neuronal circuits of the ARC are among the best-studied

systems in the central regulation of energy homeostasis.

Key players are two functionally opposing neuron popu-

lations, the agouti-related peptide/neuropeptide Y (AgRP/

NPY)-expressing and the proopiomelanocortin and

cocaine-and amphetamine-related transcript (POMC/

CART)-expressing neurons [13, 14]. The anorectic POMC/

CART neurons express POMC as a precursor peptide,

which, dependent on the cell-type specific expression pat-

tern of prohormone convertases, is processed to different

bioactive products [15]. Among these are the melanocyte-

stimulating hormones (a-, b-, and c-MSH). a-MSH and

b-MSH reduce food intake and increase energy expenditure

both in animals and in humans [16–18]. a-MSH and

b-MSH act on melanocortin receptor (MC-R) types 3 and

4, which are expressed in the ARC, the PVN, LH, VMN,

and dorsomedial hypothalamus [19, 20]. The second key

neuron population in the ARC is formed by the orexigenic

AgRP/NPY neurons. NPY is a potent stimulator of food

intake and it reduces energy expenditure [21, 22]. AgRP

acts as an inverse agonist of the MC3/4-R and prevents the

anorectic effect of a-MSH [23]. Besides their regulation by

hormones, such as insulin, leptin, and ghrelin, these both

types of neurons represent prototypic glucose-sensing

neurons. In particular, through electrophysiological

recordings of identified, genetically marked neuron popu-

lations, it has been demonstrated that increasing

extracellular glucose levels inhibit AgRP/NPY neurons and

excite POMC neurons [24–27].

AgRP/NPY and POMC neurons extend broad projec-

tions to various brain regions including the LH that harbors

two other populations of glucose-sensing neurons, the

orexin-expressing and the melanin-concentrating hormone

(MCH) neurons. Orexin neurons are inhibited and MCH

neurons are excited by glucose, in addition both popula-

tions receive inputs from AgRP/NPY and POMC neurons

[28–30].

Molecular mechanisms of glucose sensing

Since GE neurons increase their firing activity when

extracellular glucose rises, they share similarity to pan-

creatic b-cells [31–33]. Glucose signaling in b-cells

requires glucose uptake by the low-affinity glucose trans-

porter type 2 (GLUT2), glucose phosphorylation by

glucokinase, the rate-limiting enzyme of glycolysis, and

subsequent metabolism of glucose to increase intracellular

ATP concentration [34]. This in turn leads to closure of

ATP-sensitive potassium (KATP) channels [35], membrane

depolarization, and the entry of Ca2?, which triggers

insulin secretion. Thus, many studies have evaluated the
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role of GLUT2, glucokinase, and the KATP channel sub-

units SUR1, SUR2, and Kir6.2 in central glucose sensing.

GLUT2 is expressed in hypothalamic nuclei where

glucose-sensitive neurons are present [36–39]. In trans-

genic mice, central GLUT2 has been shown to be involved

in the counter-regulatory response to hypoglycemia [40].

In the pancreatic b-cell, glucokinase is the critical reg-

ulator of glycolytic production of ATP and KATP channel

activity [41]. The pancreatic form of glucokinase is also

present in brain areas involved in glucose sensing and in

about 70% of GE neurons glucokinase mRNA is detectable

[37, 42–44]. Indeed, glucokinase has been shown to regu-

late the ability of GE neurons to sense glucose [32, 37, 42,

45]. In addition, the selective down-regulation of glucoki-

nase in primary VMH neuronal cultures led to selective

loss of glucose sensing [46].

KATP channels play a fundamental role since they link

changes in glucose metabolism to electrical activity [47]

and expression has been demonstrated throughout the

brain, including hypothalamic regions involved in glucose

sensing [48–51]. Using single-cell RT-PCR to analyze

glucose-sensing neurons, investigators have shown the

expression of the KATP channel subunits SUR1 and Kir6.2

in the hypothalamus [37]. In addition, electrophysiological

studies have demonstrated that pharmacological inhibition

or activation of KATP channels can alter the response of GE

neurons to changes in ambient glucose in vitro and in vivo

[32, 48, 52–57]. In line with a role in glucose sensing, the

expression of a mutated version of the KATP subunit Kir6.2

(resulting in dramatically reduced ATP sensitivity) spe-

cifically in POMC neurons blunted glucose sensing.

Interestingly, obesity-induced POMC glucose insensitivity

is mediated by the mitochondrial protein uncoupling pro-

tein 2 (UCP2), which impairs glucose-stimulated ATP

production and thus KATP channel closure, while its genetic

deletion or pharmacological inhibition reversed the

phenotype [58].

Taken together, there is considerable evidence that

similar to pancreatic b-cells, an increase in extracellular

glucose raises ATP levels in GE neurons, which leads to

the closure of KATP channels [49, 53, 57, 59, 60], and thus

plasma membrane depolarization. Subsequent Ca2? entry

through voltage-gated channels finally increases neuronal

activity and neurotransmitter secretion [61, 62] (Fig. 1a).

There is however also indication that neuronal glucose

sensing could be independent of KATP channels [9], glu-

cokinase [63], or GLUT2 [37]. For instance, the activation

of an ARC GE neuron population by glucose seems to

depend on the glucose-regulated activity of transient

response potential (TRP) channels [9]. Moreover, a recent

study identified the heterodimeric G-protein-coupled sweet

receptor T1R2/T1R3 as a candidate membrane-bound brain

glucose sensor that allows neurons to change firing rates

independently of intracellular glucose metabolism [64].

Fig. 1 Potential mechanisms of glucose sensing in hypothalamic

neurons. a An increase in extracellular glucose and/or lactate raises

the ATP/ADP ratio in GE neurons, which leads to the closure of KATP

channels and thus plasma membrane depolarization. Subsequent Ca2?

entry through voltage-gated channels finally increases neuronal

activity and neurotransmitter secretion. b In GI neurons, suppression

of neurotransmitter secretion at elevated glucose might be caused by

an ATP-mediated increase in Na?–K?-ATPase activity and/or

inhibition of AMPK, which in turn opens Cl- or other ion channels.

