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This study assesses the capability of extended proper orthogonal decomposition (EPOD) and convolutional neural net-
works (CNNs) to reconstruct large-scale and very-large-scale motions (LSMs and VLSMs respectively) employing
wall-shear-stress measurements in wall-bounded turbulent flows. Both techniques are used to reconstruct the instanta-
neous LSMs evolution in the flow field as a combination of proper orthogonal decomposition (POD) modes, employing
a limited set of instantaneous wall-shear-stress measurements. Due to the dominance of non-linear effects, only CNNs
provide satisfying results. Being able to account for nonlinearities in the flow, CNNs are shown to perform significantly
better than EPOD both in terms of instantaneous flow field estimation and turbulent statistics reconstruction. CNNs are
able to provide a more effective reconstruction performance employing more POD modes, at larger distances from the
wall and employing lower wall-measurement resolutions. Furthermore, the capability of tackling non-linear features of
CNNs results in estimation capabilities that are weakly dependent on the distance from the wall.

I. INTRODUCTION

Wall-bounded turbulent flows are present in many indus-
trial and aeronautical applications, including all kind of ve-
hicles immersed in a fluid or turbomachinery flows. Under-
standing the dynamics of these flows is of utmost importance
to enabling sensing and control to improve the performances
in terms of skin friction, heat transfer, etc.

Among the spectral pipeline of scales in a turbulent bound-
ary layer, large-scale and very-large-scale motions (LSMs
and VLSMs respectively, shown to have a wavelength of up
to more than 10 flow characteristics lengths) are one of the
main sources of momentum and energy transport. LSMs and
VLSMs are regions of the flow that present spatial and tem-
poral correlation, whose evidences are available in several re-
search studies1–6. LSMs have been documented as long fea-
tures of uniform high or low momentum in the logarithmic
region of a turbulent boundary layer. In Ref. 6 it was proved
using a spanwise rake of hot-wires that these elongated re-
gions extended up to a length of the order of 20 boundary
layer thicknesses δ99. These features were also found experi-
mentally in turbulent pipe flows and channel flows, as reported
in Refs. 7 and 8.

LSMs have been proved both experimentally9,10 and
numerically11,12 to have a direct impact on the inner-scales
fluctuations close to the wall. It has been shown that the LSMs
present in the logarithmic region have an amplitude and fre-
quency modulation effect on the streamwise fluctuations close
to the wall13,14, which has also been extended to the wall-
normal and spanwise fluctuations15. Ref. 16 showed that it
is possible to estimate the wall-shear-stress fluctuations from
the one-point measurements of LSMs in the logarithmic re-
gion. These works13–16 proposed a model that assumes that
the near-wall small-scale structures are universal17 and that
the effect of Reynolds number can be modelled as an am-
plitude and frequency modulation effect of the LSMs on the
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small scales. Furthermore, they showed that the spatial reso-
lution of the measurements was a driving parameter to obtain
accurate predictions.

Due to the relevance that LSMs have on the flow, it has
become of utmost importance to define techniques that al-
low to detect and control them. Ref. 18 proposed the use of
jets to reduce the skin-friction drag in turbulent boundary lay-
ers. Piezo-ceramic actuators to generate a transverse travel-
ling wave along the wall surface19 or a spanwise-oscillating
surface20 have also been explored for the same purpose. Suc-
tion and blowing wall jets that weaken the near-wall streaks21

have also been proven as an effective solution.

