
135

Sensing with Earables: A Systematic Literature Review and
Taxonomy of Phenomena

TOBIAS RÖDDIGER, Karlsruhe Institute of Technology, Germany
CHRISTOPHER CLARKE, University of Bath, United Kingdom
PAULA BREITLING, Karlsruhe Institute of Technology, Germany
TIM SCHNEEGANS, Karlsruhe Institute of Technology, Germany
HAIBIN ZHAO, Karlsruhe Institute of Technology, Germany
HANS GELLERSEN, Lancaster University, United Kingdom
MICHAEL BEIGL, Karlsruhe Institute of Technology, Germany

Earables have emerged as a unique platform for ubiquitous computing by augmenting ear-worn devices with state-of-the-art
sensing. This new platform has spurred a wealth of new research exploring what can be detected on a wearable, small form
factor. As a sensing platform, the ears are less susceptible to motion artifacts and are located in close proximity to a number of
important anatomical structures including the brain, blood vessels, and facial muscles which reveal a wealth of information.
They can be easily reached by the hands and the ear canal itself is a�ected by mouth, face, and head movements. We have
conducted a systematic literature review of 271 earable publications from the ACM and IEEE libraries. These were synthesized
into an open-ended taxonomy of 47 di�erent phenomena that can be sensed in, on, or around the ear. Through analysis, we
identify 13 fundamental phenomena from which all other phenomena can be derived, and discuss the di�erent sensors and
sensing principles used to detect them. We comprehensively review the phenomena in four main areas of (i) physiological
monitoring and health, (ii) movement and activity, (iii) interaction, and (iv) authentication and identi�cation. This breadth
highlights the potential that earables have to o�er as a ubiquitous, general-purpose platform.
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1 INTRODUCTION
Earables are wearable computing devices that are worn in or around the ear. Ear-worn devices evolved for
isolated purposes, as hearing aids and personal speakers. In using the notion of “earables”, we refer to devices
that integrate wider capabilities, as a new type of ubiquitous computing platform. In consumer electronics,
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earphones have already become wireless at large scale, and increasingly integrate diverse types of sensors to
extend their functionality [286]. Conversely, hearing aids integrate sensing to personalise sound ampli�cation
but also converge toward wireless integration with other devices [179]. These trends are mirrored in research,
where earables (and synonomously “hearables”) have emerged as a distinct area of investigation [77, 165, 276]. At
the heart of much of the research in this new �eld are questions of sensing - what can be detected and observed
with earables, and what interactions and applications are enabled by sensing in or on the ear?

Earables, with their speci�c positioning on the human body, provide a distinct platform for sensing of a wide
range of properties, processes and activities. They are portable and their small and lightweight form factor allows
them to be worn for prolonged periods throughout the day. The shape of the ear a�ords a variety of mechanical
anchoring points [134, 166, 261] and the ears are less susceptible to motion disturbance and artefacts as the
body stabilises the head during locomotion [121, 162]. The proximity to the brain and blood vessels enables the
accurate measurement of brain activity, cyclic blood �ow and related properties [98], and the inner ear cavity
acts as an echo chamber to amplify internal body sounds [11]. The position of the ears on the head allows for
a multitude of facial, neck, and eye muscle activations to be sensed [14] and input from head movement [14],
facial gestures [221], mouth movements [320], and eye gaze to be detected [46, 272]. The ear itself is easily
and comfortably reached by the hands [171, 361], while the distinctive surface area creates opportunities for a
variety of touch interactions [192]. In sum, earables are capable of sensing a wide variety of processes of the
skeletal (e.g., gait [27]), muscular (e.g., facial expressions [221]), nervous (e.g., brain activity [85]), endocrine
(e.g., emotions [29]), cardiovascular (e.g., blood pressure [62]), respiratory (e.g., breathing [292]), and digestive
(e.g., food intake [111]) systems.

