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Abstract

Optimizing energy consumption in modern mobile handheld devices plays a very important role as lowering energy

consumption impacts battery life and system reliability. With next-generation smartphones and tablets, the number

of sensors and communication tools will increase and more and more communication interfaces and protocols such

as Wi-Fi, Bluetooth, GPRS, UMTS, and LTE will be incorporated. Consequently, the fraction of energy consumed by

these components will be larger. Nevertheless, the use of the large amount of data from the different sensors can be

beneficial to detect the changing user context, to understand habits, and to detect running application needs. All

these information, when used properly, may lead to an efficient energy consumption control.

This paper proposes a tool to analyze user/application interaction to understand how the different hardware

components are used at run-time and optimize them. The idea here is to use machine learning methods to identify

and classify user behaviors and habit information. Using this tool, a software has been developed to control at

run-time system component activities that have high impacts on the energy consumption. The tool allows also to

predict future applications usages. By this way, screen brightness, CPU frequency, Wi-Fi connectivity, and playback

sound level can be optimized while meeting the applications and the user requirements. Our experimental results

show that the proposed solution can lower the energy consumption by up to 30% versus the out-of-the-box power

governor, while maintaining a negligible system overhead.

Keywords: Energy consumption, Run-time user and application analysis, Device’s context, Applications sequences

prediction

1 Introduction
Mobile and communicating devices became essential

tools in our personal and professional activities. In recent

years, their number and their applications have largely

increased. In our modern societies, each person has sev-

eral handheld devices (smartphone, tablet, portable PC,

etc.). By the end of 2013, 6% of the global population

owned a tablet, 20% owned portable PCs, and 22% owned

smartphones.1 It is predicted that by 2017, 65% of the US

population will own a smartphone.

Next-generation mobile systems will include a large

number of cores, a powerful GPU, large caches, mem-

ory capacity, and a variety of I/O tools and communi-

cation protocols. For instance, the Samsung Galaxy S6

launched in 2015 contains three times more sensors than
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the Samsung Galaxy Smarketed in 2010. In the same time,

the number of cores has also increased from 1 to 8.2

Consequently, on one side, next mobile system gener-

ations will contain more powerful components and on

the other side, applications running on these devices will

become more complex. As a result, the needs of new

applications in terms of computing power, communica-

tion, and storage have significantly exceeded the capacity

of the batteries. For this reason, new energy consumption

management systems are needed.

Most of the existing technics for energy saving take into

account neither the user individual profiles nor the chang-

ing application needs. Our proposal is to capture, store,

and process such information using the computing power

and the various sensors to reduce energy consumption.

The key for our power saving technique is therefore to

leverage users context, behaviors, and habits to predict the
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running applications and improve upon the default energy

management policies of the OS. The main contributions

of this work can be summarized as follows.

1. We exploit rich sensor hubs to collect and explore a

large set of data to search context usage patterns in

the device use. We also use metrics to gauge user

needs and characterize his/her habits. The

identification of the context and the user’s associated

actions allow us to decrease the energy dedicated to

unused resources in some cases.

2. We propose a new classification and characterization

method of the launched applications to find frequent

sequences of application runs. On this basis, we can

predict which application will probably run next.

With the developed prediction and the knowledge of

each application needs, we are able to adjust the

provided resources and to perform optimizations

such as dynamic voltage frequency scaling (DVFS)

[1], data prefetching, and device management

without impacting negatively the user satisfaction.

Such actions decrease the energy consumption of the

whole system.

The global architecture of our approach is shown in

Fig. 1. This figure presents an abstraction of the several

key stages of our approach. The first stage consists in

collecting data about the user behavior and the device’s

context, such as running applications, the background

processes, the device’s position, the ambient luminosity,

the datem and the time. These data are used in the second

stage through three mechanisms:

• Off-line classification of applications in terms of

resources
• Application prediction mechanism
• On-line device’s context identification

In the third stage, the dynamic optimizer actuator uses

the outputs of the second stage to perform actions such as

device management and applications scheduling in order

to reduce the energy consumption. We have a global

framework which contains two main components:

• Context-based optimization component (COC):

based on the device context and the sensory data
• User needs-based optimization component (UNOC):

based on user actions and application classification.

The rest of this paper is organized as follows. In

Section 2, the architecture of the framework containing

the COC and UNOC is presented. In Section 3, we explain

the COC. In Section 4, we present in details the UNOC

with the classification and prediction mechanisms. In

Section 5, we present the experimental results. Section 6

presents the related work, and finally, in Section 7, a

conclusion and some perspectives are given.

2 Framework architecture for energy
consumption optimization

In order to obtain the provided objectives in the previous

section, we designed a framework to optimize the energy

consumption in mobile systems and to improve the

energy management provided by the OS. This framework

consists of two components, the COC and the UNOC.

They use different sensors/data and run in parallel.

However, depending on the type of used device (smart-

phone, tablet, ultrabook, etc.) some functionalities in

COC or UNOC can be more suitable. The proposed

screen brightness management that depends on the

device position is more appropriate to laptops or fixed

ultrabook. All the rest of optimizations, screen brightness

management using the ambient luminosity, the micro-

phone level management based on the ambient noise,

and the user needs/habits-based component, can be

exploited in all mobile platforms with an OS and a user

layer. Consequently, smartphones, laptops, and tablets

can benefit of these mechanisms. The functional archi-

tecture of the proposed components are given in Fig. 2

for COC and in Fig. 3 for UNOC. These components

implement the abstract architecture presented in

Fig. 1.