Closed-loop control strategies require proper sensorization
strategies for the flow; the clear role played by LSMs thus
set the requirements of an effective real-time LSMs-detection
solution with minimum intrusiveness. Pointwise probes have
been often explored as a good compromise between the needs
of low-processing time and minimization of flow disturbance.
The flow state is then estimated using only the probe data, thus
requiring robust algorithms leveraging statistical evidence of
correlations between flow features and probe data. Linear
stochastic estimation22 has been successfully used to estimate
turbulent fields 23–28 based on a limited set of probes. One
of the most promising approaches that have been proposed
is the extended proper orthogonal decomposition (EPOD, see
e.g. Ref. 29). Using the projection of the snapshot matrix of
a given quantity on the temporal basis corresponding to an-
other one, it has been shown that it is possible to extract the
correlation between synchronized measurements through the
extended POD modes29. The compactness of the POD basis
allows data-driven filtering, thus providing more robust esti-
mations than the simple application of linear stochastic esti-
mation. Using this correlation it has been shown that accurate
far-field predictions of a turbulent jet can be obtained,24 as a
combination of the flow-field POD modes through time coef-
ficients linearly-estimated based on instantaneous point-wise
measurements. The EPOD has been used previously to recon-
struct turbulent flow fields using velocity probes in a turbulent
channel30 and in a high-Reynolds-number pipe flow8.
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The EPOD approach in Ref. 30, however, does not al-
low to take into account nonlinearities in the relation between
probe data and flow features. More specifically, the amplitude
modulation effects that LSMs have on the near-wall scales9,10

could not be identified using EPOD. One promising path to
embed these non-linear effects is the use of artificial neu-
ral networks (ANNs), firstly introduced with the perceptron

concept31. ANNs are a set of layers that transform a fixed-size
input (for example, a flow velocity field) into a fixed-sized out-
put (for example, a coefficient) by computing a weighted sum
of their inputs from the previous layer and applying a non-
linear function to the result32. It has been shown that an ANN
with a single hidden layer is equivalent to perform a POD on
the data33 while non-linear effects can be introduced making
use of several hidden layers.

ANNs have been applied to a large variety of research
fields, including fluid mechanics. The main applications in-
clude the solution of the Reynolds-Averaged Navier-Stokes
(RANS) and of the large-eddy simulation (LES) problems,
improving turbulence modelling34–37. Ref. 38 used a multi-
layer perceptron (MLP) to estimate the lift coefficient and the
displacement of a freely vibrating cylinder from flow mea-
surements in the surroundings. Additionally, they were able
to estimate the flow fields from the concentration of a pas-
sive scalar in the flow. Another possible application has been
shown in Ref. 39, where streaks in pressure-gradient boundary
layers are classified into those that will break into turbulence
and those which will not.

As reviewed in Ref. 40, several authors employed machine
learning for modelling fluid flows. A promising application of
ANNs in turbulence is the direct reconstruction of turbulent
flows from external measurements. In particular, Ref. 41 car-
ried out a reconstruction of the near-wall flow using a neural
network to approximate the higher-order terms of the second-
order model

u(x, t) = ω y+
Re

2

dPw

x
y2 +ANN(Pw,τw) (1)

where ω is the wall tangential vorticity, Pw is the wall pres-
sure field,and τw the wall-shear-stress field. The model pro-
vided a good reconstruction up to y+ ≈ 40 using wall-shear
and pressure measurements. Superscript + refers to inner-
scaling, based on the friction velocity uτ =

√

τw/ρ and vis-
cous length l∗ = ν/uτ (being τw, ρ , and ν the mean wall-
shear stress, density and viscosity respectively). An ANN
model was proposed in Ref. 42 for the deconvolution and
regularization of low-pass spatially filtered turbulent fields.
In Ref. 43 two different ANN models were used to increase
the resolution of turbulent fields; they use DNS fields to train
the model to upgrade low-resolution fields into fully-resolved
ones. Ref. 44 has shown that ANNs can be used to predict the
nonlinear dynamics of the flow around a cylinder. In Ref. 45
both MLP and long short-term memory (LSTM) ANNs have
been used to predict the temporal evolution of a low-order
model of a turbulent flow. Due to the sequential nature of
LSTM, their results outperformed those obtained by the MLP,
providing very accurate turbulence statistics. Based on the

results of these studies, the ANNs appear to be a perfect can-
didate to estimate the dynamics of POD modes from a limited
set of time-resolved wall measurements.