We have conducted a systematic literature review of 271 peer-reviewed research articles to advance under-
standing of sensing with earables. Each article reviewed was classi�ed with respect to sensing principles applied
or investigated, types of information gained, and purposes to which sensing was used. Through iteration, this
process resulted in the development of a taxonomy of phenomena sensed with earables. At the lowest level,
we identi�ed and characterised phenomena that are directly sensed with sensors placed in or on the ear as
fundamental phenomena, including for instance motion, body temperature and blood perfusion. Other phenomena
are identi�ed as indirectly observable and derived from fundamental phenomena, ranging from physiological
parameters (e.g., heart rate) and lower-level cues (e.g., earable state; in or out of ear) to conditions (e.g., stress),
actions (e.g. gestures), activities (e.g. daily tasks) and other context (e.g. user identity). In total, we identi�ed and
categorised close to 50 phenomena. We show how higher-level phenomena build on fundamental phenomena, and
relate this to di�erent sensors and sensing principles that have been investigated for their observation. The result
is a taxonomy that is open-ended (new sensors might emerge, and further phenomena explored) but complete
in providing a clear end-to-end structure for classi�cation of earable sensing work, from sensors employed to
fundamental and higher-level phenomena and their application.
A number of recent articles have also reviewed earables research. Plazak and Kersten-Oertel reviewed the

properties and a�ordances of earables and how they are distinct from other wearables, for input and output [276].
Choudhury provided a re�ection on earable computing that draws out key opportunities and challenges [77]. Our
work, in contrast, is more speci�cally focussed on sensing with earables, and grounded in a systematic literature
review. Two other systematic reviews have been published recently. Masè et al. reviewed 39 studies of in-ear
monitoring of physiological parameters, focussed on temperature, heart rate, and oxygen saturation [216]. Ne et al.
also focussed on earables for health monitoring but considered a wider range of bio-signals, reviewing 92 studies
to capture device characteristics versus study outcomes [243]. In contrast, we consider earable sensing broadly,
not limited to health monitoring, and inclusive also of research that has been less experimental, for example
demonstrating novel forms of interaction enabled by earable sensing. Our review is organised by phenomena, in
four main areas of (i) physiological monitoring and health, (ii) movement and activity, (iii) interaction, and (iv)
authentication and identi�cation. For each of the phenomena we provide a clear de�nition and review work on
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how they are sensed and on applications they enable. As such, we contribute a uniquely comprehensive survey
of the state of the art in earable sensing.

The remainder of the article is organised as follows. In section 2, we brie�y report on our review methodology.
Section 3 presents our work to structure the �eld with a taxonomy of phenomena. Figure 2 provides an overview
of phenomena and sensors for their capture, grouped into the four main areas. Section 4 to 7 follow to provide
the detailed review, for each of the four areas. This summary is followed by a discussion of cross-cutting aspects,
future opportunities and challenges, and a conclusion.

2 METHODOLOGY
Informed by prior work [40, 61, 120, 174, 366], the systematic literature review was undertaken by collecting and
�ltering papers from the ACM and IEEE digital libraries using a set of de�ned inclusion and exclusion criteria
and a four-eyes principle, followed by backward chaining with the same criteria applied. This process resulted in
271 relevant articles which we analysed and clustered based on a newly introduced earable taxonomy.

2.1 Paper Retrieval
We applied an initial keyword-based search on the ACM Digital Library (ACM-DL) and IEEE Xplore (IEEE-
X) libraries which, to the best of our knowledge, contain the majority of wearable and HCI publications. We
formulated the following de�nition as the overarching guideline of our survey:

Earables are devices that attach in, on, or in the immediate vicinity of the ear to o�er functionalities
beyond basic audio in- and output.

Research areas that apply to earables but are not targeted by our survey include voice and audio interfaces as well
as the technical design of audio earphones (e.g., speaker and antenna design or noise cancelling algorithms). These
topics have been summarised elsewhere (e.g., voice interfaces [314], audio interfaces [104], soundscapes [140], or
soni�cation [176]) or are not speci�c to the location on the ear (e.g., algorithms to translate speech to text).
We performed the queries listed below to match keywords against title, abstract and author keywords. We

identi�ed keywords by assembling a list that was expanded with additional relevant keywords found in the
�rst 50 papers returned by both libraries. The search resulted in 210 ACM-DL and 695 IEEE-X publications. For
reference, the original queries and links can be found in the supplemental material. A �nal query of both libraries
was performed at January 21st 2022.

query target: Title, Keywords, Abstract (ACM-DL) / Document Title, Index Terms, Abstract (IEEE-X)

keywords: earable(s), hearable(s), ear-worn, ear AND wearable(s), earbud(s), earphone(s),

. headphone(s), earpiece(s), ear(-)mounted, ear(-)attached, ear(-)based

filter: Research Article OR Short Paper (ACM-DL) / Conferences, Journals (IEEE-X)

2.2 Selection Criteria, Filtering and Backward Chaining
As the keyword-based search does not result in a set of papers with clear de�nition boundaries, we agreed on
explicit inclusion and exclusion criteria to manually select the relevant papers returned by the queries. First,
selected papers have to ful�ll the basic properties of earables in that:
(1) the device attaches in, on, or in the immediate vicinity of the ear; and
(2) sensing occurs in, on, or in the immediate vicinity of the ear.

