Sensing, Tracking, and Reasoning with Relations

Leonidas J. Guibas
Computer Science Department
Stanford University
Stanford, CA 94305

1 Introduction and Background

Suppose we have a set of sensor nodes spread over a geo-
graphical area. Assume that these nodes are able to perform
processing as well as sensing and are additionally capable
of communicating with each other by means of a wireless
network. The sensors may include small video or still cam-
eras, acoustic microphone arrays, PIR (passive infrared
intrusion), seismic, or magnetic sensing devices. Exam-
ples of such integrated devices include the UCLA/Sensoria
WINS nodes [34] or the Berkeley motes [28]. The sensors
may be controllable in limited ways: they can activated,
possibly aimed, commanded to sense and transmit data to
their neighbors, etc. Some may be even mounted on mo-
bile ground or air platforms and directed to move to specific
locations. Though each node is an independent hardware
device, they need to coordinate their sensing, computa-
tion, and communication in order to acquire relevant infor-
mation about their environment so as to accomplish some
high-level task. The integration of processing makes such
nodes more autonomous and the entire system, which we
call a sensor net, becomes a novel type of sensing, process-
ing, and communication engine.

Such sensor nets can be deployed in a variety of civilian
and military contexts, including factory automation, envi-
ronmental monitoring, health-care delivery, security and
surveillance, and battlefield awareness. Their advantages
over alternate architectures have been argued, for example
in [34]. Briefly, these include:

* deployment can be rapid, as no cabling infrastructure
is needed,

* sensor placement close to signal sources results in
better signal-to-noise (SNR) ratio,

* on-board processing allows the sensors to communi-
cate compressed signal data,

* the system can be made robust against the failure of a
small number of its sensor nodes, and

* a distributed implementation allows the system to

scale gracefully — unlike sensor systems with cen-
tralized processing.

Unique to such sensor nets is the ability to cover wide areas
that no single sensor could possibly observe and to provide
dense spatial sampling with multiple aspect and sensing
modalities. Most of all, the integration of processing with
sensing allows dimensionality reduction on the acquired
signals and the communication of information in a form
that is far more compressed and symbolic.

Nevertheless, the distribution of sensing and processing
comes with certain limitations on the processing and com-
munication capabilities of such device. Power consump-
tion will clearly be an issue, as such integrated sensors will
typically be untethered or mounted on mobile platforms.
There will also be communication range, bandwidth, and
susceptibility to noise limitations due to the wireless tech-
nologies (such as radio links) commonly used with such
devices. These limitations make it important that the soft-
ware controlling the sensor net be built so as to optimally
use the net’s resources towards the task at hand. The goal
of this paper is to present a methodology for planning and
controlling the sensing, processing, and communication
actions needed to accomplish a certain mission, while re-
specting the system resource constraints described above.

To be concrete, consider two settings. SETI is people mov-
ing around a building; we are interested in security and
surveillance applications, such as the detection of unusual
activities and the monitoring of particular suspicious indi-
viduals. SET2 is a military engagement in an open terrain
with a few buildings and ground enemy (e) and friendly (f)
vehicles moving in it; a commander must make key deci-
sions that depend on the world state. In both settings, the
sensor net needs to provide useful high-level information
to its clients.

In SETI we may be interested in answering spatio-temporal
queries such as:

* are there groups of people moving coherently?

e track and report the location of the leader of group g
for the next t minutes.

In SET2 we may have queries of the following type:

e is friendly vehicle f13 surrounded by enemy vehicles?

* which enemy vehicle is likely to be able to get close
to building b, first?

Such queries may also be a tool for organizing the sensor
net itself. Indeed, suppose the sensors are actually mobile
and each can talk to all its neighbors with a range. We may
want to:

* organize the sensors into clusters and maintain these
clusters as the sensors move around.

Such a clustering can be used to define a hierarchical struc-
ture on the nodes that conforms and adapts to the nodes’
changing topology.

In this paper we propose a mathematical framework on
how high-level queries, such as those above, can be trans-
formed into low-level sensing, computation, and communi-
cation operations designed to produce the desired answers
— while minimizing the power and other resources ex-
pended in satisfying the queries. As we illustrate below,
this is an algorithm design problem with many new twists;
additional work is needed to understand and elaborate all
its ramifications. Note that several of the queries above
refer to global, aggregate, and relational aspects of the en-
vironment. Indeed, though most sensing acquires data in
the continuous domain, the information most useful to the
system’s clients is often of an aggregated or discrete na-
ture. Thus by its nature the sensor net is a hierarchical
hybrid system where sampled continuous signals transi-
tion to discrete symbolic information as we go up the task
hierarchy. We argue that the interface between continuous
and discrete data can be pushed to a very low level in the
system architecture, with significant benefits in economy
and speed.

Our focus will be on tracking spatial or temporal relations
between objects and local or global attributes of the envi-
ronment, as opposed to the detailed estimation of positions
and poses of individual objects. High-level behaviors of
objects may be trackable more robustly than their exact
positions, relations between objects may be easier to track
than each object separately, and the large-scale behavior
of an ensemble of objects may be easier to ascertain than
the motion of the individual objects. By focusing on rela-
tions and the logical structure of the evidence with respect
to the task at hand, we will be able to allocate sensor and
computation resources where they are most needed.

The paper is organized as follows. Section 2 discusses the
possibility of sensing relations between objects at a low
level and aggregating such information towards a useful
end. Section 3 discusses the kind of algorithmic theory
necessary to design and analyze such sensor algorithms.
In Section 4 we present some considerations relevant to
directly sensing non-local relations. Section 5 takes on the
all important topic of updating information under object
motion and shows how to do relational tracking. Section 6
discusses issues related to uncertainty and probabilistic rea-
soning and, finally, Section 7 concludes the paper.