Among ANNs, convolutional neural networks (CNNs) take
advantage of their input hierarchical shape46–49. CNNs have
been applied to a large variety of research fields50,51, and are
recently being exploited for turbulent-flow estimation. For
instance, CNNs were used in Ref. 43 to increase the resolu-
tion of the flow field, employing as input the flow field itself
but with lower resolution. Ref. 52 reports a remarkable ap-
plication in which convolutional kernels with different inputs
are used to estimate the streamwise velocity fluctuations of a
zero-pressure-gradient turbulent boundary layer. In Ref. 53
CNNs have been used to reconstruct instantaneous velocity
fields parallel to the wall up to distances of y+ = 50. Their
results show that first- and second-order statistics can be com-
puted accurately from the reconstructed flow fields, although
the reconstruction error increases with the wall distance.

Aiming at the identification of a suitable sensing device
for the detection of large- and very-large-scale motions in a
turbulent wall-bounded flow, we explore the performances of
CNNs for the identification of the large-scale instantaneous
flow fields from a limited set of shear-wall probes. A com-
parison with the EPOD is carried out to assess whether the
non-linearity provided by CNNs can improve the quality of
the flow field reconstruction.

This work is based on a computational dataset which is
used both for the training of the estimation methodologies
and for the assessment of the reconstruction performances.
Wall-shear-stress values at a limited number of locations are
employed to reconstruct the flow field in a turbulent channel
flow at different wall-parallel planes ranging from y+ = 50 to
y+ = 200, being the friction-based Reynolds number equal to
Reτ = 1000. The paper is organised as follows: Sec. II de-
scribes the different methodologies employed to reconstruct
the LSMs in the flow field and the database used to assess their
performance. In Sec. III the obtained results are presented and
discussed, prior to the conclusions in Sec. IV.

II. METHODOLOGY

The reference frame x = [x,y,z] adopted in this work is
aligned with the streamwise x, wall-normal y and spanwise
z directions, being their corresponding fluctuating velocity
components denoted as u = [u,v,w]. Velocity fields are de-
composed according to the Reynolds decomposition; the fluc-
tuating velocity components are then expressed hereafter as a
linear combination of a spatial basis, composed of spatially
orthonormal functions φ

i
(x), times a temporal basis, made

of temporally orthonormal functions ψi(t), by means of the
proper orthogonal decomposition (POD)54:

u(x, t)≈
Nm

∑
i=1

ψi(t)σiφ i
(x) (2)
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with Nm being the number of POD modes and σi weighs the
contribution of each mode to the snapshots. POD modes are
optimal in the least square sense: the first r POD modes form
an orthogonal basis which minimizes the Frobenius norm of
the flow field reconstruction error, i.e. provides the best rank-r
approximation of the snapshots. This implies that POD pro-
vides flow field modes ordered by their energy content. Ow-
ing to the prevalent role in momentum and energy transport
of LSMs, it has indeed been shown that the first POD modes
can be thought of as representations of the LSMs present in
the flow55.

The practical implementation with the dataset described in
Sec. II C follows the snapshot POD method56. The velocity
fields are reshaped in a vector form and rearranged in a matrix
U of size nt × np, where nt is the number of available flow
fields and np is the number of grid points. The corresponding
SVD is:

U = ΨΣΦ (3)

.
Assuming statistical convergence, flow fields at a generic

time instant (inside and outside of the training dataset) can
be quite accurately be described as a linear combination of
the modes contained in the ΣΦ matrix by the corresponding
time coefficients, if available. One strategy to obtain these
time coefficients for time instants outside of the dataset is the
synchronized use of pointwise probes and flow field data, with
the probes being trained to reconstruct the velocity fields. The
velocity field at a given instant can then be expressed as:

u∗ = ψ∗ ΣΦ (4)

Estimated quantities are denoted with the superscript ∗. In
the following we describe two methodologies employed for
the estimation of the time coefficients ψ∗.