In other GI neurons, glucose-induced hyperpolarization might be due

to K? channels opened by an ATP- and AMPK-independent

mechanism

Glucose and lipid sensing in the brain 3257



In GI neurons, the mechanism linking a decrease in

glucose concentrations to increased firing activity is less

clear (Fig. 1b). An early study proposed that suppression

of firing activity at elevated glucose levels might be

controlled by the increase in the ATP-to-ADP ratio,

which leads to an increase in Na?–K?-ATPase activity

[8, 65]. A further study indicated that the opening of

plasma membrane Cl- channels at elevated glucose con-

centrations leads to cell hyperpolarization and inhibition

of VMN and ARC GI neurons [27, 54, 63]. For GI orexin

neurons, it has been shown that tandem-pore K? channels

could mediate their inhibition by glucose [66], however a

recent study demonstrated that glucose inhibition persists

in orexin neurons lacking tandem-pore K? channels [67].

Orexin neurons further exhibit carbohydrate selectivity

and can operate independently of glucose metabolism

[68]. Moreover, a distinct group of orexin neurons

exhibits only transient inhibitory responses to sustained

rises in glucose levels due to time-dependent recovery

from inhibition via adaptive closure of leak-like K?

channels, presumably the same channels as those acti-

vated by glucose [69]. This adaptive glucose sensing

allows orexin cell firing to maintain sensitivity to small

fluctuations in glucose levels despite large background

levels of glucose.

Changes in AMP-activated protein kinase (AMPK)

activity are likely to mediate some effects of glucose on

VMN and ARC GI neurons [26, 70]. AMPK is activated in

response to a rise in intracellular AMP levels, which

increase under conditions of cellular stress or energy

deficiency, such as hypoxia, ischemia, and glucose depri-

vation [71, 72]. Activated AMPK acts to switch off energy-

consuming anabolic processes and switch on energy

producing catabolic processes [73] and has therefore been

suggested as an important glucose sensor. As shown in cell

lines and ex vivo hypothalamic tissue, AMPK activity is

stimulated by low glucose levels and AMPK activation

increases orexigenic AgRP expression [74]. This study also

demonstrated that small changes in hypothalamic glucose

levels in the physiological range of 1–5 mM altered cel-

lular ATP levels sufficiently to induce AMPK activation

and gene expression. Recently, the cAMP response element

binding protein (CREB) co-activator CRTC2 was identified

as a new hypothalamic AMPK target, linking hypothalamic

glucose sensing with cAMP response element (CRE) gene

expression [75]. Mechanistically, it is possible that AMPK

activation in GI neurons leads to the phosphorylation and

thereby inactivation of plasma membrane Cl- and/or other

ion channels [54], leading to depolarization, and activation

of the neuron. Consistently, studies of Murphy et al. [76]

suggest that in VMH GI neurons activated AMPK phos-

phorylates neuronal nitric oxide synthase (nNOS) leading

to nitric oxide production, which in turn amplifies AMPK

activation and thereby closure of the Cl- channel cystric

fibrosis transmembrane regulator (CFTR).

Since glucokinase mRNA is expressed in about 40% of

GI neurons it may also hold a regulatory role in these

neurons [42, 46], although it seems that AMPK activity

plays a predominant role in GI neuronal glucose sensing.

Glucose-sensing neurons do not perform their function

in isolation. They are surrounded and provided with met-

abolic fuels by glia cells. Astrocytes readily take up and

store glucose as glycogen, which is hydrolyzed to release

lactate into the extracellular space when glucose is scarce.

Extracellular lactate is taken up by neurons and converted

to pyruvate, which is then oxidized in mitochondria to

provide ATP [37, 77, 78]. By this mechanism, lactate is

able to trigger KATP channel closure [79, 80] and thereby

reverse the inhibition of GE activity, which occurs at low

ambient glucose levels [63]. Importantly, levels of the

lactate/monocarboxylate transporters, which are very low

in pancreatic b-cells [81, 82], appear to be relatively high

in the hypothalamus [78, 79]. The role of astrocytes in

central glucose sensing is further supported by the already-

mentioned finding that re-expression of GLUT2 in astro-

cytes was sufficient to rescue the phenotype of mice

lacking central GLUT2 [40]. However, it is conceivable

that depending on substrate availability, one or more glu-

cose-sensing pathways are used by different neuronal

populations.

Physiological functions regulated by central glucose

sensing

Food intake

The role of glucose in the regulation of feeding has early

been postulated [4, 83]. It has been shown that initiation of

feeding is preceded by a drop in blood glucose concen-

tration [84] and if this is prevented by glucose infusion,

then initiation of feeding is suppressed [85]. In addition,

intrahypothalamic infusion of glucose leads to a decrease

in food intake and body weight [86–88]. Induction of

cellular glucoprivation by central administration of

2-deoxy-D-glucose (2-DG), a glucose analogue able to

inhibit glucose metabolism, however, induces food intake

[89, 90]. In particular, brain stem areas such as the DMNX

and NTS appear to be the primary site of glucoprivation

detection, since direct injections of 5-thioglucose (5-TG), a

2-DG analogue, into these areas stimulated food intake

[89, 91] whereas direct injection of 2-DG into the VMH or

LH failed to activate feeding.

As already mentioned, glucose-sensitive neurons of the

brain stem project widely into the hypothalamus, in par-

ticular the PVN and the ARC. Destruction of these

neuronal projections by immunotoxins suppressed the
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effect of peripheral 2-DG administration on food intake

[92] and on the regulation of NPY and AgRP expression

[93]. The pivotal role of AgRP/NPY-expressing neurons in

the acute regulation of feeding in adult mammals has been

impressively demonstrated by two independent studies

using diphtheria-toxin-mediated ablation of this neuron

population [13, 94]. However, the extent to which these

neurons contribute to glucose-induced inhibition of feeding

is still unclear. When Luquet et al. [95] destroyed AgRP/

NPY neurons in neonatal mice, they found that feeding

responses to glucoprivation were unaffected. The same

group previously showed that in contrast to starvation

induced upon elimination in adult mice, neonatal destruc-

tion of these neurons has minimal effects on feeding in

general, which illustrates the impressive plasticity of this

circuitry [94]. Thus, it is still possible that glucose-induced

inhibition of AgRP/NPY neurons has profound effects on

feeding when the brain is allowed to develop normally.

On a molecular level, many of the critical components

of glucose sensing have been demonstrated to be involved

in the regulation of food intake. For instance, central

GLUT2 expression has been linked to feeding regulation

by knockdown experiments using antisense oligonucleo-

tides as well as targeted disruption of the Glut2 gene.