Additionally, we exclude articles that:
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(1) are not peer-reviewed, e.g. workshop proposals, theses, patents, technical reports
(2) are a bigger head-worn or o�-body system (e.g., VR headsets)
(3) focus on animals
(4) are not written in English

main objective was to show the full breadth and depth of earable research contributions to date. Hence, we did
not exclude papers based on number of citations, impact factor of the venue, or number of study participants.

The search produced 906 results. Two of the authors reviewed the initial results separately by reading the titles
and abstracts before screening the papers by applying the above criteria. After removing 24 duplicates and one
broken cross-site link the articles with positive agreement were selected for the the review (75 ACM-DL, 112
IEEE-X). Performing this step yielded an initial set of 187 papers. We then applied backward-chaining to the
selected papers to account for publications that are not available in the ACM-DL and IEEE-X library or were
missed by the keywords, resulting in the inclusion of papers from other publishers including Springer, Frontiers,
and MDPI. Two authors scanned the references of the papers (4,854 incl. duplicates) according to the same criteria.
All references were split in half and one author con�rmed the selection of the other. In total, 82 additional papers
were identi�ed through this process. We added 3 further papers that the authors were aware of but that did not
appear in the search process, which is a common practice [61].
After going through all papers in depth, we later excluded 10 papers – �ve because of severely �awed

experiments and �ve because no evaluation was done but the claims of the paper would demand it. The described
procedure resulted in our �nal set of 271 papers.
Venues with more than three papers were the IEEE International Engineering in Medicine and Biology

Conference (EMBC) (N=28), EarComp (N=15), Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies (IMWUT) / Ubicomp (N=14), ACM International Symposium on Wearable Computers
(ISWC) (N=13), IEEE Sensors (N=13), IEEE-EMBS BSN International Conference on Wearable and Implantable
Body Sensor Networks (N=10), IEEE Transactions on Biomedical Engineering (N=10), MDPI Sensors (N=7), ACM
Conference on Human Factors in Computing Systems (CHI) (N=6), ACM Symposium on User Interface Software
and Technology (UIST) (N=6), BioCAS (N=5), Mobicom (N=4), and SenSys (N=4).

2.3 Analysis and Survey Structure
To structure the identi�ed papers’ content in a uni�ed format, a Google Sheets document was assembled. Two
authors went through 15 di�erent papers each and came up with an initial suggestion for a table structure.
This structure was reviewed with the remaining authors to distill the �nal table for data extraction (46 di�erent
columns spanning varying aspects). Then, we split all the collected papers between co-authors to �ll the table
accordingly, as basis for development of the taxonomy.
At the highest level, we identi�ed four main areas of research into which we grouped papers to provide us

with a top-level structure for the survey. The grouping is pragmatic and based on larger overarching themes. The
largest area, in number of articles published, is physiological sensing and health monitoring. Research in this
space is pursued across disciplines and has a strong measurement focus but also includes work on detection of
distinct phenomena, such as teeth grinding (bruxism) and coughing. Movement and activity forms an area that is
more de�ned by a common ground in activity analysis than any speci�c application domain, with most of the
research stemming from the wearable and ubiquitous computing community. Interaction forms another distinct
area, where research tends to be exploratory in pursuit of new means for input and interaction enabled by earable
sensing. Authentication and identi�cation is our smallest area but distinct with a research focus on biometrics
captured at the ear, including physical properties of the ear itself. Figure 1 shows how the four main research
areas have evolved over time. The �eld has grown over the past 20 years with a signi�cant rise in activity in

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 135. Publication date: September 2022.



Sensing with Earables: A Systematic Literature Review and Taxonomy of Phenomena • 135:5

Fig. 1. Total number of papers published overall and per research area over time from 2000 to 2021.

the last 6-7 years. In every of the four main areas identi�ed, most papers per year so far were published in 2021,
underlining the growing interest in earable sensing.