A. Extended proper orthogonal decomposition

The snapshot POD can be applied both to the flow field
and to any other quantity measured by synchronized probes
immersed in the flow or at the wall, e.g. corresponding to a
set of probes U

pr
:

U
pr
= Ψ

pr
Σ

pr
Φ

pr
(5)

The extended POD modes29, corresponding to the projec-
tion of the probe measurements, on the flow-field temporal
basis can be estimated as:

ΨT

pr
U = ΨT

pr
ΨΣΦ = ΞΣΦ = Σ

e
Φ

e
(6)

where the subscript e refers to extended POD modes and the
matrix Ξ=ΨT

pr
Ψ is a matrix containing information about the

temporal correlation between flow and probe modes. If the
dataset is sufficiently large to reach statistical convergence,
it is possible to assume that the matrix Ξ represents a good
estimate of the relation between the POD time coefficients at a
certain probe snapshot and those of an out-of-sample estimate
of the flow field. Taking this and Equation 6 into account, it
is possible to estimate the temporal POD coefficients of the
flow field using the wall-field POD time coefficient and the
temporal correlation matrix:

Ψ∗ = Ψ
pr

Ξ (7)

A flow field can thus be reconstructed by means of a set
of probes once the temporal correlation matrix is known. In
this work we will explore the use of wall sensors, since it is of
more practical application if compared to probes immersed in
the flow.

The EPOD reconstruction is equivalent to a linear stochas-
tic estimation and as shown in Ref. 30 it is an energy preserv-
ing process. The energy-optimality of POD modes can then
be enforced by employing statistical filters30 and improving
the reconstruction with respect to LSE by cleaning the data
from uncorrelated features. This approach has been shown to
be successful in several application, but it is not able to take
into account non-linear effects.

U∗ = Ψ∗ ΣΦ (8)

B. Artificial neural network

The alternative approach pursued here to estimate the POD
time coefficient is through the use of ANNs. Probe data can be
rearranged in a tensor form W of size nt ×nw×nh, where nw is

the number of grid points in the width direction and nh is the
number of grid points in the height direction (np = nw ×nh).

The tensor W is passed through a set of convolutional and

max-pooling layers that halve sequentially the field size. The
number of convolutional and max-pooling layers depends on
the initial wall-shear stress field resolution, thus three different
CNN architectures have been set depending on this feature.

When the tensor has been reduced to the minimum possi-
ble size, it is reshaped in a vector form v by means of a flat-
ten layer, and it is passed through two fully-connected layers
with weights w. The last fully-connected layer outputs a sin-
gle value that corresponds to the temporal POD mode of the
flow field associated to the wall-shear-stress field.

ψ∗
i
= w

2
×w

1
× v (9)

Finally, the temporal POD-mode estimation obtained through
CNNs can be used to reconstruct the flow fields from a set
of wall probes applying Eq. 8. Different CNNs have been
trained for different probe spacings, wall-distance positions of
the flow fields and the first 10 temporal POD modes, resulting
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FIG. 1. Schematic view of the CNN architecture.

in a total of 120 different CNNs. A simplified sketch of the
CNN architectures can be seen in Fig. 1.

A rectified linear unit (ReLU) activation function57 has
been used in the fully connected layers of the CNNs architec-
ture to take into account the non-linearities of the flow, while
an Adam optimizer58 with a constant learning rate of 0.001
has been selected to update the weights of the different neu-
ron layers.

ReLU(x) = max{0,x} (10)

C. Dataset description

The different methods have been tested employing a Direct
Numerical Simulation (DNS) dataset that includes full flow-
field information from a numerical simulation in a channel
flow at friction Reynolds number Reτ ≈ 1000. The channel-
flow database is available at the Johns Hopkins Turbulence
Database (http://turbulence.pha.jhu.edu/). The channel has a
dimension of 2 half-channel-heights h from wall to wall, 3πh

in the span-wise direction and 8πh in the stream-wise direc-
tion. The DNS database covers one channel-flow through-
time 8πh/Ub (where Ub is the channel bulk velocity) with a
DNS time step of δt = 0.0014h/Ub. More details on the nu-
merical simulations can be found in Refs. 59 and 60.