Injection of antisense oligonucleotides in the ARC

decreased food intake and led to resistance towards the

effects of 2-DG on feeding behavior [96]. In the GLUT2-

null mice, ad libitum feeding as well as refeeding after a

24 h fast was higher than in controls [97]. Moreover,

during the fast-to-refed transition, expression of the orex-

igenic (NPY, AgRP) and anorexigenic (POMC, CART)

neuropeptides was dysregulated in the absence of GLUT2.

This was directly attributed to the loss of central glucose

sensing, as intracerebroventricular (ICV) glucose in fasted

GLUT2-null mice failed to reduce NPY and to increase

POMC expression. In parallel in GLUT2 knockdown ani-

mals, feeding responses to ICV glucose or 2-DG were also

lost. In humans, a genetic variation in GLUT2 is associated

with a higher daily intake of sugars [98].

These data indicate that GLUT2 is required for physi-

ological control of feeding by glucose. However, attempts

to localize GLUT2 in the brain so far failed to show its

expression in POMC or NPY neurons, although it was

found to be associated with other hypothalamic and brain

stem structures [36–38, 99, 100] and it was further shown

to be expressed in astrocytes, endothelial cells, and tany-

cytes of the third ventricle [101–103]. Thus, the regulation

of orexigenic and anorexigenic peptide expressions by

GLUT2-dependent sensors may be controlled indirectly,

probably by glucose-sensitive neurons located in other

brain regions, such as the brain stem.

Haploinsufficiency for glucokinase in mice gave rise to

effects similar to those observed during hypoglycemia, i.e.,

increased food intake and a hypothalamic gene expression

profile similar to fasted mice (increased hypothalamic NPY

mRNA and reduced hypothalamic POMC mRNA), indi-

cating impaired glucose sensing in these animals [104].

Evidence for a role of KATP channels in the control of

feeding comes from the study of mice with inactivation of

the Kir6.2 gene as well as mice with constitutive active

KATP channels exclusively in POMC neurons. Whereas,

Kir6.2-null mice display a smaller feeding response to

intraperitoneal 2-DG administration than control mice [53],

mice expressing a constitutively active Kir6.2 subunit in

POMC cells exhibited normal feeding behavior despite the

complete unresponsiveness of these neurons to elevations

in extra-cellular glucose concentration [58]. However,

studies in POMC cells with constitutive active phosphati-

dylinositol 3,4,5-triphosphate (PIP3) formation, mimicking

insulin-stimulated activation of the PI3 kinase pathway

(see below), demonstrated an effect of constitutive active

KATP channels on feeding behavior [105]. In the hypo-

thalamus, PIP3 has been shown to regulate cell excitability

by binding to the regulatory subunit of KATP channels and

modulating their activity by at least three different mech-

anisms: (i) by increasing the probability that KATP channels

are open, which indirectly lowers the ability of ATP to

inhibit the channels, (ii) by directly decreasing ATP

binding to the channel, and (iii) by modulating the local

cytoskeleton in the vicinity of the channels [106–109]. We

demonstrated that augmented PIP3-dependent KATP chan-

nel activation leads to electrical silencing of POMC

neurons and consequently to hyperphagia [105].

The role of the metabolic sensor AMPK in feeding con-

trol was addressed by generating mice lacking AMPKa2 in

either POMC (POMCa2KO) or AgRP/NPY (AgRPa2KO)

neurons [110]. In both neuron populations, inactivation of

AMPK suppressed the glucose-mediated regulation of firing

activity, indicating that AMPK function is necessary for

glucose sensing in these neuron populations. Absence of this

enzyme from POMC neurons led to increased feeding in

response to fasting, an imbalance in the expression of

hypothalamic orexigenic and anorexigenic peptides, favor-

ing an orexigenic output and body weight gain. Inactivation

of AMPK in AgRP/NPY neurons led to a modest reduction

of body weight, which developed after 3 months of age.

However, this was not associated with detectable differences

in feeding or in orexigenic and anorexigenic neuropeptide

expressions. The molecular mechanism how AMPK allows

POMC and AGRP/NPY neurons to sense glucose and thus

alters their neuronal excitation is currently unknown.

Energy expenditure

It has been known for several years that infusions of

glucose can both increase general sympathetic activity

Glucose and lipid sensing in the brain 3259



(as evidenced by increased plasma norepinephrine levels)

[111, 112] and produce an increase in thermogenesis,

which is partly due to such sympathetic activation [113].

These effects of glucose were independent of insulin’s

well-known function as activator of sympathetic activity,

since glucose evoked these effects in insulin-deficient

animals [112] as well as after direct infusion into the

forebrain via the carotid artery (without altering plasma

insulin levels) [114, 115]. Such forebrain infusions activate

neurons in several hypothalamic areas known to contain

glucose-sensing neurons such as those in the PVN

[51, 116]. The thermogenic effects of glucose are probably

also mediated by hypothalamic glucose-sensing neurons,

since intracarotid and direct injections of glucose into the

VMH and PVN produce increased activity in the sympa-

thetic efferents to brown adipose tissue [117, 118], and

mice lacking AMPK in POMC neurons developed obesity

partially caused by reduced resting metabolic rate with

concomitant downregulation of brown adipose tissue

thermogenic genes [110].

Hepatic glucose production

Similar to what is seen in the central regulation of energy

intake and expenditure, the brain also directly responds to

changes in fuel availability to maintain glucose homeo-

stasis. In the regulation of blood glucose levels, the liver

plays a pivotal role. During times of starvation, breakdown

of hepatic glycogen stores (glycogenolysis) and hepatic de

novo synthesis of glucose (gluconeogenesis) from precur-

sors such as lactate, gluconeogenic amino acids, and

glycerol provide the organism with glucose. On the other

hand, when food (and consequently glucose) are available,

hepatic glucose production (HGP) needs to be suppressed.