2.1 Context-based optimization component (COC)

COC is responsible of collecting data from the embedded

sensors, device position, ambient luminosity, and ambient

noise, etc. These data compose the device context taken

into account to apply different policies on the screen

brightness and the speaker sound level as shown in Fig. 2.

COC works in two phases:

1. Device context analysis: in this phase, we realize

some preliminary experiments to analyze and to

determine the device context. Among the available

sensors, we select the most relevant sensors which

provide information about the device position and

the ambient noise. The results are used to develop

the second phase.

2. Embedded software: in this phase, we control during

run-time the system component’s activities.

Depending on the context, these components may

have a high impact on the consumed energy. The

control is done by exploiting information obtained

from the embedded sensors.

The main idea is that in embedded and mobile sys-

tems, it is possible to save energy and reduce power

consumption by taking the context information into

account. It could be attained by monitoring sensors
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Fig. 1 Overview of the proposed approach. A generalization of the several stages of the proposed approach

that exist in mobile devices. Sensors’ data are processed

and correlated to possible power consumption reduction

opportunities.

2.2 User needs-based optimization component (UNOC)

This component is developed to take into account the user

needs and habits in the energy consumption optimization.

Its structure is generic and is shown in Fig. 3. UNOC is

implemented in five steps as follows:

1. Data collecting mechanism : user behavior and

system usage information are collected.

2. Processing the collected data through the analyzer to

guarantee user privacy by anonymizing the data.

3. Storing the collected data in a data base.

4. This step is implemented in two phases:

(a) Uploading the collected data to the back-end

component in order to be processed via

Fig. 2 Context-based optimization component architecture. Architecture of the first component of our framework based on the context
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Fig. 3 User needs-based optimization component architecture. Architecture of the second component of our framework based on the user needs

and habits

mechanisms like application classification,
applications prediction, and user behavior

profiling.

(b) Building optimization rules.

5. Pushing the obtained rules to the optimizer actuator

in order to implement a specific optimization for

each hardware component.

In this paper, we focus mainly on the data collecting

mechanism, the application classification, the application

prediction, and the optimization mechanism as follows.

1. The data collecting mechanism: it represents the first

step mentioned previously. In this phase, we collect a

large set of data which are as follows: running

applications, date, time, elapsed time of each

application, and background process.

2. This phase is composed of:

• The off-line application classification in terms of

Wi-Fi and CPU needs. In the current version of

the UNOC, we focus on two components: the

Wi-Fi and CPU. These two units are among the

most power consuming components in mobile

system but the classification can be extended to

screen brightness, microphone, GPS, etc.
• The execution average time for each application

is calculated, and this phase is also off-line but

the data base can be updated in a weekly basis.
• In-line application prediction mechanism.

3. All these phases are combined and used by the

optimizer actuator which manages Wi-Fi connection

and CPU frequency in order to optimize the energy

consumption. The next section presents the COC in

details.

3 Context-based Optimization Component (COC)
A crucial aspect of energy management is having a good

understanding of how, when, and where users interact

with their handset and how they demand resources such

as luminosity, sound level, high consumption, connectiv-

ity, etc. COC relies on the device context and user actions,

which are context driven by nature. The device’s context

is defined by its position, the ambient light and the ambi-

ent noise. The screen brightness and the speaker sound

level (respectively) are controlled by the device’s position

(normal or abnormal, ambient luminosity and the ambi-

ent noise (respectively)). To do so, policies are applies to

sensory data to impact power consumption. The Sensors

Collection Module (SCM) and Dynamic Hardware Recon-

figuration Module (DHRM) were developed to achieve

the COC work. The following two sections explain how

the SCM and DHRM are used for brightness and sound

managements.

3.1 Brightness management depending on device’s

position

3.1.1 Sensors CollectionModule (SCM)

This module is responsible for collecting data from the

embedded sensors in order to identify the most appropri-

ate device’s stand. In our mobile handset, there are sev-

eral sensors such as accelerometer, ambient light sensor

(ALS), simple orientation sensor, inclinometer, compass,

gyrometer, and geolocation. In order to determine which

collected sensors are the most relevant, some preliminary

experiments have been achieved. First, we collect the sen-

sor values in several device’s position (normal standing,

inclined, jostled, etc.). We compare sensors’ readings for

various device positions in order to pick the most rele-

vant. The sensor values which have a large gap in different

positions are ignored. The available sensors are:
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• Ambient luminosity: ambient light sensor (ALS).
• Orientation: inclinometer, compass.
• Motion: gyroscope, accelerometer.
• Location: GPS
• Ambient noise: microphone

We select the following sensors:

1. For ambient luminosity and ambient noise: we use

ALS and microphone because these are the only

sensors that provide us these information.

2. For the orientation, we have chosen inclinometer

because the obtained data from this sensor are more

informative and compass data are changing due to

magnetic strength.

3. For motion, both of accelerometer and gyroscope

have three-dimensional metrics on axes x, y, and z. In
the following example, we compare standard

deviations:

• Accelerometer (x, y, z) = (0.57, 0.37, 0.52)
• Gyroscope (x, y, z) = (89.42, 57.80, 54.95)

Normalized variation indicates sensitivity. More

sensitive values are more informative. This

comparison prompted us to choose gyroscope for

motion.

4. We exclude location-based data collection because it

is private information (PI).