2 Objects and their Relations

The purpose of a sensor system is often viewed as obtain-
ing information that is as extensive and detailed as pos-
sible about the unknown parts of the world state. Any
targets present in the sensor field need to be identified and
localized. Their motion must be tracked and their commu-
nications intercepted. All this data is to be centrally aggre-
gated and analyzed. This is a reasonable view when the
potential use of this information is not known in advance,
and when the cost of the resources needed to acquire and
transmit the information is either fixed, or of no concern.
Such a scheme, however, runs the danger of flooding the
network with useless data and depleting scarce resources
such as battery power and human attention, when that is a
concern. There are obvious ways to be more selective in
choosing what sensor nodes to activate and what informa-
tion to communicate; protocols such as directed diffusion
address exactly this issue [25].

But there are a number of other, less obvious ways that
the sensor net may be effective yet economical at the same
time:

* If the goal of identifying and localizing a few targets
close to a sensor is to ultimately establish a spatial
relation between them, it may less expensive for the
sensor to sense the relation directly, rather than at-
tempt full target localization.

* Partial information about the environment can be ag-
gregated and saved in certain nodes. If this is done
in a clever way, a variety of global queries can be
answered just be combining these prestored answers,
without requiring any additional sensing and without
imposing a significant storage load on the nodes.

Let us look at some examples to see what savings might be
possible.

LEADER_IN_THE_CORRIDOR: Consider the simple 1-D
scenario in Figure 1, which takes place inside a building
where two corridors meet near an exit. Individuals a, b, c,
d, and e are running towards the exit, while trying to avoid
individual m. They are being tracked by cameras 1, 2, and

3, as shown. The tracking system is interested in knowing
who among these five individuals is leading the group, i.e.,
is ahead of everyone else and therefore most likely to exit
first. The building and camera geometry is assumed to be
known in advance. Although the sensor system could try
to localize the individuals involved, the cameras can also
directly sense spatial relationships between these individ-
uals. In the configuration shown, camera 2 can sense that
a > b, while camera 1 can sense that b > ¢, ¢ > d, and
d > e, where ‘>’ indicates the ‘AHEAD_OF’ relation. These
relations allow the sensor system to logically conclude that
a is the current leader of the group.

Figure 1: Tracking the leader in the corridor.

Note that the cameras may be able to ascertain these ele-
mentary spatial relationships with simple image process-
ing, based just on visual features allowing identification of
the individuals and without either full camera calibration
or target localization. Assuming that the camera positions
are known relative to each other, hand-off of individuals
from one camera to another can also help establish such
spatial relationships (say an individual enters from the left
side of the viewing frustum and is therefore known to be
‘to the left’ of other individuals in the scene).

AM_I SURROUNDED?: In this 2-D scenario, we have
friendly and enemy vehicles present in a relatively flat ter-
rain. Suppose that we want to know if friendly vehicle f
is surrounded by enemy vehicles eq, e, and e3. For the
sake of this exercise, let us use the following geometric
definition of being surrounded: f is surrounded if there is
no line in the plane that can separate f from all of ey, e,
and e3. Such a configuration is shown in Figure 2. Sup-
pose there exist three PIR sensors s, 52, and s3, located
respectively inside the triangles feses, feser, and fejes.
These sensors (perhaps using also some additional infor-
mation available to the sensor net) sense that the vehicles
are inside the cones shown in Figure 2. In each case not
all of the cones emanating from the same sensor can be
contained inside a single half-space supported by the sen-
sor; this implies that the sensors can assert the geometric
relations CCW (feze3), CCW(fezer), and CCW(fejer),
where CCW (abc) is the relation that points a, b, and ¢ in
the plane form a counter-clockwise oriented triangle. From
these three mathematical relations we can conclude that we
also have CCW (ejeze3) and that in fact friendly vehicle f

is surrounded, in the sense given above.

Figure 2: Determining if a vehicle is surrounded.

Note that in this example the enemy vehicles need not be
precisely localized — a scaled version of this configura-
tion can make the regions in which the enemy vehicles
have been determined to lie arbitrarily large. Furthermore,
the sensor net need only distinguish the friendly vehicle
from the enemy vehicles, but not the latter among them-
selves. Finally observe that the well-placed PIR sensors
that can resolve the AM_I_SURROUNDED query need not
not be physically close to any of the vehicles involved.

The CCW spatial relations used above can be useful for an-
swering a variety of other geometric queries. For instance,
we may be interested in knowing what are the extremal
members in a group of targets, such as the northernmost
or westernmost targets. Overall all directions, the set of
extremal targets corresponds to the convex hull of the tar-
get group, which is the smallest convex region guaranteed
to contain all the targets. In Figure 3, the four CCW rela-
tions shown allow us to conclude that the convex hull of
these four targets is abc. This is an artificially small ex-
ample and in general, when many targets are present, only
a small fraction of the targets will be on the convex hull.
The convex hull can always be determined by an appro-
priate set of CCW relations of size linear in the number of
targets [14]. In fact, the ‘surrounded’ condition above is
equivalent to the friendly vehicle being in the convex hull
of the enemy vehicles.

TARGET_COUNTING: Suppose we have n sensors fairly
evenly spread over a 2-D area. Suppose further that these
sensors are able to detect, localize, and count the number of
targets in a small region around themselves, either in isola-
tion or in a light-weight collaboration with their neighbors.
This local region diameter is assumed to be comparable to
the sensor spacing. Our global goal is to count the total
number of targets present in certain types of simple geo-
metric areas — and for the sake of this example assume that
these areas must be half-spaces. The target count can easily

Proof of correctness:

CCW(a, b, ¢)

CCW(, b, ¢)

CCW(, c, a)
’ « CCW(d, a, b)

Figure 3: Determining the convex hull of the targets.

be obtained in O (n) time by interrogating and aggregating
data from each of the sensors.