Besides being subjected to tight hormonal control [119],

these processes are also directly regulated by glucose. In

response to changing concentrations of hypothalamic

glucose, gluconeogenesis, glycogenolysis, and with it total

HGP are significantly reduced [80]. The fact that besides

glucose also lactate is able to inhibit glucose production

when administered directly into the ARC suggests that

mitochondrial oxidation is necessary for the CNS to

respond to glucose. The finding that pharmacologically

blocking lactate dehydrogenase inhibited both lactate- and

glucose-induced decrease in HGP, further supported this

notion. In contrast, the activation of pyruvate dehydroge-

nase mimicked the inhibition of HGP [80]. These findings

suggest that the neuronal tricarboxylic acid cycle may

function as a biochemical sensor for carbohydrate avail-

ability, which in turn modulates HGP. The effects of

glucose and lactate seem to depend critically on the acti-

vation of KATP channels. In fact, the suppressive effect of

intra-ARC infusions of glucose or lactate on HGP is

blocked by a concomitant infusion of glibenclamide, a KATP

channel blocker [80, 120]. Thus, besides feeding behavior,

glucose homeostasis is also linked with KATP channel

function in glucose-sensing neurons. In a more recent study,

Kokorovic et al. demonstrated that hypothalamic sensing of

circulating lactate levels also regulates glucose production

[121]. In the presence of physiologically relevant increases

in the levels of plasma lactate (intravenous injection),

inhibition of central lactate-sensing mechanisms by lactate

dehydrogenase inhibitor oxamate or KATP channel blocker

glibenclamide increased glucose production. Furthermore,

direct administration of oxamate into the mediobasal

hypothalamus increased glucose production in the presence

of a similar elevation of circulating lactate.

Interestingly, central glucose and lactate sensing seems

to also affect hepatic lipid metabolism. ICV administration

of glucose or lactate was found to lower circulating lipid

concentrations and, more importantly, hepatic lipid pro-

duction [122]. Again, pharmacologically blocking either

lactate dehydrogenase or KATP channel function blunted

these effects [122].

Counter-regulatory processes

Glucose sensing in the brain is also implicated in the

counter-regulatory response to hypoglycemia. In particular,

this involves the activation of glucagon secretion from

pancreatic a-cells and catecholamines from adrenal glands

[123–125].

Experimentally, counter-regulation is activated either by

insulin-induced hypoglycemia or by injection of 2-DG or

5-TG to induce cellular glucoprivation. In both conditions,

afferent neurons located in the abdominal regions relay the

information to the brain stem and the hypothalamus, which

can also be directly activated by hypoglycemia or the

glucoprivic signal. The role of central glucose sensing in

the control of counter-regulation can be evidenced by

intracarotid glucose infusion, which blocks hypoglycemia-

induced secretion of counter-regulatory hormones

[126, 127], or by ICV injection of 2-DG, which stimulates

glucagon and catecholamine secretion [128]. The

involvement of hypothalamic nuclei, in particular the

VMH, has been assessed in lesion studies and by phar-

macological or genetic interference with glucose detection

systems [127]. For instance, glucagon secretion can be

induced by direct injection of 2-DG in the VMH [128], or,

in contrast, hypoglycemia-induced glucagon secretion can

be suppressed by direct VMH injection of glucose [129]. In

a series of studies, Chan et al. [130] demonstrated that

modulation of the c-aminobutyric acid (GABA) inhibitory

tone in the VMH modifies the magnitude of glucagon

and sympathoadrenal responses to hypoglycemia. They

could show that during hypoglycemia, KATP channels are
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implicated in the regulation of GABA release in this area of

the hypothalamus [131] and that an increased GABAergic

tone in the VMH contributes to suppression of counter-

regulatory responses after recurrent hypoglycemia [132]. In

addition to GABA, the excitatory neurotransmitter gluta-

mate released by VMH neurons has also been linked to the

prevention of hypoglycemia. Mice lacking synaptic vesic-

ular transporters for glutamate (VGLUT2) selectively in

SF1 neurons (a major subset of VMH neurons) exhibit

defective counter-regulatory responses during fasting as

well as to insulin- or 2-DG-induced hypoglycemia [133].

Recently, hyperinsulinemic clamp studies in humans

could show that the hypothalamus is sensitive to small

decrements in systemic glucose levels and that hypotha-

lamic blood flow and presumably neuronal activity,

precedes the rise in counter-regulatory hormones seen

during hypoglycemia [134].

There is also strong evidence that brain stem nuclei play

an important role in the control of glucagon secretion. For

instance, when the cerebral aqueduct, which allows circu-

lation of cerebrospinal fluid between the third and fourth

ventricle, is obstructed, 5-TG induces a glucoregulatory

response only when injected in the fourth but not in the

third ventricle [135]. In addition, whereas 5-TG injections

in different nuclei of the hypothalamus fail to induce a

glucoregulatory response, its injections into the NTS,

which projects to different sites of the hypothalamus,

induce a strong response [91–93]. Moreover, c-fos immu-

nostaining revealed that the activated neurons are present

in the NTS [136].

Thus, central glucose-sensing units involved in the

physiological control of counter-regulation are present at

the brain stem and the hypothalamus. These sites are

synaptically connected to form a glucose-monitoring net-

work. The gathered information is integrated to control the

counter-regulatory response by activating efferent auto-

nomic nerves that stimulate pancreatic glucagon secretion

and the secretion of epinephrine by the adrenals, and at the

same time block insulin secretion.

The role of GLUT2 and the KATP channel in the control

of glucagon secretion has been investigated in several

studies. Mice with inactivation of the Glut2 gene, while

expressing a transgenic glucose transporter (GLUT1) in

their pancreatic b-cells to preserve normal glucose-stimu-

lated insulin secretion (ripglut1::glut2-null-mice) [137]

display an abnormal increase in random fed plasma glu-

cagon levels. More importantly, ICV 2-DG injections

failed to stimulate glucagon secretion in these mutant mice

attributing a role of GLUT2-mediated central glucose

sensing also in the control of counter-regulatory processes

[40]. Furthermore, the analysis of c-fos-positive cells in

response to intraperitoneal 2-DG injections indicated a

decreased number of activated cells in the brain stem, in

particular in the NTS and the DMNX in the Glut2-null

mice. At the level of the hypothalamus, a reduced stimu-

lation of c-fos-positive cells was observed in the PVN but

not in the VMH, indicating that the glucose detection

mechanisms used to control glucagon secretion might vary

between several hypothalamic nuclei.