To train the proposed methodologies and to assess their ca-
pability of reconstructing the LSMs, we collected both wall-
shear-stress fields and [u,v] fields in streamwise-spanwise
planes located at four distances from the wall. These fields
were representative of square h × h domains parallel to the
wall located at y+ = [50,100,150,200]. The fields resolution
is equal to 128 × 128 points. The wall-friction fields were
extracted at the same temporal instants in the same [x,z] re-
gion with three different spatial resolutions, [128× 128,64×
64,32×32], covering in all cases the same h×h area.

Only 24 flow and wall-shear fields, separated by t+ = 1000
and therefore uncorrelated, can be extracted in the same posi-
tion due to the limited timespan of the simulation. To acquire

TABLE I. Dataset description. For each case, 7000 fields have been
extracted for training, 500 for validation, and 7500 for testing.

Case y+ Resolution [pt] EPOD symbol CNN symbol
H050 50

128 × 128 ( ) ( )
H100 100
H150 150
H200 200
M050 50

64 × 64 ( ) ( )
M100 100
M150 150
M200 200
L050 50

32 × 32 ( ) ( )
L100 100
L150 150
L200 200

8πh

3πh

h
Centerline

Bottom

Flow direction

y+=100

y+=50

y+=200

y+=150

FIG. 2. Schematic representation of the flow and wall fields extracted
from the Channel Flow DNS spatial domain. Axes are not equally
scaled.

a well-converged dataset, the flow and wall-shear fields have
been extracted at different positions in the streamwise and
spanwise directions of the bottom part of the channel domain,
taking advantage of the simulation homogeneity in those di-
rections. Specifically, flow fields have been obtained in 26
streamwise locations and in 10 spanwise locations. Fields
have been extracted each 0.25 convective times, leading to 100
different temporal fields at each location. The total amount of
available flow and wall fields is 26000. Taking into account
that this quantity is more than enough to reach statistical con-
vergence and that the dataset is aimed to be used for training,
validation and testing of different LSMs estimation methods,
three field subsets have been extracted: 7000 fields for train-
ing, 500 fields for validation (only used in the CNN) and 7500
fields for testing. It is important to mention that the field sub-
sets have been separated in the time domain, i.e. belong to
snapshots sets extracted respectively at the beginning and at
the end of the sequence. A sketch of the fields extracted from
the DNS domain is given in Fig. 2, while a description of each
dataset is provided in Table I.

The POD modes have been computed using the fluctuating
velocity fields. Fig. 3 reports both the modes energy distri-
bution (i.e the eigenvalue distribution λi = σ2

i ) and the cumu-
lative energy content for the flow-field snapshots. It is well
known that the first POD modes correspond to the large-scale
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FIG. 3. a) Energy spectrum and b) cumulative energy contribution of
the flow field modes of the channel simulation. Colours refer to the
wall distance position of the flow fields: y+ = 50 ( ), y+ = 100
( ), y+ = 150 ( ), y+ = 200 ( ).

motions present in the flow55,61 while following modes are as-
sociated with smaller and less-energetic structures. According
to previous literature, LSMs and VLSMs account for approx-
imately 40% of the turbulent kinetic energy8,62,63 which ap-
proximately correspond here to the first 10 POD modes. In
the following, we thus focus on the estimation of the time co-
efficients for these modes only, resulting in a low-order recon-
struction of the LSMs and VLSMs. Turbulent flows are char-
acterized by having a rich range of spatial scales, which in this
case makes necessary a large number of modes (between 400
and 900) to reach 90% of the cumulative energy spectrum.
When analyzing the energy contribution of each mode at dif-
ferent wall-normal positions, it can be seen that, the closer to
the wall, the smaller is the contribution of the LSMs, which
is not surprising since close to the wall the smallest scales en-
ergy contribution is more significant15.

III. RESULTS

This section presents the LSM reconstruction with 10 POD
modes using EPOD and CNN techniques. The main imple-
mentation difference is that EPOD is able to estimate simul-
taneously the time coefficients of all the POD modes, while a
CNN needs a separate training for each mode. From the prac-
tical viewpoint, EPOD and CNN work with the same input.
As explained in Sec. II the input data are the streamwise wall-

shear-stress fields, while the predicted output is the first 10
POD time coefficients. As argued in the previous section, this
is normally sufficient to detect the large-scale motions. Hav-
ing available the target fields to be reconstructed, the actual
temporal POD modes of each field can be computed and it is
possible to employ the low-order reconstruction of the fields
obtained with the first 10 modes as reference field.