The SCM is calibrated by sensory data collected while

the device is in standing position. After calibration, sen-

sors data is collected in real time. This way, if the device

is tilted, its inclination data is immediately updated in the

SCM. Finally, data are injected in the memory in order

to be consumed by the Dynamic Hardware Reconfigura-

tion Module (DHRM). This reconfiguration is continuous

and carried out in the background. Whenever a sensor

value changes, SCM takes it into account. It updates the

new value and upgrades it through a shared memory, then

DHRM performs optimizations on the screen brightness

level. Figure 4 presents the HW and logic sensors, and

Fig. 5 presents the SCM process.

3.1.2 Dynamic hardware reconfigurationmodule (DHRM)

This module is responsible to manage the hardware com-

ponents depending on the device’s position as mentioned

in Section 3.1.1. Available data in the shared volatile mem-

ory is imported and taken into account by this module in

order to apply business logic decision mechanisms with

the values. The module handles the LCD driver of the

device to manage screen brightness as shown in Fig. 6.

The DHRM compares the new captured sensor’s val-

ues with the normal stand values. Then, according to this

comparison, the DHRM adjusts the screen brightness to

the most suitable level for the user. For example, if the

gyroscope sensor value exceeds the range of allowed val-

ues, the module applies a specific optimization on the

screen’s brightness by decreasing it. The ambient lumi-

nosity is also taken into account to adjust luminosity.

When the environment is too bright, the screen bright-

ness is increased and vice versa. For brightness man-

agement, the power reduction opportunity is about 30%

between the max screen brightness and the min screen

brightness.

The DHRM relies on the data captured by the SCM and

selects four stand device’s state. Here is an example for

each state:

• Hard-to-watch: device shake is too important to

watch it correctly.
• Mild-motion: from small movement to mild ones like

when playing game.
• Normal-stand: device left in the same position for a

moment.
• Abnormal-tilted: set device in ±90◦ on x-/y-axis with

no motion.

Each state is recognized through sensors metrics.

DHRM sets the corresponding screen brightness, accord-

ing to the identified state, as shown in Table 1.

When the device is in normal stand, we take into

account the ambient luminosity for brightness adjustment

as shown in Fig. 7.

3.2 Soundmanagement based on ambient noise

Another use case similar to Section 3.1 was achieved in

order to manage the device’s speaker level depending on

the ambient noise. As in the case of brightness man-

agement, we have two main modules. The first one is

the Ambient Noise Collector (ANC) and is measuring the

ambient noise and shares its to the second module Sound

Control Module (SCM) which will adapt the speaker level

accordingly.

For example, in this scenario when the ambient noise is

high , the SCM increases the speaker’s sound level. On the

other hand, if the ambient noise is at average or low, the

module decreases the speaker’s sound level.

Contrary to the first component, we do not store the val-

ues of the ambient noise, and we act dynamically on the

speaker’s volume. The sound level is modified gradually to

avoid any impact on the user satisfaction, on the base of

the change blindness [2].

4 User needs-based optimization component
(UNOC)

4.1 Classification mechanism

In this paper, the classification is achieved off-line and

used during the optimization phase as mentioned above.
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Fig. 4 Available sensors on our mobile device. This figure shows the available HW and logic sensors

Applications are classified according to their Wi-Fi and

CPU usage. For the Wi-Fi, the classification is binary

(Wi-Fi on/off ). For the CPU, the classification is based

on upper frequency thresholds. In both cases and before

adjusting any resources, the optimizer actuator consults

the list of background processes to avoid any conflict.

4.1.1 Classification in terms ofWi-Fi

The aim of this classification is to contribute to the man-

agement of the wireless interface according to the needs

of the running applications. To achieve the off-line clas-

sification, we realized some preliminary experiments. At

first, the internet rate is estimated by the sum of the

upload and download rate, when no application and back-

ground process are running. A low rate threshold was

fixed at 10 KB because of the connectivity management in

Microsoft Windows operating system that achieves some

connection rate tests, even when no application needs

connection. Secondly, we run the applications we want to

classify individually and acquire bandwidth use.When the
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Fig. 5 Sensors information collecting. This figure illustrates the sensors

values collecting by SCM

sum of the upload and download rates during the execu-

tion of the application is under the 10-KB threshold, we

assume that no wireless connection is required (and vice

versa). Table 2 shows the classification results for three

examples of applications.

On this base, the on-line optimization is carried out: the

Wi-Fi need is evaluated according to the running appli-

cations classes. Obviously, the main point is to assess the

complete requirement of the mobile device current state

in order to avoid the user dissatisfaction when the wireless

connection is disabled.

4.1.2 Classification in terms of CPU need

Windows 8.1 manages the CPU frequency automati-

cally. However, in some cases, the computing resources

provided by theOS exceedwhat is required by the running

applications and the user. To improve this management,

we propose to classify the applications in terms of CPU

frequency.

In the current implementation, we have arbitrarily

defined three thresholds (800 MHz, 1.25 GHz, and

1.75 GHz) that define four classes:

1. Class c1: applications requiring a low CPU frequency

(<800 MHz). Text processing applications such as

Word, Excel, or simple games such as Imperial
Sudoku belong to this class.

2. Class c2: applications requiring amedium CPU

frequency (between 800 MHz and 1.25 GHz). Web

browsers such as Firefox or Google Chrome are in

this class.

3. Class c3: applications requiring high computing

resources (between 1.25 and 1.75 GHz). Advances

games such as 2048 belong to this class.

4. Class c4: applications requiring very high computing

resources (over 1.75 GHz). Image processing and

synthesis such as Image ray-tracing, simulation

applications, and mathematical applications belong

to this class. During our experiments, we found no

applications belonging to this class.