For the discussion of the state of the art in this survey, we prioritise works with more study participants and
signal preliminary �ndings where appropriate. Additionally, we list the exact number of study participants of
di�erent studies in the appendix tables. Works from the same authors with overlapping contents (e.g., follow-up
paper) or the same underlying system are not �ltered. Instead, we attribute overlapping contributions by citing
all relevant papers while highlighting speci�c contributions through citations of the speci�c paper.

3 EARABLE SENSING TAXONOMY
There are many ways in which the research space of earables can be structured, for example by a�ordances [276]
or features of earable platforms [288]. In our review we started by classifying work by types of sensor and purpose
to which sensors were employed. In iteration, we identi�ed phenomena, in the sense of “something that can be
observed” as central for structuring the body of work, as it provides the link between sensors as the means for
observation, and applications as the target. Our use of “phenomena” is comparable to the use of “context” as
abstraction in sensing-based applications, however we chose “phenomena” to better encompass observation of
anything from low-level physiological parameter to higher-level condition, event, state, or activity.

Figure 2 provides an overview map of the phenomena we identi�ed, clustered into related themes and grouped
into the four main areas we identi�ed. For example, heart rate, blood oxygen saturation, blood pressure and
respiration are all distinct phenomena but clustered as relating to the cardio-respiratory system. For each of
the phenomena, our map captures the types of sensors that have been investigated for their observation. Our
overview map also shows how many articles we found that have studied the various phenomena. For example,
49 articles have studied earable sensing of heart rate, while other phenomena have only been studied in single
works (e.g., earable detection of sleep apnea, or repetition counting in �tness).

3.1 Definition of Phenomena Sensed with Earables
Table 1 provides the list of phenomena that we distilled from the earable research literature. In many cases, higher-
level observations build on lower-level observations that often remain implicit. In developing our taxonomy, we
have therefore analysed all selected articles in depth, to clearly identify the actual phenomena observed as well
as phenomena that are derived. For each of the phenomena thus identi�ed, we provide a clear description as
point of reference for future research.
We list phenomena from lower to higher levels of observations in our table, as that allows us to show how

phenomena build on each other. Phenomena that can be directly captured by a sensor are shown in boldface,
and we refer to them as fundamental phenomena that enable observation of other phenomena. For example,
blood perfusion and cardiac action potential can be sensed directly at the ear, whereas heart rate is derived from
lower-level observations. We consider fundamental phenomena in more depth below.
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MOVEMENT AND 
ACTIVITY 
(N=64)

PHYSIOLOGICAL PARAMETERS AND HEALTH (N=130)

Cardio-Respiratory System 
(N=56)

Heart Rate (N=51)

• Photoplethysmography (PPG)
• Electrocardiography (ECG)
• Microphone
• Accelerometer
• Piezoelectric
• Infrared thermometry

Blood Pressure (N=4)

• PPG + balloon
• PPG + chest ECG
• Pressure sensor

Blood Oxygen Saturation 
(N=9)

• PPG

Respiration 
(N=8)

• PPG
• Accelerometer
• Gyroscope
• Microphone

Nervous System 
(N=52)

Brain Activity (N=41)
• Electroence-

phalography (EEG)

Sleep (N=12)
• EEG
• Infrared thermometry

Thermal Regulation
(N=14)

Body Temp. (N=12)

• Infrared thermometry
• Thermistor

Sweat (N=3)

• Electrodermal activity 
(EDA)

• Hygrometer

Mental 
State 
(N=6)

Emotions (N=4)

• EEG
• Microphone
• Accelerometer

Stress 
(N=2)

• PPG

Health
(N=17) Bruxism (N=4)

• Accelerometer
• Gyroscope
• EMG

Coughing (N=6)

• Accelerometer
• Gyroscope
• Microphone

Sleep Apnea
(N=1)

• PPG

Epilepsy (N=3)

• EEG

Posture (N=4)
• Accelerometer
• Gyroscope

Food and Drink Consumption (N=24)

INTERACTION (N=72) Facial Expressions 
(N=7)
• Electromyography 

(EMG)
• Microphone + emitted 

sound
• Accelerometer 
• Gyroscope
• Camera

Mouth-Based Interaction (N=14)

Jaw Gestures (N=5)

• Pressure sensor

Fitness Tracking 
and Support (N=19)