A. A-priori assessment

Both methods (EPOD and CNN) allow an a priori assess-
ment of the reconstruction ability, without having to rely on a
direct comparison with a ground truth, which is of course not
available in experiments. The estimation performances of the
EPOD can be deduced for instance from the temporal correla-
tion coefficient matrix Ξ. Fig. 4 shows the Ξi,i values for the
first 20 temporal POD modes for all the tested wall-distance
positions and wall-shear-stress-field resolutions. It can be
seen that the matrices exhibit a diagonal dominance in the
north-west corner, which corresponds to a direct relation be-
tween the most energetic modes of flow fields and wall-shear
stress. While this dominance is not a necessary condition for
high-quality reconstruction, it is an indicator of a “healthy”
correspondence of the most energetic features in flow fields
and probe data. This is needed to achieve a compact and ef-
ficient reconstruction, since the energy of each mode is not
spread over a range of modes. However, this dominance dis-
appears starting from the 5th-6th mode. Moreover, this cor-
relation between low-frequency features in the flow and low-
frequency features at the wall impedes the EPOD to capture
the amplitude modulation effects that the LSMs produce over
high-frequency near-wall scales10. The wall-distance is the
most relevant parameter; as expected, the peak of the correla-
tion coefficient of the first modes is larger for the flow fields
located closer to the wall. On the other hand, the resolution
level of the wall measurements seems to have a minor effect,
which could indicate that coarser meshes could be employed
without significantly affecting the estimation quality. This is
clearly an important indication to simplify the practical imple-
mentation of this method in experiments.

For CNNs, the validation error is a directly interpretable
indicator of the quality of the reconstruction. Fig. 5 shows
the evolution of both training and validation datasets for the
first mode of the H050 case (see Table I). During training,
a callback function was used initially to select the number of
iterations, also called epochs, based on the mean-square er-
ror evolution of the validation dataset. However, after the first
training it was noticed that the validation mean-square error
had a significant scatter and a low rate of decrease, while the
training error at the stopping epoch was still clearly descend-
ing for increasing number of epochs. Because of this, it was
decided to fix the number of epochs equal to 100.

An important metric for comparison is the training time
of EPOD and CNN. Both data-driven techniques have been
trained in a standard workstation (Intel R© Core

TM
i9-8950K

CPU @ 2.9 GHz with NVIDIA GeForce R© GTX 1050 Ti GPU
with Max-Q design). EPOD has required 7 minutes to train
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FIG. 5. Mean-squared-error evolution for the training ( ) and
validation( ) datasets for the first temporal POD-mode coefficient
in the case H050 (see Table I).

case M050, while CNNs have required 44 minutes for the
training of the same case. It has to be reminded that 10 differ-
ent CNNs have been trained, one for each of the first 10 first
temporal POD modes. Considering the required time to train
the CNNs for a single temporal POD mode, it is reduced to 4
minutes. The larger computational cost required by CNNs is
counterbalanced by the possibility of tackling non-linear ef-
fects related with the LSMs present in the flow. The estima-
tion time for each field is of the order of 0.01s per snapshot
for CNN, while it is practically real-time for EPOD. This is
important to allow the possibility of active closed-loop flow
control based on flow field estimation. However, it has to be
remarked that the selected architecture is not conceived for
direct implementation in active flow control, and significant
improvements could be obtained employing dedicated high-
performance hardware.
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B. LSMs-reconstruction performance

For the a posteriori assessments of the LSM reconstruction
techniques, several metrics have been used. The first one is
the squared correlation coefficient R2 of the temporal mode
coefficients, which quantifies the quality of the reconstruction
of ψ∗

i before reconstructing the flow fields. It is defined as:

R2
ψi
=

ψ∗
i ψi

2

ψ∗2
i ψ2

i

(11)

The squared correlation coefficient is reported in Fig. 6 for
both EPOD and CNN techniques. Here and in the following,
ensemble-averaged values are indicated as ·. For colour code,
the reader is referred to Table I. CNN abundantly surpasses
EPOD in reconstruction quality for all the analyzed cases, in-
dependently of wall-distance and wall-shear-stress resolution.
The squared correlation coefficient achieved by EPOD for the
case H50 (the one closer to the wall and with higher resolu-
tion, thus the most favourable case) is lower than the value
reached by CNN for case L200 (the most challenging case,
further from the wall and with lower resolution) for all the
first 10 modes. Additionally, EPOD shows a steep drop in
performance beyond the third POD mode in most cases, while
CNNs are significantly more robust. While the analysis here is
limited to the first 10 POD modes due to the available compu-
tational resources, it can be expected that CNNs can pave the
way to successful reconstruction of also higher-order modes.

Overall, the correlation coefficient spotlights the limits of
EPOD for LSM detection. This is most likely to be addressed
to non-linear effects of LSMs on the wall signature, which
are not modelled by EPOD and become more intense when
moving away from the wall. CNNs exhibit a negligible de-
crease of the squared correlation coefficient when going away
from the wall, thus extending the capability of flow-field es-
timation from the wall signature. However, this effect could
be an artifact of the number of selected modes. The energy
content extracted with the first 10 POD modes is different at
each distance from the wall, as shown in Fig. 3. In the regions
closer to the wall (y+ = 50) the first modes do not represent
the LSMs but the near-wall scales affected by them. Thus,
the reconstruction of the full instantaneous fields would feel a
significant larger effect of the wall distance on the reconstruc-
tion performance. In terms of wall-shear-stress resolution,
CNNs show a weak sensitivity, though stronger than EPOD.
This can be probably ascribed to the fact that the non-linear
effects require larger datasets in order to be adequately charac-
terized. This trend can be explained considering that reducing
the resolution would actually tend to the asymptotic result cor-
responding to a 2×2 resolution which would correspond to a
simple MLP. It was shown in Ref. 33 that this neural-network
architecture produces the same output as POD. Consequently
low-resolution configurations were not explored also because,
with such low-resolution inputs, it would be much more inter-
esting to employ temporal signals as input in both EPOD (as
shown in Ref. 8 and Ref. 30) and ANNs (using long short-
term memory for example64).
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of the reconstructed time
coefficients. From top to bottom, wall-distance positions correspond
to y+ = [50,100,150,200]. For colour code, see Table I.

Fig. 7 reports the reconstruction of the streamwise veloc-
ity fluctuation fields at y+ = 150 using the largest wall-shear-
stress resolution for the estimation. This wall distance was
chosen since it has been proven that the geometrical center of
the logarithmic region (defined as y+ = 3.9

√
Reτ ) is the point

where high-momentum LSMs start providing a dominating ef-
fect over the near-wall small-scale fluctuations10 (while for
smaller wall distances low-momentum events are dominant).
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The streamwise velocity fluctuations at this point have been
used in previous studies to predict near-wall13,14 and wall-
shear-stress16 turbulent statistics. In Fig. 7 an instantaneous
field is compared with the low-order reconstruction performed
with EPOD and with that performed with CNNs. The exact
reconstruction using the first 10 modes is included as ground
truth for reference. Visual inspection shows that the CNNs
are able to capture the high- and low-momentum regions of
the turbulent field with high accuracy. On the other hand, as
expectable from the low R2 values, EPOD reconstruction does
not capture any significant flow feature.

A quantitative analysis is carried out by defining the error
in the reconstruction of the instantaneous velocity fields as the
root mean squared error of the fields scaled with the stream-
wise Reynolds stress:

error =

√

(u′∗  u′)2

σu′
(12)

The errors reported in Fig. 8 show that the reconstruc-
tion quality of the instantaneous fields with EPOD is rather
poor, reaching levels around 100% of streamwise Reynolds
stress deviation. The error does not exhibit any significant de-
pendence with the wall-shear resolution. Regarding CNN, it
can be seen that wall-shear-stress resolution has a significant
larger impact than the wall-distance position, reaching a 40%
error in the L050 case. This result is in agreement with the
behaviour of squared correlation coefficient shown in Fig. 6.