To classify an application, the CPU utilization and fre-

quency are measured during its execution.More precisely,

Fig. 6 Brightness management By DHRM. This figure illustrates the actions performed by DHRM (adjusting brightness)
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Table 1 DHRM screen brightness (SB) depending on the device’s position

Threshold Category State SB

Gyro average movement sum ≥ 80 Motion Hard-To-Watch 20%

Gyro averagemovement sum> 80 and gyro averagemovement sum> 8 Motion Mild-motion 30%

Gyro average movement sum < 8 and inclinometer sum ≥ 60 Motionless Abnormal-tilt 20%

Gyro average movement sum > 8 and inclinometer sum < 60 Motionless Normal-stand Relative to ALS

the average (m), the standard deviation (e), and the ratio

of the used CPU frequency relatively to the maximal fre-

quency (f ) are chosen to characterize each application.

Then, the probability for an application to belong to the

class ci given,m, e, and f are calculated. Our classification

is achieved with the help of a naive Bayesian classifier.

Although many other classification methods are available,

decision trees (DT), rule-based methods such as logistic

regression (LogR), linear regression (LR), Naive Bayes

(NB), support vector machine (SVM), k-Nearest Neighbor

(k-NN), and artificial neural networks (ANN). We chose

a Naive Bayesian classifier because of its advantages and

our type of data as:

• Easy to implement
• Fast to train (single scan). Fast to classify.
• Requires a small amount of training data to estimate

the parameters like in our case.
• Not sensitive to irrelevant features which yields good

results even when the NB assumption does not hold.

Fig. 7 Screen brightness adjustment depending on ambient luminosity. Several ambient luminosity values (lux) and the corresponding screen

brightness level
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Table 2 Wi-Fi classification

Apps Internet rate Download Upload Class

Messenger 32.55 12.93 19.62 On

Youtube 366.09 325.81 40.28 On

2048 1.56 1.02 0.54 Off

• Converges quicker than discriminative model like

logistic regression which implies less energy

consumption for the training.

Our classifier operates as follow:

P(ci|m, e, f ) = max1≤j≤4P(cj|m, e, f )

With the probability for an application to be classified in

class i givenm, e, and f

P(ci|m, e, f ) =
P(ci) ∗ P(m, e, f |ci)

P(m, e, f )

where

P(m, e, f |ci) = P(m|ci) ∗ P(e|ci) ∗ P(f |ci)

and

P(m, e, f ) =
4

∑

i=1

P(m|ci) ∗ P(e|ci) ∗ P(f |ci)

compute the different simple probabilities, we consider

the distributions m, e, and f as Gaussian, e.g., with µ the

average and σ 2 the ratio variance,

P(f |ci) =
1

√
2 ∗ π ∗ σ 2

∗ exp

(

−
(

f − µ
)2

2 ∗ σ 2

)

Table 3 shows the classification results for three exam-

ples of applications. According to the application class, the

optimizer actuator selects the most suitable upper thresh-

old among the three defined frequencies. Obviously, the

optimizer actuator does not disable the resources that are

required by running background applications, like Wi-Fi

for the application Skype for instance.

After the static classification, we present in the next

section the data collecting and prediction mechanism.

Table 3 CPU classification

Apps Avg. usage Stand dev. Ratio freq. Class

Chrome 25.88 7.65 0.71 Medium

Foxit 7.45 4.07 0.55 Low

2048 46 10.58 0.87 High

4.2 Data collecting and prediction

The parameters related to the different users, like job,

lifestyle, age, and gender, vary from one person to another.

This difference must be taken into account to propose

an appropriate and customized mobile energy manage-

ment for each user. In fact, application sequences, also

called scenarios, are recurrent and correspond to dis-

tinct user situations. The idea is to analyze the var-

ious applications launched by the user according to

the day of the week, the time, and the background

processes.

4.2.1 User probe for data collecting and time processing

User probe is linked to different applications launched by

the user during a long period of time. As mentioned previ-

ously, the main parameters are date and time. We assume

that the user has different behaviors between weekdays

and weekends and also between distinct periods of a given

day.

For example, the applications launched during Mon-

day morning at work are different from the appli-

cations running during a Saturday night. The behav-

iors are also supposed to differ from one user to

another, e.g., according to their jobs as one can work

in an accounting office while the other one works

outdoors.

The user probe is executed at run-time. It collects each

foreground window launched by the user and recovers the

name of the related application, applications running in

background, the day of week, the date, and time. Figure 8

resumes the user probe functionalities. Whenever the

user launches a new application, the time spent on the

previous one is calculated and registered in a database in

order to calculate the average running time length for each

application still considering a given day of the week and a

given period of launching time.

4.2.2 Prediction of future running applications

As mentioned above, the principal idea is to propose a

customized energy management of mobile systems which

improves upon the standard energy management pro-

posed by the operating system. This component depends

on the user habits and the running applications over time.

The purpose is to predict the future running applications

for a given system resources consumption adjustment

and thus to reduce the energy consumption in specific

scenarios.
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Fig. 8 User probe. User information collecting

In order to predict future running application, we make

the hypothesis that they may depend on the current run-

ning applications and temporal data. We have to find

out whether the user has the habit to launch specific

applications and in which order. The sequential pattern

mining (SPM) techniques are dedicated to discover pos-

sible frequent sequences of items among time-related

data. Among the numerous SPM techniques (see the

survey proposed in [3]), we choose one of the simplest

and most well-known, the Generalized Sequential Pattern

(GSP) [4, 5].