However, if we are willing to precompute and store some
partial results, then we can do significantly better. Suppose
we put a /n x /n grid over the sensor net so that in
each of its cells there is at least one sensor whose sensing
region contains the cell, as in Figure 4. We now activate
the sensors and count the number of targets within each
of the grid cells; furthermore, we propagate these counts
along rows of the grid, so that in the end in each cell we
know the total target count not only in the cell itself, but
also the aggregate count for the cells to its left in its row,
and to its right in its row.

Figure 4: Counting the targets in a half-space.

Consider now a half-space query, as shown in Figure 4.
Note that, except for the at most 2,/n grid cells intersected
by the half-space edge, all other cells are either fully con-
tained in the range, or are fully outside the range. We
can easily compute the total number of targets in the half-
space by aggregating target counts from the partially cov-
ered cells, plus the relevant pre-stored totals for each row
from their left or right neighbors, as appropriate. Thus, by
using storage only for local targets and two counts in each
node, we are able to answer the half-space target counting
query in O(4/n) time. Note that this applies to any half-
space query: our preprocessing has exploited knowledge
of the general shape of the query (half-space) but not of its
exact parameters. By using more sophisticated geometric
methods, the same can be done for target counting in areas

that have other simple geometric shapes; furthermore the
assumption about even distribution of the sensors can be
dropped — as long as the union of the sensed regions cover
the domain of interest. This falls under an area studied in
computational geometry known as range searching [31, 3].
To our knowledge, little has been done on this in this di-
rection in the sensor setting; the closest is work motivated
by the data-base view [10, 11].

CLUSTER_MAINTENANCE: In this scenario we have n
friendly vehicles carrying sensors. These vehicles wish
to organize themselves into clusters, based on their current
locations and a certain desired cluster radius (perhaps cor-
responding to a radio link range); see Figure 5. The cluster
organization will allow for simpler communication proto-
cols among vehicles in the same cluster, and avoid dupli-
cate sensor measurements by nearby vehicles. In [17] we
gave a distributed randomized algorithm that performs this
type of cluster formation and yields a number of clusters
that is a constant-fraction approximation of the optimum
possible, with high probability. The algorithm is based on
a ‘cluster-head—nomination’ protocol. We assume that ini-
tially each vehicle has a unique ID (UID) — these can be
assigned by standard protocols (e.g. use the serial number
of the vehicle), or by a random process. Each vehicle nom-
inates as a cluster head the vehicle of highest UID that is
within its radius (this might be itself). All nominated vehi-
cles become cluster-heads and form a cluster with all their
nominators (except for those that they themselves became
cluster heads). This extremely simple protocol does not
quite work, but as shown in [17], a very simple hierarchi-
cal variant of the same algorithm does. In the hierarchical
version we use repeatedly the cluster nomination procedure
with geometrically increasing radii, up to the final desired
radius. At each round only the leaders already elected in
the previous round participate.

Figure 5: Clustering vehicles.

An interesting aspect of this algorithm is that it can be
implemented without knowledge of the actual geographic

positions of the vehicles. The protocol only needs for each
node to be able to know what other nodes are within certain
distance ranges fromit. This could be done by broadcasting
at different strengths and asking ‘who is there?’. While
not so important for vehicles that typically will have GPS
devices, this observation means that the same algorithm,
implemented using directly sensed distance relationships,
could be made to run on much lower power mobile sensor
devices.

Since motion and vehicles are inherent in all the above ex-
amples, the reader may wish to ask what happens when we
wish to answer such queries not just once, but during a cer-
tain period in which motion occurs. This will be the topic
of Section 5, where we will see how relational attributes
can be updated incrementally.

3 Reasoning with Relations

If we knew the relevant manifest variables defining the
world state (say the position and identity of each target),
then computing the answers to queries such as those dis-
cussed above is a standard algorithm design problem. An
algorithm typically proceeds by doing both numerical and
relational (e.g., test) manipulations on these data, in order
to compute the desired answer. The quality of the algorithm
is judged via certain performance measures on resources
used (time, space, etc.).

This classical algorithm/complexity view needs to be mod-
ified in the sensor net context. Many differences exist:

e the values of the relevant manifest variables are not
known — they have to be sensed;

* elementary relations between such variables may be
easier to determine than the values of the variables
themselves;

* the cost of sensing different variables or relations of
the same type can be vastly different — depending
on the relative locations of targets and sensors, the
sensing modalities available, and the communication
COSts;

¢ frequently the value of a variable, or a relationship
between variables, may be impossible to determine
using the resources available in the sensor net; how-
ever, alternate variable values or relations may serve
our purposes equally well.

Thus we need a new mathematical theory of algorithm de-
sign that includes the cost of accessing the manifest vari-
ables of the problem, or of determining useful atomic rela-
tionships among them. Furthermore, these costs cannot be
precisely known in advance and may only be estimated. In
addition, there may be values and relations that have been
independently determined by the sensor net (say, while

processing other tasks, or during a preprocessing step) and
can be made available to the algorithm at relatively low cost
(communication), as in our target counting example. Thus
the model needs to include both ‘push’ and “pull’ types of
information flow.

To design an overall strategy, several key questions need
to be addressed.

* what are the important objects in the environment to
be sensed?

* what parameters of these objects are most relevant?

* what relations among these objects are critical to
whatever high-level information we need to know?

» which is the best sensor to acquire a particular param-
eter?

* can relations between the objects be sensed directly?

* how many sensing and communication operations
will be needed to accomplish the task?

¢ how coordinated do the world-models of the different
vehicles need to be?