The inner-scaled streamwise Reynolds stresses estimated
in each of the four planes, accounting for the reconstructed
LSM velocity fields, are reported in Fig. 8. It can be observed
that CNNs provided a reasonably good estimation indepen-
dently of the wall-shear-stress resolution. Similarly, the tur-
bulent statistics computed with EPOD are not affected by the
wall-shear-stress resolution, which is in line with the results
of Fig. 6. EPOD is significantly underestimating the stream-
wise Reynolds stress values, with this effect being stronger
at larger distances from the wall. This result is not surpris-
ing, since EPOD is a linear operator which is expected to be
severely challenged when the relation between probe and field
fluctuations become strongly non-linear.

IV. CONCLUSIONS

The ability of two different data-driven techniques to re-
construct the LSMs present in a turbulent channel flow us-
ing wall-shear stress measurements has been assessed. Both
techniques have been used to perform a low-order estimation
within the POD basis described by the flow field measure-
ments. The effect of the wall-shear-stress field resolution and
of the wall-distance of the plane to be reconstructed have been
addressed.

The extended proper orthogonal decomposition (EPOD)
has shown a limited capacity to reconstruct the streamwise
Reynolds stress of the LSMs. The reconstruction performance
is severely affected by the wall distance, a limit that can be

addressed to impossibility to model non-linearity with EPOD.
The reconstruction error reaches levels of 100% streamwise
Reynolds stress deviation, with a corresponding significant
underestimation of the streamwise velocity fluctuations of
LSMs.

Convolutional neural networks (CNNs) have shown an out-
standing capability to reconstruct LSMs in terms of turbu-
lent statistics and instantaneous flow fields. The reconstruc-
tion performance is only weakly affected by the wall distance
and the wall-shear-stress resolution. Nevertheless, this effect
could be addressed to the number of selected POD modes,
as long as their energy content varies with wall distance. In
all tested cases the reconstruction error is significantly lower
than the error achieved by EPOD. It is impressive that the re-
construction error of CNN of the most challenging case (min-
imum wall-shear resolution and maximum wall distance) is
about one half of the error of the simplest case for EPOD (i.e.
maximum wall-shear resolution and minimum wall distance).
This opens the path to more robust estimation of flow fields
from wall-data.

It would be interesting, in future investigations, to ana-
lyze the capabilities of CNNs to reconstruct the LSMs in a
flow with a different Reynolds number to that of the training
dataset. This would enable flow-field reconstructions based
on a single computational or experimental training. One key
enabler is that POD spatial modes have been shown to be in-
dependent of the Reynolds number65. In the same way, it is
worth analyzing whether the reconstruction algorithms trained
in a turbulent channel flow would be able to obtain similar re-
sults in other canonical flows, i.e. turbulent-boundary-layer
or pipe flows, suggesting a universal mechanism of non-linear
interactions in wall-bounded flows. Both purposes could be
tackled using the transfer-learning technique, that allows to
transfer knowledge acquired from a solved task, like channel-
flow reconstruction, to a new one, such as the reconstruction
of a pipe flow. For example, Ref. 53 has shown that trans-
fer learning can be used to reduce the computational cost of
training a CNN for the reconstruction at a new wall distance
by using a previously-trained CNN at a different wall distance.

With respect to a future experimental set-up to test the ca-
pabilities of CNNs to reconstruct LSMs, recent investigations
have shown that it is possible to obtain time-resolved heat-
transfer maps with resolutions of the order of 100×10066–68.
Whereas the relationship between heat-transfer maps and
wall-shear-stress measurements have been shown in Ref. 69,
it might be expected that this input resolution is enough for
CNNs to provide accurate LSM reconstructions.
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