The GSP algorithm is used to find frequent sequences

of items, eventually revealing time-related correlations or

causal structures among sets of data. Our motivation for

using the GSP algorithm is to find regularities in the

applications launched according to the day of the week,

the time, and the background processes. More precisely,

the items processed by the algorithm are the running

applications in the same period of a given day during sev-

eral weeks. For example, we would like to know if the

same applications are frequently launched in the same

order every Monday between 8 am and 10 am. The GSP

algorithm can detect such frequent application sequences.

A sequence is frequent when its occurrence in the

database is over a specified threshold. Based on the Apri-

ori algorithm [6], GSP starts by collecting the applications

whose frequency is higher than a minimal support thresh-

old, to create the length-1 frequent sequence set. Then, it

iteratively scans the data to collect the support count in

order to select the length-(k+1) frequent sequences from

the length-k frequent sequences. The process is repeated

until no frequent sequence or no candidate sequence can

be found. At the end of the GSP processing, we have

the number of applications occurrence from 1 application

sequence to k application sequence.

Table 4 shows a small example of data provided as input

to the GSP process. These data show the running appli-

cation sequences during four successive Mondays. The

output is the number of applications occurrence from 9

am to 11 am as shown in the Fig. 9. “K” represents the

sequence length, i.e., the number of items in the sequence.

“R” is the repetition frequency, i.e., the number of times

this sequence occurs.

With K = 1, the occurrence number R gives the num-

ber of times each single application appears; we note that

Mozilla and VLC are the most frequent applications.With

K = 2, the occurrence number R concerns sequences

Table 4 GSP input data example

Mon [9–11] Application sequences

1st week Excel, Mozilla, Spotify, 2048, VLC

2nd week Excel, Mozilla, Word, CALC, VLC

3rd week Notepad, Mozilla, Word, 2048, VLC

4th week Mozilla, Word, Spotify, 2048, VLC
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Fig. 9 GSP output example. GSP rules for the applications sequence

composed of two applications, e.g., the sequence (2048,

VLC) that appears three times. With K = 3, the occur-

rence number R concerns sequences composed of three

applications; we note that the sequence (Spotify, 2048,

VLC) appears two times and several other sequences

which appear one time. On the basis of the GSP out-

puts and with the data about the foreground application,

date and time dynamically collected by the user probe, the

applications that will be launched the next Monday can be

predicted.

Distinct predictions can be made according to the

sequence length, i.e., according to the “K” factor as fol-

lows.

• With the length equal to 1 (K = 1), the most

probable application is predicted, whatever the

current running application.
• Whereas K = 2 can predict the application that will

follow the current one, like the game 2048 that

appears after VLC.

• K = 3 can be used either to predict which application

will be launched after the sequence formed by both

the current and previous application launches or to

predict which will be the two applications that are

likely to be launched after the current one.

In this first work, we only studied the latter case (pre-

diction based only on the current application), in which

choosing the lowest K is more accurate to predict the next

application that will be launched.

However, this increases the frequency at which the GSP

rules are consulted, causing energy and time consump-

tion. Even if the gain in terms of energy is considerable

and the overhead is negligeable, a balance must be found.

Figure 10 illustrates the prediction mechanism thru GSP

processing.

In order to determine the most appropriate K factor,

we conducted measures to study the energy overhead

generated by different values for K. Let’s take the exam-

ple of the sequence [Mozilla, 20 mn-Word, 17 mn-VLC,

Fig. 10 Prediction example. Synthesis of the prediction mechanism
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47 mn-2048, 7 mn]. With Mozilla as the current running

application, the GSP rules predict the launching of Word,

Word-VLC, or Word-VLC-2048 depending on the cho-

sen K. The cost of the GSP rules consultation in terms of

energy is by 2 W/S.

• By choosing K = 2, the energy overhead is about 6

W/S.
• Whereas if K = 4, the energy overhead is about 2

W/S.

The difference is negligible, and it is about 4 W/S of

overhead for 71 minutes. The difference prompted us to

choose K = 2 for more precision and a negligible over-

head.

The accuracy of application prediction increases with

the amount of collected data. Therefore, the precision will

increase in time . The second parameter that will impact

the prediction is user behavior regularities. Indeed, when

a user runs the same applications in the same context,

the accuracy will be higher and vice versa. The prediction

accuracy improvement is under development.

The next step is to adapt the energy management

depending on the prediction phase, the elapsed time of the

application run, and a classification in terms of resources.

4.2.3 Optimizer actuator

The optimizer actuator begins adjusting resources gradu-

ally for the application B before the end of the application

A in order to not impact the user experience.
Indeed, a sudden change in terms of resource may

impact heavily the satisfaction of the user, who would

react by increasing resources manually, luminosity, etc.,

after the automatic adjustment done by the optimizer

actuator. In this paper, for the Wi-Fi management, we use

only the classification phase. Figure 11 shows the utility of

the prediction.

User satisfaction is taken into account by the optimizer

actuator, Section 4.2.3. For CPU performances, when fre-

quency is scaled, the optimizer actuator verifies the accep-

tance of the proposed frequency by the user. If a new

frequency is set by the user, this new value is stored

and will be taken into account for the next run in the

same context and for the same application as shown in

Fig. 12.

5 Experimental results
This section is divided into two parts, the first one

presents the tools and the experimental environment and

the second one presents the results. The experimentations

have been realized on an ultrabook with a 2.50-Ghz Intel

dual-core i7-3667U processor and 4 GB of RAM. The pro-

posed power manager is generic. The solution could run

on any platform, such as tablets, smartphones, and ultra-

books. The main reason why the ultrabook has been cho-

sen is to demonstrate the feasibility of our approach and

the simplicity to connect it to our measurement device:

the Yokogawa WT210 [7].