¢ at what level what do we communicate information,
in the spectrum from signal to symbol?

Addressing these questions presents several challenges. In-
deed, while the computational and communication com-
plexity of different algorithms for the same problem can
be assessed with standard techniques, the on-line nature of
sensing will require the use of methods such as competi-
tive analysis [36], or the value of information [24], or other
sensor utility measures [35, 12] to account for the fact that
the value of sensor readings cannot be known before they
are made.

4 Sensing Non-Local Relations

In our LEADER_IN_THE_CORRIDOR example, the elemen-
tary > (‘AHEAD_OF’) relations relevant to the problem are
all between pairs of objects both visible from the same
camera. Such ‘local’ relations are often all that we need to
reason about a situation. However, local relations are not
always sufficient. In the AM_I_SURROUNDED scenario, for
example, each of the three CCW relations used are indeed
sensed by a single PIR sensor. In general though, the sen-
sor net may be tasked to try to ascertain if a CCW relation
holds between three targets, without knowing that there is
a PIR sensor that can see all three in the fashion shown
— indeed, such a sensor may not exist. Yet by sufficiently
localizing the targets using combinations of other sensors,
the truth of the CCW predicate may still be determined
with high confidence.

Suppose the sensor net has three probability distributions
describing its belief about the locations of the three targets

11, t2, and 3. Using this information we can ask: ‘what
is the probability that CCW (¢, 12, £3) is true?” Unless this
probability comes out to be very close to 1 or to 0, the
sensor net does not have adequate information about the
targets to determine the validity of CCW(#1, t2, t3) with
high confidence. Note that the CCW relation may be un-
certain because of extrinsic reasons, say by reason of the
poor localization of the targets, or because of intrinsic rea-
sons, when in fact the three targets are almost collinear.
The sensor net may choose to expend additional sensing
and communication resources so as to localize some of
the three targets better, thus hopefully increasing the con-
fidence that CCW is true or false. Or the sensor net may
simply report that the (truth or falsity of the) relation can-
not be determined with sufficient confidence, and thus the
overall task manager should seek to establish the eventual
goal by alternate means. The decision between the two
options is delicate: the sensor net has to weight the po-
tential benefit of the new information against the resources
needed to acquire it.

The sequence of four images below (Figure 6) shows a
simulation of the belief state of the system on the loca-
tions of the three targets after successive sensor readings.
A fairly dense and uniformly distributed sensor field of
acoustic sensors has been assumed. For simplicity we use
only amplitude sensors and therefore each sensor reading
helps localize a target to within an annulus centered at the
sensor. In the initial state two readings have been taken on
each target. In each subsequent frame a sensor was chosen
to reduce the location uncertainty of the most uncertain tar-
get. In each case the ‘X’ indicates the target location, the
shaded boxes the system belief state distribution for a tar-
get, and the highlighted ‘+’ the location of the next sensor
to be used.

@

next sensor

Figure 6: Resolving the CCW relation.

3)
R
: next sensor
d
0 50 100 150
150
next sensor
100+
: 4)
s}
Al =1l
[} 50 100 150
150
1 L %]
' : 5

By frame (5) the targets have been localized sufficiently
for resolving the CCW relation. This is shown in Figure 7
that displays the amount of probability mass in the product
space shifting from the uncertain bin (gray) to the counter-
clockwise bin (white) with each additional sensor reading.

A further discussion of the fundamental issues in incorpo-
rating probabilistic reasoning in our sensing and tracking
algorithms is given in Section 6.

Itis interesting to investigate algorithms for optimal sensor
selection in order to reduce uncertainty in the relations we
are trying to establish. In our CCW example above, this can

09

08

07

Figure 7: Reduced CCW uncertainty after each sensor reading.

arise because the distributions for ¢1, t>, and #3 allow a suffi-
cient mass of triplets of possible target locations, one each
for t1, 1, and 13, that are collinear or possibly clockwise
oriented. Consider now the situation in Figure 8. Note that
PIR sensor s; may look at one of the tails of the distribution
for target #; and, upon seeing nothing there, lop off a large
chunk of this distribution and reduce its spread. Yet that
reduction is almost useless as far as eliminating wrongly
oriented triplets of possible target locations. Another PIR
sensor s may lop off a smaller part of the #, distribution,
yet have a much more significant benefit towards certify-
ing CCW(#1, t2, t3). This example shows that the choice of
which sensors to activate in order to obtain quality infor-
mation about an uncertain relation is subtle. Furthermore,
the sensor net has to take into account both the expected
information gain from the sensor reading, as well as the
cost of conveying the information from that sensor to the
location where the CCW predicate is to be certified. Such
trade-offs between information quality and communica-
tion costs arise even when only a single target needs to be
localized and have been studied in the information-driven
sensor querying (IDSQ) framework of [13].

Figure 8: The effect on CCW of localizing targets.

5 Incrementally Updating Information

In many contexts we may be interested not just in answer-
ing a question about the state of the world once, but in
continuously monitoring the answer to the query over a

period of time. Let us refer to the quantity we seek to track
over time as the attribute of interest. In such situations it
behooves us to try to maintain the value of this attribute
incrementally, rather than recomputing it from scratch at
each step. One advantage of the relation-based attribute
computations we propose is that the defining objects can
move, but as long as the relations of interest among them
stay valid, our attribute computation also remains valid. Of
course, at some point, one of the supporting relations be-
tween objects may either become invalid, or it may still be
valid but the information available to the sensor net may be
insufficient to certify its validity. When such events hap-
pen, we can hope that either a different support set for the
value of the attribute can be easily established, or that the
value of the attribute itself can be updated incrementally.