Activity 
Recognition 
(N=13)
• Accelerometer
• Gyroscope
• EEG

Brain Computer 
Interface (N=6)
• Electroence-

phalography (EEG) 

Ear and Earable Input (N=14)

Eye 
Tracking (N=8)
• Electrooculography

Hands Gestures and 
Location (N=7)
• Microphone 

(+ emitted sound)
• Proximity sensor
• Camera

Head Gestures and 
Pointing (N=11)
• Accelerometer
• Gyroscope
• BLE RSS
• Microphone

Ovulation (N=1)
• Thermistor

Navigation 
(N=4)
• Accelerometer
• Gyroscope
• Magnetometer

Gait (N=13)

• Accelerometer
Step Counting (N=1)

• Accelerometer
• Gyroscope

Repetition Counting (N=1)
• Accelerometer
• Gyroscope

Energy Expenditure 
(N=5)

• Accelerometer
• PPG

Performance Feedback 
(N=4)
• Accelerometer
• Gyroscope

Eating (N=20)

• Microphone
• Accelerometer
• Gyroscope
• Magnetometer
• Proximity Sensor
• Piezoelectric
• EMG
• Pressure Sensor
• PPG

Drinking (N=6)
• Microphone

Food Type (N=4)
• Microphone
• Camera

Teeth Brushing 
(N=2)
• Microphone

AUTHENTICATION AND 
IDENTIFICATION 
(N=17)

Shape-Based 
(N=11) Brain-Based 

(N=3)
• EEG

Motion-Based 
(N=2)
• Accelerometer 
• Microphone

Face Touching
(N=2)

• Infra. ther.
• Mic. + sound
• Impedance

Passcode-Based 
(N=1)
• Accelerometer

Ear (N=8)
• Microphone + emitted 

sound

Skull (N=2)
• Microphone + voice

Body (N=1)
• Impedance

Button Input (N=1)
• Button

Touch (N=7)
• Capacitive
• Resistive
• Microphone
• Modified speaker
• Proximity sensor
• Camera

Wearable State 
(N=5)

• Capacitive
• Proximity
• Microphone + 

emitted sound
• Modified

Speaker

Tensor Tympani
Contraction (N=1)

• Pressure sensor

Gesture Eliciation (N=3)

Tongue Gestures
(N=4)

• Microphone + 
emitted sound

• Pressure sensor
• Proximity sensor
• EMG
• Capacitive

Teeth Gestures
(N=3)

• Microphone
• Modified 

Speaker 
• Gyroscope

Silent Speech Input 
(N=3)

• Proximity Sensor

• Accelerometer
• Camera

Actuation (N=9)
• Haptics
• Thermal cues
• Ear deformation 

Shape Changes (N=1)
• Proximity sensor

Drowsiness (N=4)
• EEG

Fig. 2. Overview map of earable sensing. The map is organised by phenomena that can be captured with earable sensors. For
each phenomenon, we list the number of articles found in our survey, and the di�erent types of sensor used. Phenomena are
clustered in relating to common themes or systems, and grouped into four main categories.
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Table 1. Definition of phenomena investigated with earables. Boldface denotes fundamental phenomena that can be observed
by sensors and that enable observation of higher-level phenomena.

Category Phenomena Description

Body
Functions

Blood Perfusion passage of blood through organs and tissue to deliver oxygen and nutrients
Cardiac Muscle muscles involved in the contraction of the heart stimulated by cardiac action potential
Heart Rate heart contraction frequency varying upon physiological and psychological conditions
Blood Pressure pressure created by the heart pushing blood against the walls of the arteries
Oxygen Saturation percentage of oxygenated hemoglobin relative to the overall hemoglobin in blood
Respiration gas exchange through breathing characterized by inhalation of oxygenated air and exhalation
Brain Activity neural activity of the brain emi�ing electrical signals in response to stimuli or conditions
Body Temperature safe range that varies slightly during activities or physiological states (e.g., sports, illness)
Sweat water secreted on skin for thermoregulation and in response to psycho-physiological arousal
Energy Expenditure energy burned by physical activity and by sustaining human life (e.g., heating the body)
Sleep, Drowsiness di�erent stages during sleep, the daily change from wakefulness to sleep, and drowsiness
Ovulation can be associated with the highest fertility during the menstrual cycle