The involvement of KATP channel-mediated hypotha-

lamic glucose sensing in the central regulation of glucagon

secretion has also been demonstrated. For instance, the

counter-regulatory response in a hypoglycemic clamp is

blocked upon ICV or direct VMH injection of the KATP

channel inhibitor glibenclamide [55]. Genetic inactivation

of KATP channel by deletion of Kir6.2 gene also leads to

impaired glucagon response, correlated with suppressed

glucose-regulated firing activity of VMH neurons [53]. In

contrast, the activation of KATP channels in the VMH

amplifies counter-regulatory hormone responses to recur-

rent hypoglycemia [56].

The above-summarized findings clearly indicate that

central glucose sensing is implicated in a variety of impor-

tant physiological functions. In particular the coordinated

crosstalk between different sites of glucose detection allows

for the precise control of energy homeostasis and normo-

glycemia. These studies further demonstrate that there is

more than one mechanism to sense either an increase or

decrease in blood glucose levels, and that the b-cell model of

glucose sensing may have many variations.

Central lipid sensing

Cerebral lipids represent 50% of the brain dry weight,

which is the highest organ lipid content after adipose

tissue. Since neurons do not use fatty acids as a fuel, it was

thought for a long time that they are not able to cross the

blood–brain barrier. In recent years, however, it has been

demonstrated that cerebral lipids arise from both local

synthesis as well as plasma origin. Fatty acids cross the

blood–brain barrier mainly by simple diffusion in the

unbound form, so that access of circulating free fatty acids

to the CNS is proportional to their plasma concentration

[138, 139]. However, a small proportion of fatty acid

uptake into the brain may also occur through direct uptake

of lipoprotein particles mediated by lipoprotein receptors

[140, 141]. Upon entry into the cell, fatty acids are rapidly

esterified to fatty acyl-coenzyme A (acyl-CoAs) in a pro-

cess catalyzed by the enzyme acyl-CoA synthetase (ACS).

Once integrated to the intracellular acyl-CoA pool, fatty

acid fate is diverse and depends on the respective fatty

acid. For example, Rapoport et al. [141] reported that 50%

of the palmitate taken up by the brain is oxidized, whereas

80% of the arachidonate is incorporated into phospholipids.

Furthermore increasing evidence shows that fatty acids are
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used in the CNS as cellular messengers that act like glucose

to communicate the body’s energy status and thus are

involved in the control of feeding behavior, HGP, and

insulin secretion. Especially the hypothalamus is able to

detect and respond to changes in circulating fatty acid

concentrations through the involvement of lipid-sensing

neurons. Indeed, these neurons use fatty acids and their

metabolites as signaling molecules to regulate their mem-

brane potential and action potential frequency in a

concentration-dependent manner.

Lipid sensing in the hypothalamus

In 1975, Oomura et al. [142] demonstrated that fatty acids

activate neurons of the LH, indicating a role for fatty acids

as cellular messengers. Accordingly, a study using c-fos

immunoreactivity as marker for neuronal activity indicated

an activating effect of lipids on neurons located in the LH,

whereas neurons in the ARC, DMH, VMH, and PVN were

inhibited in response to lipid infusion [143]. Wang et al.

[144] demonstrated that distinct neuron populations in the

ARC modify their neuronal firing rate in response to fatty

acids and that these effects depend on ambient glucose

levels.

The molecular mechanisms involved in neuronal lipid

sensing are far from being elucidated. However, a body of

literature indicates that, in general, fatty acids regulate the

conductance of a wide variety of ion channels, which

include Cl-, GABAA [145], ClC-2 [146], K?, K?–Ca2?,

KATP [147], and Ca2? channels [148]. Additionally, fatty

acids inhibit the Na?–K?-ATPase [149]. Addressing

hypothalamic lipid-sensing mechanisms, Lam et al. and

Pocai et al. evidenced that the central effects of oleic acid

on liver metabolism are abolished by genetic or pharma-

cological inhibition of the KATP channel [120, 150]. Patch-

clamp recordings of oleic acid-inhibited neurons in the

ARC further supported a role for KATP channels in hypo-

thalamic lipid sensing [151]. In contrast, neuronal

excitation by oleic acid seems to be mediated by the

closure of Cl- channels [144].

The physiological relevance of lipid sensing is sup-

ported by various studies. For instance, intravenous

infusion of a lipid emulsion is sufficient to suppress food

intake in baboons [152]. This signal is independent of

measurable changes in plasma insulin and does not require

gastrointestinal nutrient absorption [152–155]. Consistent

with the hypothesis that circulating lipids act on hypotha-

lamic energy centers to generate a signal of nutrient surfeit,

the group of Rossetti and colleagues demonstrated that ICV

administration of the long-chain fatty acid (LCFA) oleic

acid inhibits food intake and leads to a decrease in HGP

[156, 157]. Interestingly, using the same protocol octanoic

acid, a medium-chain fatty acid had no effect, suggesting

that fatty acid action is related to the respective chain

length. The authors attributed the anorectic effect of oleic

acid to its action on orexigenic ARC neuropeptide

expression, i.e., reduction of AgRP and NPY mRNA

expression, whereas POMC expression was not affected by

oleic acid treatment. In the liver, ICV oleic acid inhibited

the expression of glucose-6-phosphatase, the rate-limiting

gluconeogenic enzyme [156, 157].

A decrease in food intake and HGP is also obtained by

inhibiting hypothalamic carnitine palmitoyltransferase

(CPT) 1 [158]. These effects on food intake and HGP were

proposed to be caused by the accumulation of intracellular

LCFA-CoA due to the inhibition of CPT1-mediated mito-

chondrial import of LCFA-CoA for b-oxidation. This

finding suggests that an increase in intracellular LCFA-

CoA concentrations, rather than fatty acids themselves, is

the ‘‘final’’ satiety signal that activates neural pathways

designed to regulate the input of nutrients in the circulation

from either exogenous (food intake) or endogenous sources

(HGP) [158–160]. Indeed, a sustained two-to-threefold

elevation in circulating long-chain fatty acid levels is

sufficient to double LCFA-CoA concentrations within the

mediobasal hypothalamus. Furthermore, this increase is

prevented by intrahypothalamic infusion of triascin C, a

pharmacological inhibitor of LCFA-CoA synthetase [150].