Consider again out LEADER_IN_THE_CORRIDOR example.
Suppose that individual d moves ahead to overtake c, as in
Figure 9. Camera 1 can no longer support the relations b >
c and ¢ > d — however, camera | can support the relation
b > d and camera 2 can support the relation b > c. It
follows that the conclusion that a is the leader is still valid:
all the other nodes can be reached from a by following
chains of “>’ relations.

Figure 9: Maintaining the leader in the corridor.

In general we can think of such situations as follows. A
computation (or frequently just the value) of the attribute
we are interested in is certified by a number of elementary
relations among the objects involved. We call these ele-
mentary relations certificates and think of them as a cache
of assertions about the world whose job is to simplify the
computation of our attribute. As objects move and relations
fail (or become unsupportable by the sensors), we must up-
date our assertion cache so that at all times we have a valid
computation of the attribute of interest. Exactly how the
cache should be updated by seeking new relations support-
able by the sensors is problem dependent. This assertion
cache design problem is addressed by the framework of
Kinetic Data Structures [22, 8] (or KDS for short), which
are data structures aimed for problems dealing with objects
in motion. When the sensors can no longer support one or
more of the certificates in the assertion cache, a KDS al-
gorithm is invoked to try find an alternate certification of
the attribute computation, or to repair the computation in-
crementally and certify the new computation as well; see

Figure 10.

Certificate
correctness failure

N]\

Figure 10: The inner loop of a kinetic data structure.

Proof of

L

Attribute

Proof update update

Look again at the simple convex hull example we showed
in Section 2. Suppose that targets a, b, and ¢ are stationary
and only target d is moving as shown in Figure 11. At
some point the certificate CCW (d, b, ¢) will no longer be
supported by the sensors and soon afterwards its negation,
CCW(c, b, d) will be supported (the CCW predicate flips
its value whenever two of its arguments are transposed).
In this case the KDS repair mechanism will discover that
the convex hull has actually changed and is now abdc, a
conclusion supported by the certificates shown.

Old proof New proof
CCW(a, b, ¢) CCW(a, b, ¢)
|CCW(d, b,c)| | [CCW(c, b, d) |
CCW(, c,a) CCW(, c,a)
CCW(d,a,b) | CCW(d,a,b)

Figure 11: Updating the convex hull of the targets.

If the certificate set is chosen judiciously, the KDS repair
can be a local, incremental process — a small number of
certificates may leave the cache, a small number may be
added, and the new attribute certification will be closely
related to the old one. A good KDS exploits the conti-
nuity or coherence of motion and change in the world to
maintain certifications that themselves change only incre-
mentally and locally as assertions in the cache fail. The
design of a good certificate set to maintain presents an in-
teresting trade-off. On the one hand we must keep enough
information about the state of the world to allow a quick,
incremental recomputation of the attribute. One the other
hand, too much information can be costly, as it will force
the algorithm to process many certificate failures that are

possibly irrelevant to the attribute of interest. Thus, in
the same way that classical data structures need to bal-
ance the efficiency of access to the data with the ease of
its update, kinetic data structures must tread a delicate path
between ‘knowing too little’ and knowing too much’ about
the world. A good KDS will select a certificate set that is
at once economical and stable, but also allows a quick re-
pair of itself and the attribute computation, when one of its
certificates fails.

A KDS may also exploit knowledge about the motions of
the objects involved, their so-called motion plans, to avoid
continuously checking some certificate conditions. Infor-
mation about the motions, either known a priori or es-
timated from the observed data, can be used to generate
conservative approximations as to when certificates might
fail, and therefore eliminate needless continuous sensing
and the power consumption associated with that. Thus,
typically associated with a KDS is an event-queue mecha-
nism in which certificates are placed that cannot fail until
sometime in the future.

A number of measures have been proposed by which to
evaluate the quality of a KDS for a specific problem. These
include:

responsiveness: a KDS is called responsive if the cost,
when a certificate fails, of repairing the certificate set
and updating the attribute computation is small;

efficiency: a KDS is called efficient if the number of cer-
tificate failures it needs to process is comparable to
the number of required changes in the attribute de-
scription, over some class of allowed motions;

compactness: a KDS is called compact if the size of the
certificate set it needs is close to linear in the degrees
of freedom of the moving system; and

locality: a KDS is called /ocal if no object participates in
too many certificates; this condition makes it easier
to re-estimate certificate failure times when an object
changes it motion law.

KDSs have been primarily studied in the context of ge-
ometric problems that arise in virtual reality simulations.
Good KDSs have been developed for a variety of spatial
proximity [9, 1, 21, 17] (e.g., collision detection, closest
pair, clustering), extent [4, 8] (e.g., diameter, convex hull),
visibility [6, 5] (binary space partitions, occlusion), and
connectivity [2, 23] (e.g., minimum spanning trees, sparse
spanners) problems. For example, the three frames below
from a kinetic convex hull simulation (Figure 12) illustrate
a combinatorial change to the hull in a larger example,
based on the algorithm described in [8]. On the bottom
is a time window showing a moving ticker tape of certifi-
cate failure times. The long bars represent real changes to

the convex hull, while the short bars show failures in the
certification, even though the convex hull has not changed.
The relative frequency of the two types of bars captures the
efficiency of the KDS.

g .
¢ ®
A
€
¢
9
¢ £ <«
»
S ® vy
¢
L $
%e
. <
I T T T
- |
¢ ¢ ® ey
$
8
2@
& €

Figure 12: A combinatorial change in the convex hull.

Unlike the sensor context considered here, the virtual re-
ality setting is significantly simpler as the instantaneous
motion plans of all the objects are known and therefore
reliable prediction of certificate failure times is possible.
This classical KDS model needs to be augmented with con-
siderations for the cost of sensing and communication of
information, as well for dealing with uncertainty, as dis-
cussed in Sections 3 and 6.