Sound
External Sounds sounds occuring externally of the user’s body e.g., in public se�ings by others
Emi�ed Sounds sounds that are emi�ed by the earable and are then sensed (e.g., sound reflection in ear canal)
Body Sounds sounds occuring inside or by the wearer e.g., while chewing or when tapping the ear

Movement
/ Location

Motion change of position and orientation of an object in space over time, mostly the body
Navigation track the movement of a user to compute past and future path or give directions
Head movement of the head in di�erent directions limited by the anatomical abilities of the body
Facial Muscles contraction of facial muscles to move di�erent parts of the face (e.g., lips, jaw)
Facial Expressions conscious and subconscious positioning of facial muscles (e.g., to express emotions)
Jaw, Teeth, Tongue conscious and subconscious movement of the jaw, teeth, and tongue (e.g., eating, clenching)
Eyes conscious and subconscious movement of the eyes (e.g., gazing, sleep)
Hands positioning of the hands and fingers in space over time

Ear

Shape unique shapes of the outer, middle and inner ear and skull around the ear specific to a person
Deformation possibility to deform the so� auricle by hand and also ear canal during, e.g., facial activities
Touch bring the hands or earable in contact with the skin on and around the ear
Proximity distance measured from the ear to other objects (e.g., hands) or ear canal and changes thereof
Manipulation manipulation of the ear or earable to perform input
Earable State position and status of an earable (e.g., in-/outside the ear, ready for input, etc.)

Mental
State

Emotion feelings and thoughts of a person associated with their physical and psychophysiological state
Stress overload of a person’s ability to cope with mental or physical demands e�ectively

Health
Conditions

Bruxism grinding of teeth and clenching of the jaw, many times during the night
Coughing ejection of air from lungs with sudden noise to free the lungs from mucus and other particles
Sleep Apnea involuntary interruption of breathing during sleep from a few seconds up to minutes
Epilepsy commonly associated with episodic abnormal neural activity resulting in, e.g., body shaking

Activities

Posture static position held by a person while standing, si�ing or laying down
Gait motion of limbs during locomotion which may be impaired, e.g., due to skeletal malfunctions
Fitness Activities activities related to personal fitness or higher physical exertion to track repetitions and execution
Everyday Activities activities that occur or are executed daily that can be tracked (e.g., desk work)
Eating consumption of foods by bite, chew, and swallow and the detection of foods and intake progress
Drinking consumption of liquids (incl. liquid foods) sip and swallow
Tooth Brushing brushing of the teeth for oral hygiene to prevent caries

Identity User Identity uniqueness of an individual among others based on person-specific properties (e.g., ear shape)

Action Gestures movement of parts of the body (e.g., head, hands, jaw) to accomplish input
Silent Speech speak words and sentences by moving the mouth and tongue without vocalizing speech sounds

Vision Body Appearance looks of the user’s body which give information about presence, state, or identity
Object Appearance looks of surroundings which give information about presence or state of objects
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Eye 
Movement

Facial Muscle 
Activity

Cardiac Muscle 
Activity Ear Shape / DeformationExternal, Emitted, and Body Sound

Stress EpilepsyEnergy 
Expenditure Posture GaitFitness

Activities

Head Movement 
and Gestures

BCI 
Gestures Ovulation

Blood 
Pressure

Blood Oxygen 
Saturation Eating Facial 

Expressions
Hand Movement and 

GesturesManipulation Earable
State Jaw, Teeth, and Tongue Movement

BruxismMouth
Gestures

Silent 
Speech

Sweat Motion Brain Activity Body 
Temperature

TouchBlood Perfusion Body and Object AppearanceProximity

Respiration SleepEmotionsCoughingSleep
Apnea
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Fig. 3. Flow diagram showing how di�erent phenomena can be inferred. The arrows indicate how lower-level phenomena
support higher-level observation. The grey boxes represent “fundamental” phenomena that can be directly sensed and from
which all other phenomena can be derived.