This mobile device also contains a port for Sim Card

as well as a touch screen. It runs under Windows 8.1,

and with the windows store, we have access to many

applications as metro style application as Facebook, Viber,

Shazam, and so on. These features are common with

Fig. 11 Resources adjustment. This figure illustrates the utility of the prediction phase
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Fig. 12 User satisfaction parameter in resources adjustment. This figure shows how the optimizer actuator takes into account the user satisfaction

as parameter in the optimization stage

both smartphones and tablets which make its architecture

similar to other mobile devices.

5.1 Tools and experimental environment

This section presents the experimental environment,

the tools, and their usage. Figure 13 depicts this setup

architecture. As our work is developed in partnership

with the Intel Corporation, the Intel Energy Checker

SDKit (iESDK) [8] has been used to implement our

solution. The SDK has been designed to measure

and optimize application energy efficiency. Two com-

ponents of the SDK are leveraged in this work: the

main driver (ESRV—energy server) and the modeler.

The modeler provides the services required to imple-

ment data collection and energy saving heuristics. Sev-

eral data collection extension modules, a.k.a. inputs

libraries (ILs), as well as actuators libraries (ALs) have

been developed. The modeler is composed of three

components: the front-end, the input bus (IB) and the

back-end.

• The front-end (FE) collects the data: CPU utilization,

display brightness, battery level, front-end

applications, etc. Each metric is called an input.

Collecting new metric requires the development of

an (IL).
• Once collected by the ILs, metrics are made visible on

the IB. Any agent connected to the bus has direct

access to the metrics. The IB is the main interface

between the FE and the back-end.

• The back-end (BE) provides core services, e.g., a

logger or a power-to-inputs automatic correlation, a

watchdog, and communication manager. The BE can

be expanded via ALs. ALs are designed to perform

specific actions such as dynamic OS or platform

configurations. Usually, ALs are used to implement

various optimization heuristics that are driven in real

time by the inputs provided by the FE.

In this paper, the SCM and the user probe were imple-

mented as ILs. The DHRM, GSP, and the optimizer

actuator were developed as ALs. In our experiments, we

measure the power consumption of the whole system, we

do not take into account a specific hardware component.

5.2 Context-based optimization component evaluation

(COC)

The goal of this part of our experiments is to mea-

sure the power consumption of the ultrabook when our

solution is deployed. We focus on the brightness param-

eter, and Fig. 14 shows the results. In Fig. 14, we have

five phases in our graph, the first phase in blue repre-

sents the e-idle which indicates the power consumption

before the deployment of our solution, the consumed

power is estimated at 14 W. In the second, we note

a power overhead which is due to the deployment of

our solution, this overhead is about 5 W. The orange

part represents the power consumption when the ultra-

book is in a suitable position for the user, i.e., the screen

brightness is increased. In the green part, we notice a
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Fig. 13 ESRV—Intel modeler framework. Intel tools components

Fig. 14 Power consumption evolution with context-based

optimization component. The energy consumption when the device

is in several positions

power consumption decreasing which is due to the non-

utilization of the ultrabook; thus, the brightness level is

decreased and the amount of consumed power is about

10 W. This decrease in brightness translates into a power

savings of 30%. Finally, in the last blue part, the bright-

ness level is reset because the device is back in normal

position.

By adding the context-based optimization component,

the gain in terms of power is evaluated at 30% in compari-

son with the standardOS policies. In the following subsec-

tion, we report the results of our experiments conducted

to evaluate the performance of the user needs-based opti-

mization component.

5.3 Scenario prediction and application classification

The experimental results are based on the generated

applications sequences from six users. These constitute

a first test to validate the feasibility of the solution. In

this section, for each user, we present the prediction

application scenario and the applications classification.

Finally, we present results about the obtained gain with

our component in comparison with the standard energy

management provided by the OS. For each user, we have

the predicted sequence with the background processes,

the time spent in each application and its classification in
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terms of Wi-Fi and CPU need. In order to demonstrate

the difference in users’ behaviors and in the launched

applications as a function of the week day, we selected

six scenarios as shown in Fig. 15. Applications in green

represent the background processes, and the foreground

applications are in gray. The red lines on the applications

represent the supposed beginning of the resources adjust-

ments for the next application. It represents the remaining

10% of the current application. Prior to evaluating the

efficiency of the proposed idea, we first classified the dif-

ferent applications for each user. We use the information

captured during 2 weeks to classify these applications like

mentioned in Section 6. Table 5 shows the classification

in terms of CPU need. The class value “L” represents the

lowest class, “M” is the medium one, and “H” is the high-

est class. A first look at Table 5 shows the behavioral

difference between the users who run the same appli-

cation. For example, for user 1, Firefox is classified as

medium while it is classified as low with user 3. This dif-

ference is due to way both users 1 and 3 interact with

Firefox.

5.4 User needs-based optimization component

evaluation (UNOC)

Experimental results show that our approach can reduce

the whole energy consumption of the system by 33%

in comparison to what the OS allows. Figure 16 shows

the impact of the proposed solution on energy savings

over varying durations of usage for six users. The results

show that the saved energy varies vastly from one user

to another. For user 1 and user 2, the saved energy is by

an average 8 and 5%. For user 3 and user 4, the saved

energy is more than 19 and 30%. For user 5, the saved

energy is about 22%, and for user 6, the saved energy is

33%. This variance is due to the difference of the run-

ning applications and the interaction manner of each user.