The inhibition of hypothalamic LCFA-CoA synthetase

activity also abolishes the ability of circulating LCFA to

suppress HGP, indicating that hypothalamic esterification

of LCFA to LCFA-CoA is required for the observed effects

of LCFA on liver metabolism [150]. However, it has to be

noted that inhibition of CPT1 leads to increased levels of

LCFA-CoA in the ARC, but not in other hypothalamic

nuclei [158], and inhibition of b-oxidation in the LH does

not alter food intake [161].

The role of hypothalamic fatty acid metabolism

Fatty acid metabolism seems crucial to relay the central

action of fatty acids on energy homeostasis. Enzymes

involved in fatty acid metabolism, such as acetyl-CoA

carboxylase (ACC), fatty acid synthase (FAS), malonyl-

CoA decarboxylase (MCD), and CPT1 are expressed in

various brain cell types including hypothalamic neuron

populations in the ARC, VMH, and dorsomedial hypo-

thalamus [162]. Furthermore, double-labeling studies have

shown that FAS colocalizes with NPY (and thus AgRP) in

ARC neurons [163], indicating that modulation of fatty acid

synthesis may act on hypothalamic pathways regulating

feeding. Feeding increases the concentration of cytoplasmic

malonyl-CoA, which is suggested to be one of the main

energy sensors in the hypothalamus. Accumulation of

malonyl-CoA derives from an increased flux of glucose

into the lipogenic pathway during the fed state, i.e., when
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nutrients are abundant. The steady-state level of malonyl-

CoA is determined by its rate of synthesis catalyzed by

ACC relative to its rate of turnover catalyzed by FAS. The

synthesis of malonyl-CoA is the first step of fatty acid

synthesis and ACC is the major site of regulation. In addi-

tion, malonyl-CoA is a potent inhibitor of CPT1 and thereby

b-oxidation. Thus, in times of ample energy supply, when

there is a decreased need for fatty acid oxidation, increased

malonyl-CoA levels may inhibit b-oxidation and increase

fatty acid synthesis and esterification to triglycerides.

Consistent with a role for neuronal FAS in the modu-

lation of feeding, central administration of C75, a potent

inhibitor of FAS, increases malonyl-CoA concentrations in

the hypothalamus, suppresses food intake and leads to

profound weight loss [164, 165]. In mice deprived of food,

central administration of C75 at anorexic doses also sig-

nificantly increases hypothalamic malonyl-CoA levels

[166]. Moreover, pharmacological inhibition of ACC, and

thereby malonyl-CoA synthesis, largely reverses the effect

of C75 on feeding and malonyl-CoA accumulation

[164, 166], supporting the idea that malonyl-CoA avail-

ability is essential for the hypothalamic control of food

intake. In vitro and in vivo studies demonstrate that at least

parts of C75’s effects are mediated through AMPK [167,

168]. Indeed, ICV administration of 5-aminoimidazole-

4-carboxamide-ribonfuranoside (AICAR), an AMPK

activator, rapidly lowers hypothalamic malonyl-CoA con-

centrations, increases food intake, and also attenuates

C75-induced anorexia [167, 169]. These effects correlate

closely with the phosphorylation and thus inactivation of

ACC, an established AMPK target.

The anorectic action of FAS inhibition is linked to

decreased expression of orexigenic and increased expression

of anorexigenic neuropeptides in the ARC, as central

administration of C75 blocks fasting-induced up-regulation

of AgRP/NPY and down-regulation of POMC/CART

expression [164–166, 170]. The molecular mechanisms

underlying these effects of FAS inhibition are not com-

pletely understood. It has been reported that changes in

hypothalamic malonyl-CoA levels correlate with C75’s

effects on neuropeptide expression [166]. However, it is so

far unclear how accumulation of malonyl-CoA is linked to

changes in neuropeptide gene expression and whether its

effects are direct or indirect via inhibition of CPT1 and the

ensuing accumulation of LCFA-CoA. The latter is supported

by the anorectic action of both hypothalamic inhibition of

CPT1 [158] and central administration of LCFA [156, 157].

Interrelationship between glucose and lipid sensing

It is well known from pancreatic islets that glucose and

lipid sensing are interrelated, since elevated fatty acid

concentrations are able to modify the secretory response to

glucose [171, 172]. This has been attributed to the intra-

cellular accumulation of various lipid metabolites that

interfere with the function of ion channels or other proteins

regulating the exocytosis of insulin granules [173]. More-

over, free fatty acids have been demonstrated to decrease

the expression of key components of the glucose-signaling

pathway such as GLUT2 and glucokinase [174]. There is

now also increasing evidence that elevated concentrations

of fatty acids may induce ER stress that, under chronic

conditions, exerts deleterious effects on pancreatic islet

cells [175].

The observation that anorexia resulting from FAS inhi-

bition is dependent on changes in central glucose uptake

and/or metabolism [176] supported the idea that nutrient-

sensing pathways are also interconnected in the brain. High

glucose levels are known to elevate intracellular malonyl-

CoA, which in turn inhibits CPT1 and thereby b-oxidation.

Increased levels of malonyl-CoA may in turn induce

an increase in glucose oxidation as a consequence of

decreasing fatty acid oxidation. Thus, the CNS may use the

relative ratio of glucose to fatty acid utilization as an index

of the overall energy status of the body [176]. Further

points of interaction between glucose and lipid metabolism

are KATP channels and AMPK (Fig. 2). Increased glucose

oxidation raises intracellular ATP levels, which leads to the

closure of KATP channels. These channels also seem to be

affected by intracellular accumulation of LCFA-CoA [120,

150]. Finally, a decrease in glucose concentration activates

AMPK, which phosphorylates and thereby inhibits ACC,

thus reducing malonyl-CoA formation and increasing

b-oxidation.

Electrophysiological evidence for a direct functional

interaction of central lipid and glucose sensing in the

hypothalamus has been provided by measuring the firing

rate of ARC and VMH neurons in response to oleic acid in

the presence of different ambient glucose concentrations

[144, 177]. These data revealed an interaction between

glucose and fatty acids to regulate oleic acid sensing in

neurons of these hypothalamic nuclei, implying that sub-

types of lipid-sensing neurons are activated or inhibited,

depending on the hypo-, normo- or hyperglycemic status.

Even more interesting in this context is the proposed role

for reactive oxygen species (ROS) signaling in glucose

and lipid sensing by AgRP/NPY and POMC neurons

[178–180]. ROS production naturally occurs during mito-

chondrial respiration of products resulting from both

glucose and fatty acid metabolism and thus may represent

an additional interconnection of neuronal nutrient sensing.