In the context of sensor nets kinetic data structures can be
used to support a variety of infrastructure tasks, including:

* maintenance of optimal sensor groups for tracking a
particular moving target,

* maintenance of clusters among a set of moving ve-
hicles; indeed the distributed clustering algorithm
briefly mentioned in Section 2 can also maintain the
clustering as the vehicles move, while guaranteeing
nearly optimal optimality and stability for the clus-
ters [17],

* maintenance of communication paths between

friendly vehicles using the sensor net as a relay, or
communication paths between nodes producing and
consuming information on the net; for related work
see [18].

More generally, KDSs can be used to aid in motion predic-
tion, which is essential for successful tracking of moving
targets — a good tracker always incorporates a motion
predictor for the target, including both internal dynamic
constraints as well as a model of global objectives. We
have shown elsewhere that a KDS can be used to track the
local environment of each target, e.g. the presence of ob-
stacles, friendly or enemy vehicles, etc. [19]. This detailed
knowledge of the local environment allows for much better
prediction of what a target is likely to do next.

6 Probabilistic Relational Reasoning

Since noise and uncertainty is inherent in all sensing, mod-
els of both objects and their relations must be set in a prob-
abilistic setting in order to be practically useful. For exam-
ple, the belief state of the system as to the location a target
¢t must be represented as a probability distribution (PDF).
Both parametric and non-parametric representations are
useful for such distributions. Though simple analytic mod-
els, like Gaussians, are the easiest to deal with, they can-
not capture complex multimodal distribution shapes. The
CCW example discussed in section 4 was based on repre-
senting a distribution as an array on a quantized 2-d grid
of cells. A quad-tree hierarchy was implemented on top of
each such target distribution to aid in the evaluation of the
likelihood of the CCW relation. A popular way to proceed
is to represent distributions as discrete sets of weighted
particles in a factored position space, where each parti-
cle is a hypothesis about the position of one or a small
group of objects, and its weight indicates the probability
of that hypothesis. Such particle filtering methods have
been extensively and successfully used in statistics and in
several application areas [33, 26]. In its simplest form this
representation assumes that the motion of different objects
are uncorrelated, which is rarely true. Joint distributions
can capture dependencies among the objects as needed and
full or approximate factorizations can be used to reduce the
dimensionality.

Particle-based representations of distributions have a num-
ber of advantages for our purposes

* they can model arbitrary distributions,

* the amount of detail can be varied as needed by con-
trolling the number of particles used, and

* combinatorial methods can be used to deal with the
computational complexity associated with large num-
bers of particles

We must also devise ways to represent uncertainty on the

values of the complex attributes that we wish to maintain or
track as the objects move. Such attributes are often geomet-
ric structures, like a Delaunay triangulation, a convex hull,
or a minimum spanning tree that involve discrete (combi-
natorial) as well as continuous data. Thus the challenge
becomes how to model distributions over such combinato-
rial objects. Though in in principle the particle approach
can deal with arbitrary distributions, the large number of
possible structures makes this approach impractical. For
example, n points in the plane can have O (n? ™) different
triangulations or spanning trees [32], each of which might
be the correct attribute value. Again, the only way to deal
with these exponential-size distributions is by factorizing
them by using as many independence assumptions about
the inputs as we can safely make. For example, a cycle
separator in a Delaunay triangulation all of whose edges
can be certified with probability 1 effectively decouples
the uncertainty about what the triangulation looks like in-
side the cycle and outside the cycle. If we can factor a
distribution into parts whose uncertainties are independent
of each other, we can then use particles to represent each
of the parts separately and thus attain dimensionality re-
duction and a great compression in the overall number of
particles needed for a specified degree of approximation.
Such factoring is heavily exploited in the graphical mod-
els community (Bayes nets, Markov nets) for probabilistic
inference with good success [26].

Indeed Bayesian Networks (BNs) [27] have been a success-
ful and widely used probabilistic model for objects when
reasoning in the presence of prior beliefs and sensor ev-
idence. Locality of interaction is embodied by explicit
conditional independence assumptions between random
variables, encoded in a graphical representation: a node is
conditionally independent of all its non-descendants, given
values for its parents. In the context of moving objects, Dy-
namic Bayesian Networks (DBNs) [15, 37] capture the de-
pendence between the past and current states of an object.
By appropriately enriching the notion of ‘object state’ we
can usually make the Markovian assumption that the fu-
ture state of the system is independent of its past, given the
present.

While DBNS are useful models for a system whose overall
composition is fixed, they are inadequate, as defined above,
for the task of tracking scenes where the relations between
individuals change constantly, there is uncertainty about
the identity of the individuals involved [7], and the set of
individuals varies over time as objects enter and leave the
scene [20]. In [16, 29, 30], a new relational probabilis-
tic language was introduced, which extends the Bayesian
network language with additional features representing ob-
jects and the relations between them. Each object (entity)
in the domain has its own attributes, which correspond to
random variables in the standard Bayesian network frame-

10

work. The language allows the attributes of one object
to depend, probabilistically, on properties of a related ob-
ject. These extended DBNs are called Relational DBNs
(RDBNs) — they can serve as probabilistic models of re-
lations between objects.

In our environment, the sensors and our tracking ability are
rarely sufficient to determine the truth of each KDS certifi-
cate with certainty. As discussed above, a certificate fails
when the sensor(s) tracking it can no longer confirm its va-
lidity with high confidence. This can occur both when the
corresponding relation has become false or when the sen-
sor(s) simply cannot verify it. Unlike the classical KDS
setting where a failed certificate always leads to a proof
and/or attribute repair, in our situation a failed certificate
may initiate a search for alternate support structures us-
ing other high-confidence certificates, or it may have to
allow for having multiple active hypotheses about the at-
tribute value, each with some significant probability. It
may also happen that no single hypothesis has significant
probabilistic mass, but certain limited sets of hypotheses
do. These hypotheses sets must be appropriately summa-
rized and used as a unit by the KDS mechanism.