For example, user 4 and user 5 run the applications 2048

and chrome, but energy saving for user 4 is higher by

8% versus user 5. The reason is the difference of classes

for Chrome and 2048 between the user 4 and the user 5.

These results confirm that there is a considerable impact

of the type of the running application for the power saving.

The applications characterized by a less intensity work-

load, low connectivity need, and low interaction with user

are the lowest in terms of power saving. This is illus-

trated with user 2 which runs VLC, FoxitReader, and

Spotify. These applications have a reduced connectivity

and computing need which limit the power reduction. In

order to understand the impact of each application on

the power consumption, Fig. 17 shows the power reduc-

tion for each application with the six users. A first look

at the figure indicates that each application can impact

the energy consumption. For example, Spotify is an appli-

cation characterized by low CPU need, so the power

reduced when this application is running is very low

(around 2.5%). However OneNote is an application which

has the same characteristics as Spotify with the excep-

tion of the connectivity but yields an energy reduction of

7% higher.

We conclude that with an application characterized by

a high CPU need, we can reduce an important amount

of power. Imperial Sudoku, 2048, and Google Chrome

are examples of such applications. We can also conclude

that there is a relation between user interaction and

Fig. 15 Users application sequences. Sequences in green represent background processes, in colors, foreground process
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Table 5 Applications classification for CPU need

Apps
CPU application class

Usr1 Usr2 Usr3 Usr4 Usr5 Usr6

Firefox M L

Skype L

Chrome L M

Spotify L L

VLC L L

2048 H M M

Sudoku L L L

Foxit L L

OneNote L

power consumption by the application such as Google

Chrome which reduces around 11% when it needs low

CPU performance. However, it reduces the energy con-

sumption by over 23% when it needs medium CPU per-

formance. Figure 18 shows the percentage of the power

reduction by the proposed approach. By analyzing the

figure, we note that:

• Power saving for the Wi-Fi is relative to the time

spent in running a specific application. The gain in

terms of energy reduction obtained by switching off

the Wi-Fi interface is constant. By switching off the

Wi-Fi interface, the whole power consumption of the

ultrabook is decreased by 1.6 W.
• The total power reduction obtained by managing the

CPU is relative to the running applications, the user

behaviors, and interaction pattern as shown

previously.

5.5 User needs-based component overhead evaluation

The cost of the in-line optimization is measured as the

CPU, memory, and power consumption overhead. These

measurements are presented in order to demonstrate that

our solution based on ILs and ALs does not affect the

system and does not cause performance degradation for

the user, rather it allows the user to save his mobile sys-

tem energy in comparison to what the OS would allow.

The overheads are presented in Table 6. The user needs-

based optimization component overhead is negligible and

requires only few seconds to run. The solution can be

applied to actual tablets which consume on average 12 W

or an iPhone 6 which consumes also 12 W [9].

We add some additional results in Table 7. The tests

below shows the CPU frequency scaling for YOUTUBE

and WORD, the CPU power consumption, the gain and

the time spent in each case.

For Youtube: we do not have latency by using 30% of the

maximal frequency in comparison with using 100% of the

maximal CPU frequency. We also notice a gain of 14.34%

in terms of CPU power consumption.

For Word: with Word, reducing the CPU frequency by

70% does not degrade the performance at all, while the

gain is about 10%. When the latency is null, this may

presage a satisfied user.

6 Related work
There is a large body of work focusing on energy con-

sumption optimization in mobile devices. However, very

few of them use the changing dynamic users and applica-

tion needs in the control of the different system resources.

In this section, we present some of the existing works in

energy consumption optimization for mobile systems at

the application level. We mainly focus on the approaches

8% 

5% 

20% 

30% 22% 

33% 

Fig. 16 Energy consumption for each user
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Fig. 17 Total power saving for each application

that take into account user behavior and experience in

energy consumption reduction. Finally, we highlight the

main differences with our approach.

One of the first works in this area is [10]. The authors

demonstrated the benefit to study real user activities

to characterize power consumption and to control the

development of power optimization. Their experiments

on an HTC ARM-based mobile phone show impor-

tant differences between users’ behaviors. The author

demonstrated also that the CPU and screen are the

most demanding components in terms of energy. For

the screen, the total utilization time is dominated by a

small number of long intervals, with a duration of about

of 100 s.

Other works like [11] show the importance to study

the user’s activities and behaviors to optimize power

consumption in mobile systems. Theses studies demon-

strated the correlation between energy consumption of

a mobile system and user actions. In [12], the authors

proposed an approach which takes into account the user

experience to apply different power optimization tech-

niques. They developed a new cpufreq governor. Their

dynamic clock scaling approach provides a mechanism to

change the clock speed of the CPUs at run-time. Their

proposed cpufreq governor analyze the user perceived

response time of the applications at run-time. Then, this

information is used to control the processor CPU fre-

quency. The CPU energy consumption is reduced by up to

65.5% over the Android’s default on-demand [13] cpufreq

governor. The authors also exploited the characteristics

of user/system interactions to minimize energy consump-

tion. They used the elapsed time between two consecutive

Fig. 18 Total power saving with our approach
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Table 6 User needs component overhead

Mechanisms Power overhead CPU (%) RAM (MB) Time (ms)

Prediction (IL) 6 0.3 3.74 2000

Optimize actuator (AL) 3.8 0.3 1.45 1500

interactions to decrease the screen brightness during this

interval in order to have a gain in terms of the whole

system energy consumption. Authors in [14, 15] proposed

user activities and context information-based technics

and several management policies for each component. In

their approach, the CPU frequency was adjusted dynam-

ically depending on the workload. They also proposed

to reduce background process life time depending on

the obtained patterns. An energy consumption reduc-

tion of up 20% in comparison with commercial solutions

like JuiceDefender [16] has been obtained. However, their

solution was not completely automatic and required mod-

ifications in the running application source code.