This notion is further supported by an increasing number of

studies indicating that ROS production is not simply a

byproduct of substrate oxidation but, instead, is implicated

in the regulation of neuronal function in a substrate-
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dependent manner [179–182]. Andrews et al. observed that

during positive energy balance, glucose-excited POMC

neurons accumulate ROS due to increased glucose utili-

zation. Contrariwise, during negative energy balance, when

low glucose levels activate AgRP/NPY neurons, elevated

fatty acid oxidation in these cells does not increase intra-

cellular ROS levels. Endogenous buffering of ROS

production seems to be indispensable for the function of

AgRP/NPY neurons, since uncontrolled ROS formation

impairs neuronal firing of these cells. Thus, persistent high

ROS levels in active POMC neurons seem to favor satiety

during energy surplus, whereas in active AgRP/NPY neu-

rons ROS production needs to be buffered to allow for the

appropriate orexigenic responses to energy deficiency [180,

183].

Hormonal modulation of glucose and lipid sensing

Apart from influencing each other, hypothalamic glucose

and lipid sensing is controlled by peripheral hormones,

such as insulin, leptin, and ghrelin. The central actions of

these hormones comprise several sites of convergence with

nutrient sensing, as, for instance, in the ARC, they regulate

neuronal activity of glucose-excited POMC as well as

glucose-inhibited AgRP/NPY neurons [2, 14, 184].

The finding that central applied insulin decreases food

intake and body weight led to the proposal that insulin

serves as an adiposity signal in the brain, decreasing food

intake and increasing energy expenditure [185–187]. Along

these lines, mice with brain-specific insulin receptor dele-

tion are mildly obese and display impaired fertility,

assigning insulin receptor signaling in the brain a role in

regulation of fuel metabolism and reproduction [188].

Importantly, insulin action in the brain not only controls

body weight [185, 188–190] but also peripheral glucose

and fat metabolism [191–193]. Insulin’s central action in

controlling food intake and hepatic gluconeogenesis is

mediated by the activation of the PI3 kinase and sub-

sequent regulation of KATP channel activity by its product

PIP3 [105, 192, 194]. Thus, KATP channel activation might

represent a mechanism allowing for integration of hor-

monal and nutrient (glucose)-dependent modulation of

glucose and lipid sensing in the hypothalamus (Fig. 2).

This notion is supported by the recent finding that insulin

attenuates the ability of VMN GE neurons to sense

decreased glucose via the activation of PI3 kinase and

KATP channels [195]. These data are consistent with the

role of insulin as satiety factor, as in the presence of insulin

glucose levels must decline to a greater extend before GE

neurons respond.

Similarly, the adipocyte-derived hormone leptin, which

is secreted in proportion to the body fat content [196, 197],

has provided the prototypic adiposity signal in the control

of energy homeostasis [198]. Mice carrying a mutation in

the leptin gene (ob) exhibit dramatic weight gain (ob/ob)

[198], and a naturally occurring loss-of-function mutation

of the leptin receptor in the CNS and periphery underlies

the phenotype of obese and diabetic mice (db/db) [199].

Importantly, the phenotype of mice with a neuron-specific

deletion of the leptin receptor resembles that of the db/db

mouse [200], and neuron-specific reconstitution of the

leptin receptor is sufficient to reverse the obese phenotype

of db/db mice [201], indicating that indeed the major role

of leptin action to control energy homeostasis is accounted

for by its signaling in the CNS. Consistent with this, central

application of leptin decreases food intake and body weight

in various species, underlining the pivotal role of leptin in

the regulation of energy homeostasis via its action in the

CNS [202]. Moreover, leptin, via activation of the CNS PI3

kinase pathway, is crucial for the regulation of glucose

metabolism and peripheral insulin sensitivity [105, 203–

207]. Leptin has been shown to inhibit hypothalamic

AMPK activity [208]. Furthermore, expression of a con-

stitutively active AMPK mutant in the hypothalamus blunts

leptin’s effects on food intake, thus indicating that AMPK

serves as a principal mediator of leptin’s effects on food

intake and fatty-acid metabolism [26, 209, 210]. Since

AMPK is also inhibited by insulin [208], regulation of

Fig. 2 Crosstalk and hormonal regulation of glucose and lipid

sensing. This schematic representation of the interrelationship

between glucose and lipid-sensing mechanisms and their modulation

by hormones underlines the convergence of these signals on three key

players: AMPK, malonyl-CoA, and KATP channels. LCFA-CoA long-

chain fatty acyl-CoA, ACC acetyl-CoA carboxylase, FAS fatty acid

synthase, CPT1 carnitine palmitoyltransferase 1
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hypothalamic AMPK activity represents a further site of

convergence between hormonal and nutritional control of

neuron excitability (Fig. 2).

However, studies in mice lacking a functional AMPKa2

subunit specifically in either AgRP or POMC neurons

suggest differential mechanisms for glucose sensing and

leptin-/insulin-stimulated pathways, since these neurons

were still responsive to both insulin and leptin but not

glucose [110]. Conversely, Murphy et al. [211] recently

demonstrated that leptin-induced changes in glucose sens-

ing of NPY-expressing GI neurons are mediated by AMPK

and concluded that during energy sufficiency, leptin redu-

ces the ability of AgRP/NPY neurons to sense decreased

glucose concentrations.

AMPK activity is further regulated by ghrelin, an

orexigenic gut hormone, which is released to the circula-

tion upon fasting [212, 213]. In the arcuate nucleus, ghrelin

activates AgRP/NPY neurons, thereby mediating its orex-

igenic effect [214]. In addition to its stimulatory effect on

food intake, centrally applied ghrelin, presumably via

control of sympathetic innervation, influences adipocyte

metabolism [215]. Central ghrelin induces AMPK activity

via the activation of Ca2? signaling and subsequent acti-

vation of CamKK2 in NPY neurons [216–218]. The

following chain of intracellular events seems to contribute

to ghrelin’s effect on AgRP/NPY neurons. AMPK inhibits

ACC activity, thereby eliminating the inhibitory effect of

malonyl-CoA on CPT1 activity. CPT1 activation enhances

mitochondrial b-oxidation of long-chain fatty acids, which

ultimately promotes generation of reactive oxygen species

(ROS). Fatty acids and ROS promote UCP2 transcription

and activity, which aims to neutralize ROS, thereby

enabling continuous CPT1-promoted fatty acid b-oxida-

tion. Moreover, UCP2 can increase NPY/AgRP neuronal

activity, thereby increasing inhibitory GABA-ergic input

onto POMC neurons, ultimately stimulating food intake

[180, 219].