To ground this discussion, consider the simple certificate
a > b in the LEADER_IN_THE_CORRIDOR example above.
If no camera can certify a > b directly, and if we do not
know either a or b’s position with certainty, we cannot infer
thata > b with certainty. However, if we have a joint prob-
ability distribution over the (continuous) RDBN attributes
representing the positions of a and b, we can determine
the probability of this event. Now, consider the task of
tracking the entire global relation ‘a is leading the group.’
Computing the probability of this event directly requires
that we reason about the positions of all of the individuals
simultaneously: The problem does not decouple, because
our beliefs about the positions of different individuals are
usually correlated. The KDS decomposes this global rela-
tion into a set of local certificates. If k certificates are used
in the KDS proof, and each is true with probability 1 — ¢,
the total probability of error is at most ke.

Care, however, must be exercised in selecting the certifi-
cates. An RDBN tracking algorithm can maintain a belief
state where certain correlations are maintained while oth-
ers are ignored. In particular, if @ and ¢ are in different
‘clusters’ in the belief state, then our estimate of the joint
distribution of their positions is likely to be only a rough
approximation, and therefore so will our estimate of the
probability that a is in front of c¢. Fortunately, we can inte-
grate the strengths of the KDS framework with the RDBN
belief state representation. The KDS framework allows us
to ‘prove’ that a > ¢ indirectly, by having a certificate for
a > b and another for b > c. As our belief state represen-
tation allows overlapping clusters, we might have a and b
in the same cluster, and b and ¢ in the same cluster. Hence,

although we might not be able to conclude directly that a
is ahead of ¢, we might be fairly certain that a is ahead
of b and b is ahead of c. (Of course, if computational re-
sources allowed us to maintain an exact belief state about
the entire situation, such local inconsistencies would not
be possible.) To implement this scheme, the KDS algo-
rithm has to be extended to search for proofs that ‘match’
the RDBN belief state representation. More precisely, the
KDS will search for a proof based on certificates that are
easy to verify with confidence based on the current belief
state representation. Conversely, the KDS can guide the
RDBN belief state representation, in a way that is more
conducive to finding good proofs for the global properties
we are trying to track.

We gave a simple example of estimating the CCW relation
assuming uncorrelated target belief states in Section 4. Us-
ing reasoning such as the above, we can then proceed to
attack the AM_I_SURROUNDED? scenario.

The KDS can also be used to guide the RDBNs and the
their associated approximate tracking algorithms. First,
the RDBN defines its dependency model via a set of re-
lations between individuals. This set can change over
time, as the situation evolves. Consider one more time
our LEADER_IN_THE_CORRIDOR example, as shown in Fig-
ures 1 and 9: the KDS might become aware that a is near
obstacle X and also visible from individual m (based, say,
or a geometric analysis of the locations of a, m and X).
This relation is used by by the RDBN to adapt its depen-
dency model, resulting in a prediction that a will pass to
the right of X so as to avoid m. As the scenario evolves,
camera 3 will see a, updating our belief about a’s location.
The KDS will drop obstacle X from a’s local environment,
but add the obstacle Y'; the relations used by the RDBN will
be adjusted accordingly. As the relations change, the ap-
proximate tracking algorithm also changes its belief state
structure to model the dependencies between the objects
that interact strongly. We can allow the choice of the belief
state structure to depend on the needs of the KDS, so that
the belief state is more likely to provide accurate proba-
bilities about certificates that support the global properties
we are trying to track.

7 Conclusion

The sensor net architecture presented in this paper starts
from a high-level description of the mission or task to be ac-
complished and then commands individual nodes to sense
and communicate in a manner that will accomplish the
desired result with attention to minimizing the computa-
tional, communication, and sensing resources that will be
required. Much work remains to be done to refine and
implement the relational sensing ideas presented here and
validate their performance. We believe, however, that the
potential pay-off for the relation-based sensing and track-

11

ing we have proposed can be large, both in terms of devel-
oping rich theories on the design and complexity of sensing
algorithms, as well as in terms of the eventual impact of
the deployed sensor systems.

Acknowledgments. The author wishes to acknowledge
many useful discussions on the topics of this paper with
Horst Haussecker, Jim Reich, and Feng Zhao at the Xerox
Palo Alto Research Center, as well as Feng Xie at Stanford
University. Feng Xie implmented the CCW simulations
shown in Section 4. The discussion on probabilistic rea-
soning in Section 6 is the result of joint work with Daphne
Koller of Stanford University. This research is supported
in part by the Defense Advanced Research Projects Agency
(DARPA) under contract number F30602-00-C-0139 to
Xerox PARC, through the Sensor Information Technology
Program, and in part by a grant from the Stanford Network-
ing Research Center.

References

[1] P. Agarwal, J. Basch, L. Guibas, J. Hershberger, and
L. Zhang. Deformable free space tilings for kinetic col-
lision detection. In Proc. 4rd Workshop on Algorithmic
Foundations of Robotics (WAFR), 2000.

P. Agarwal, D. Eppstein, L. Guibas, and M. Rauch Hen-
zinger. Parametric and kinetic minimum spanning trees.
In IEEE Symposium on Foundations of Computer Science
(FOCS ’98), pages 596-605, 1998.

(2]

[3] P. Agarwal and J. Erickson. Geometric range searching and
its relatives. In B. Chazelle, J.E. Goodman, and R. Pollack,
editors, Advances in Discrete and Computational Geometry,
in Contemporary Mathematics Series, volume 23, pages 1—
56. American Mathematical Society Press, Providence, RI,

1999.