Some of the works use machine learning techniques to

classify the applications or the user activities. Targeting

the Wi-Fi consumption, the approach proposed in [17]

makes a selection among the applications to give priority

to those with the highest network interactivity level. The

applications are classified as high or low priority according

to network traffic data with the help of an SVM classifier.

On this basis, only the traffic from high-priority appli-

cations is allowed in order to save energy. In [15], the

authors proposed a classification of user activities in terms

of screen brightness needs and correlate these data with

the context information. Then, they used machine learn-

ing techniques to predict the required luminosity. CAPED

improves the average satisfaction by 23.5% compared to

the default scheme. In [18], the authors presented the

power monitor which is a client-server architecture devel-

oped to collect usage logs from Android powered devices.

Based on the utilization patterns, power saving profiles

are generated and are personalized to match the needs

of each device in the system. The experimental results

show that the power monitor can increase the battery life

by almost 90%. However, this solution has some privacy

issues which are due to the exploitation of usage pattern

generation. The survey part of [19] provides a useful list

of studies concerned by recognizing human activities to

Table 7 CPU frequency scaling results

App Time s CPU freq. (%) CPU power (W) Gain (%) Latency (S)

Youtube 360 100 5.802 14.34 0

Youtube 360 30 4.97 14.34 0

Word 600 100 5.116 7.74 0

Word 600 50 4.72 7.74 0

Word 600 30 4.63 9.64 0

save the energy of embedded and wearable sensing sys-

tems. Most of the listed studies use machine learning

techniques, a large panel of different techniques. However,

few of these studies predict future activities.

Compared to the previous works, our project presents

the following main features:

• The energy saving method includes more than one

device. The management currently applies to CPU,

Wi-Fi, luminosity, and GPS.
• The framework for energy optimization is a modular

architecture with the introduction of the ILs and ALs.

This modularity along with the utilization of the Intel

Energy Checker SDK makes our solution flexible.

Adding a new input, for enhancing the optimizer by

new data from a new sensor, or a new actuator for

managing a new hardware component will be very

easy.
• Real-time adaptation is made according to

predictions of next resources needs. Indeed, the

energy management takes into account both the

context and the user’s habits. In addition to the

device context, the application context helps to

predict the upcoming resource needs, provided that

knowledge has been acquired about the application

needs and the user’s frequent application sequences.

Because abrupt modification can lead to user

dissatisfaction, prediction of coming application

requires to make gradual transitions.
• The difference with the works achieved in [15] is that

in CAPED, the authors focused on the user

satisfaction and his visual perception to improve the

brightness control model. Their main purpose is to

improve the user’s average satisfaction with the

display brightness. The energy consumption

reduction is not the first parameter that they take

into account. With the DHRM, we can reduce up to

30% (as shown in experimental results) of the whole

energy consumption. The use of sensors data is to

determine when a state, for which the user will not be

able to use his device, occurs. It prompts us to

decrease the screen brightness to its minimal value.

When the device is in a normal stand, we use the ALS

to regulate screen brightness.

7 Conclusions
In this paper, two new techniques for energy consumption

reduction in mobile systems have been proposed.

In the first solution, we use the current user context.

In the current version of the work, the context corre-

sponds to the system position, the ambient luminosity

and the ambient noise. More information and sensors will

be incorporated in the future. This approach allowed to

reduce the energy consumption by about 30%with a small
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overhead. The penalty of this first and light solution is

only during the ILs and ALs deployment when the sys-

tem is booted. It corresponds to 1 W during 2 s. There

is no impact on memory storage or processing with this

solution.

The second approach is more powerful than the first

approach but requires additional overheads in terms of

processing and storage. The second solution is based on

data mining and machine learning techniques. In the

paper, we demonstrated that our tools first allow new

ILs for collecting data and ALs for controlling hardware

elements can be easily added to the framework. At the

opposite of the existing methods, where the user needs

and behaviors are rarely taken into account, in our second

solution, we not only take these elements into account but

we also classify possible running applications, in terms of

resources needs, and we predict the future applications.

In comparison to the advanced energy management pro-

vided by windows 8.1, for some situations the gain offered

by our approach reaches 30%.

As perspective, we will consider more possible user pat-

terns and more applications. User satisfaction level will be

included as a parameter to control our energy-saving tech-

niques. The prediction mechanism will be also developed

to measure and increase the prediction accuracy. The off-

line classification phase will be extended to include lumi-

nosity, sound level, and GPS needs. We can also improve

DHRM by adding the mentioned parameters in [15], like

battery level and per-user brightness references. For this

reason, we will expand the use of IL and AL in order to

exploit other sensors, such as compass and GPS and for

other mobile platforms such as smartphones and tablets

running Android/Linux and iOS. The algorithm used to

learn the application sequences, namely GSP, was a first

solution, but certainly not the most efficient one that can

be found. We intend to select and implement a more

recent and efficient algorithm (like in [20]), especially to

improve the computing time that is dedicated to themain-

tenance and updating of the discovered sequences. Finally,

as applications are likely to have multiple requirements at

different application phases at run-time, it will be interest-

ing to consider application phases within the application,

rather than an entire application as a whole.

Endnotes
1http://uk.businessinsider.com/smartphone-and-

tablet-penetration-2013-10?r=US&IR=T.
2http://www.gsmarena.com/samsung-phones-9.php.
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