Taken together, these findings clearly point towards a

convergence between hypothalamic nutrient sensing and

hormone signaling in order to maintain energy homeostasis

via the integration of multiple signals.

Fuel sensing in obesity and type 2 diabetes mellitus

Since peripheral nutrient sensing and its dysregulation

represent key components of diet-induced obesity and

diabetes mellitus, impaired fuel sensing in the CNS,

especially the hypothalamus, may also be involved in the

development of high-fat-diet-induced obesity and periph-

eral insulin resistance. In peripheral tissues, sustained

exposure to a supply of nutrients that exceeds energy

requirements induces insulin resistance via multiple,

convergent mechanisms [220]. Given the diversity of tis-

sues affected by nutrient excess, it is not surprising that

resistance to the actions of both insulin and leptin in the

CNS represents a hallmark during the development of

high-caloric-diet-induced weight gain and peripheral insu-

lin resistance [190]. However, this response has the

potential to cause obesity, rather than simply being its

consequence, because insulin and leptin are crucial hor-

monal signals that convey adiposity negative feedback

information to the hypothalamus regarding the amount of

body fuel stored in the form of fat. When input from these

hormones is reduced, this triggers an adaptive increase of

food intake that favors body weight gain. Consistently,

high-fat-diet-induced obesity reduces the ability of intra-

cerebroventricularly applied insulin, leptin, and LCFA to

reduce food intake and glucose production [157, 221–224].

These effects are also present in rats fed a high-fat diet that

are calorically and body weight matched to rats on a low-

fat diet [222]. Moreover, exposing the animals to a normal

chow diet can restore high-fat-feeding-induced leptin

resistance in mice, even before body weight has been

normalized [225]. Taken together, these data indicate that

diet-induced leptin and insulin resistance in the CNS may

be caused directly by food components, rather than obesity

per se.

Indeed, saturated fatty acids, such as palmitate, which is

also increased in the hypothalamus upon high-fat feeding

[226], acutely causes leptin resistance in the CNS [227].

Saturated fatty acids represent important candidates for

causing diet-induced leptin and insulin resistance, they act

as ligands for Toll-like receptor 4 (TLR4) [228], thus

activating JNK- and IKK-signaling cascades, both of which

inhibit insulin action in peripheral tissues such as skeletal

muscle, liver, and adipose tissue [229] as well as in the

hypothalamus [230–232]. In the hypothalamus, pro-

inflammatory signaling via TLRs not only inhibits neuronal

insulin action but can also inhibit leptin signal transduction

to further aggravate obesity [227, 233–235]. Consistently,

the ability of a high-fat diet to induce obesity and its

associated metabolic derangements depends upon neuronal

expression of MyD88, a key intracellular mediator of

inflammatory signaling [227].

Obesity also correlates with altered hypothalamic

glucose sensing, as obese Zucker rats display central glu-

cose hypersensitivity, which has recently been linked

to mitochondrial dysfunction leading to changes in redox

signaling [236].

A better understanding of the mechanisms by which

high-caloric diets and and/or the resulting obesity reduce

central sensitivity to peripheral hormonal and nutritional

signals may allow for the development of potential novel

pharmacological targets for the treatment of obesity

and type 2 diabetes mellitus. Nevertheless, many aspects
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regarding the extra- and intracellular mechanisms that

contribute to CNS nutrient and hormonal resistance are still

elusive and further investigations will have to unravel the

complex network of the CNS in sensing nutrients and

transmitting their effects.

Concluding remarks

The global prevalence of obesity and diabetes mellitus is

increasing at an alarming rate and dysregulation of the

central control of energy homeostasis has been posited as a

causative mechanism of these metabolic diseases. Besides

the capability of selective brain regions, especially the

hypothalamus, to integrate a variety of neuronal and hor-

monal signals, increasing evidence indicates that fuel

sensing also plays a pivotal role in the central regulation of

food intake, energy expenditure, and glucose homeostasis.

Recent progress has confirmed the presence of distinct

hypothalamic neuron populations that respond to changes

in circulating nutrient concentrations by either activating or

inhibiting their firing activity. At the molecular level, some

proteins required for neuronal fuel sensing have already

been identified. Among them, KATP channels and the well-

known fuel sensor AMPK represent critical points of

interaction between hypothalamic glucose and lipid sens-

ing. A wide range of data further implicates the modulation

of neuronal fuel sensing by a variety of hormones such as

insulin, leptin, and ghrelin, leading to an increased degree

of complexity in the response of these neurons to changes

in whole-body energy level. Beyond the scope of this

review is another relative new concept in central nutrient

sensing involving the role of amino acids in the regulation

of energy homeostasis. Studies have demonstrated that

increasing or decreasing the dietary intake of leucine, a

branched-chain amino acid, as well as ICV administration

of this amino acid affects glucose metabolism and food

intake [237, 238]. The latter was attributed to changes in

hypothalamic AgRP expression and mechanistically linked

to mammalian target of rapamycine (mTOR) [237, 239].

A better understanding of the complex interaction of

nutrients, hormones, and neuronal circuitries in the mod-

ulation of central behavioral and metabolic output signals

might point to novel interventions to prevent or treat

obesity and type 2 diabetes mellitus.

Acknowledgments We apologize to all colleagues whose important

contributions could not be cited due to space limitations. We thank G.

Schmall and T. Rayle for excellent secretarial assistance. This work

was supported by grants from the CMMC (TV2), the EU (LSHM-CT-

2003-503041) and the DFG (Br. 1492/7-1) to J.C.B.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which

permits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.

References

1. Banks WA (2006) Blood–brain barrier and energy balance.

Obesity (Silver Spring) 14(Suppl 5):234S–237S

2. Sanchez-Lasheras C, Christine Konner A, Bruning JC (2009)

Integrative neurobiology of energy homeostasis-neurocircuits,

signals and mediators. Front Neuroendocrinol 31:4–15

3. Bernard C (1855) Leçons de physiologie experimentale appli-
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