P. Agarwal, L. Guibas, J. Hershberger, and E. Veach. Main-
taining the extent of a moving set of points. In 5-th Int.
Workshop on Algorithms & Data Structures (WADS), pages
31-44, 1997.

P. K. Agarwal, J. Erickson, and L. J. Guibas. Kinetic binary
space partitions for intersecting segments and disjoint trian-
gles. In Proc. 9th ACM-SIAM Sympos. Discrete Algorithms,
pages 169—-178, 1998.

P. K. Agarwal, L. J. Guibas, T. Murali, and J. Vitter. Cylin-
drical static and kinetic binary space partitions. In Proc.
13th Annu. ACM Sympos. Comput. Geom., pages 3948,
1997.

Y. Bar-Shalom and T. E. Fortmann.
Association. Academic Press, 1988.

(4]

(6]

[7] Tracking and Data

[8] J. Basch, L. J. Guibas, and J. Hershberger. Data structures

for mobile data. Journal of Algorithms, 31:1-28, 1999.

[9] J.Basch, L.J. Guibas, and L. Zhang. Proximity problems on
moving points. In Proc. 13th Annu. ACM Sympos. Comput.

Geom., pages 344-351, 1997.

Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri.
Querying the physical world. IEEE Personal Communi-

[10]

(1]

[12]

[13]

(14]

[15]

(16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

cations, Special Issue on Smart Spaces and Environments,
7(5), October 2000.

Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri.
Towards sensor database systems. In Proc. 2nd Int. Conf.
on Mobile Data Management, Hong Kong, 2001.

John Byers and Gabriel Nasser. Utility-based decision-
making in wireless sensor networks. In Proc. 2000 IEEE
MobiHOC Symposium, 2000.

M. Chu, H. Haussecker, and F. Zhao. Scalable information-
driven sensor queryng and routing for ad hoc heterogeneous
sensor networks. Report P2001-10113, Xerox Palo Alto
Research Center, Palo Alto, CA, 2001.

Mark de Berg, Marc van Kreveld, Mark Overmars, and Ot-
fried Schwarzkopf. Computational Geometry: Algorithms
and Applications. Springer-Verlag, Berlin, 1997.

T. Dean and M. Wellman. Planning and Control. Morgan
Kaufmann, 1991.

N. Friedman, D. Koller, and A. Pfeffer. Structured represen-
tation of complex stochastic systems. In Proc. Fifteenth Na-
tional Conference on Artificial Intelligence (AAAI), pages
157-164, 1998.

J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu.
Discrete mobile centers. In ACM Symposium on Computa-
tional Geometry (SoCG ’01), 2001.

J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu.
A maintainable spanner routing graph for ad hoc mobile
networks. In ACM Symposium on Ad Hoc Networking and
Computing (MobiHoc ’01), 2001.

S. Goldenstein, M. Karavelas, D. Metaxas, L. Guibas,
E. Aaron, and A. Goswami. Scalable non-linear dynam-
ical systems for agent steering and crowd simulation. In
Proceedings of the International Conference on Robotics
and Automation (ICRA ’01), 2001.

U. Grenander and M. Miller. Representations of knowledge
in complex systems. J. Royal Statistical Society B, 56:549—
603, 1994.

L. Guibas, F. Xie, and L. Zhang. Kinetic collision detection:
Algorithms and experiments. In Proceedings of the Interna-
tional Conference on Robotics and Automation (ICRA 01),
2001.

L. J. Guibas. Kinetic data structures — a state of the art
report. In Proc. 3rd Workshop on Algorithmic Foundations
of Robotics (WAFR), pages 191-209, 1998.

L.J. Guibas, J. Hershberger, S. Suri, and L. Zhang. Kinetic
connectivity of unitdisks. In Proc. 16th Annu. ACM Sympos.
Comput. Geom., pages 331-340, 2000.

Ronald A. Howard. Information value theory. IEEE Trans-
actions on Systems Science and Cybernetics, SSC-2:22-26,
1966.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: a scalable and robust communication paradigm
for sensor networks. In ACM/IEEE Intl. Conf. on Mobile
Computing and Networking (MobiCom ’00), 2000.

Finn Jensen. An Introduction to Bayesian Networks. UCL
Press, London, 1996.

12

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

E.V. Jensen. Introduction to Bayesian Networks. Springer
Verlag, New York, NY, 1996.

J.M. Kahn, R.H. Katz, and K.S J. Pister. Mobile network-
ing for smart dust. In ACM/IEEE Intl. Conf. on Mobile
Computing and Networking (MobiCom "99), 1999.

D. Koller and A. Pfeffer. Object-oriented Bayesian net-
works. In Proc. UAI, 1997.

D. Koller and A. Pfeffer. Probabilistic frame-based systems.
In Proc. AAAI, 1998.

Jifi Matousek. Geometric range searching. Computing Sur-
veys, 26:421-462, 1994.

J. MatousSek and J. NeSetfil. Invitation to Discrete Mathe-
matics. Oxford University Press, Oxford, 1998.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems.
Morgan Kaufmann, 1988.

G.J. Pottie and W.J. Kaiser. Wireless integrated network
sensors. ACM Communications, 43(5):51-58, 2000.

Scott Shenker. Fundamental design issues for the future in-
ternet. IEEE Journal on Selected Areas in Communication,
13(7), September 1995.

D. Sleator and E. Tarjan. Amortized efficiency of list update
and paging rules. ACM Communications, 28(2):202-208,
1985.

P. Smyth, D. Heckerman, and M.I. Jordan. Probabilistic in-
dependence networks for hidden Markov probability mod-
els. Neural Computation, 9(2), 1996.