We also identify categories to capture the principal types of phenomena. A wide range of earable sensing work
is, for instance, focused on monitoring of body functions. These are interesting as they focus on physiological
parameters as observations at a lower level of abstraction that directly underpin applications concerned with their
monitoring. Other categories relate to sensing modalities such as sound, movement and vision, with sound listed
at a lower level as it contributes to observation of a wide range of other phenomena. A category of particular
note is “Ear” as it encapsulates phenomena that relate to the ear or earable device as such, for example the unique
shape of the ear channel, or the manipulation of either the ear or the ear-worn device.
In the ubiquitous computing �eld, lower-level observations are often referred to as “cues” that contribute to

inference of “higher-level context”. We see similar relationships in our schema, where other categories such as
mental states, health conditions, activities and identity describe higher-level contexts. However, across the body
of work we examined, phenomena of interest are viewed at di�erent levels of abstraction and we therefore avoid
any layering into cue versus context. The same phenomenon may be considered low level in one application and
high level in another.
Figure 3 shows the relationships we identi�ed between phenomena. Fundamental phenomena that can be

directly sensed are shown as grey boxes, with other phenomena in blue. For a range of phenomena, the relationship
appears straightforward, for example with posture or gait derived from motion. However, phenomena build also
in less obvious ways on each other. Observation of heart rate, for instance, can be based on observation of cardiac
muscle activity, blood perfusion and sound but in turn also contributes to observation of a spread of phenomena
including blood pressure, respiration and �tness activity. Another example is ear canal shape deformation which
feeds into detecting jaw, teeth, and tongue movements which enables the observation of higher-level phenomena
such as eating, bruxism or silent speech detection. Simultaneously, the ear’s distinct shape can also reveal the
user’s identity. While changes of ear canal shape can be quanti�ed directly using piezoelectric or pressure sensors,
it may also be sensed indirectly by measuring motion changes over time or by characteristic sound re�ections
emitted in the enclosed ear canal.
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Fig. 4. (A - C) ear anatomy and unifying positioning terminology; (D) arterial network; (E) skull bones; (F) muscles.

3.2 Fundamental Phenomena and Sensing Principles
Figure 3 highlights how the observation of a wide range of phenomena is grounded in a relatively small set of
fundamental phenomena. These fundamental phenomena are sensed either directly or indirectly from di�erent
sensors attached in, on or in the immediate vicinity of the ear. However, the phenomena labelled as fundamental
may also be inferred from other fundamental phenomena in addition to being (in)directly sensed. For instance,
“Touch” is classi�ed as a fundamental phenomenon because it can be captured directly with speci�c sensors (see
Table 3). However, we also found "Touch" to be inferred indirectly, for example from sound captured with a
microphone or visual appearance of body and hand captured with an ear-mounted camera.

Table 2 provides a detailed de�nition for the fundamental phenomenawe identi�ed, explaining the physiological
mechanisms on which their observation is based. The description makes reference to the anatomy of ear and head,
for which we refer the reader to Figure 4. The table provides a comprehensive overview of the foundations on
which earable sensing is based. Note also speci�cs, for instance how external, emitted and body sound leverages
earable sensing di�erently.
Table 3 provides a list of the di�erent types of sensors that we found reported in the earables literature,

grouped into general categories. For each sensor, we provide a description of the sensing principle for reference.
Each sensor directly relates to sensing at least one of the fundamental phenomena, however some fundamental
phenomena can be sensed with a wide variety of sensors. For example, ear canal deformation can be sensed
using a barometer to detect the in-ear pressure, through proximity sensors which measure the in-ear distances,
or through accelerometers and gyroscopes as the ear canal deforms during jaw movements.

The list of sensors also completes the circle to the overview map of our taxonomy (Figure 2), where we mapped
out the range of phenomena with the di�erent types of sensors used for their observation. The taxonomy provides
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Table 2. Fundamental phenomena from which all other phenomena can be derived on the earable platform.

Fundamental Phenomena Description and Underlying Physiological Mechanisms
Blood Perfusion The ears are characterized by thin tissue and visible blood vessels (see Figure 4 D) enabling

the observation of cyclic blood �ow and related properties [42]. The perfusion of the middle
ear is excellent in comparison to the peripheral perfusion of other body parts [343].

Cardiac Muscle Activity Due to the conductive characteristics of the body, the cardiac action potential created by
the heart is propagated throughout the body up to the ear [127, 306, 369].

Brain Activity The area around the ear, the concha, and the ear canal are closely located to the brain,
which allows capturing its electric activity, commonly resulting in sinusoidal waves that
are also called brain waves [46, 157, 330]. It provides access to the brain’s response upon
auditory and visual stimulation [157, 245]

Body Temperature The close proximity to the carotid artery results in the tympanic membrane having a
temperature close to core body temperature [51] (see Figure 4 C and D). Additionally, the
ear canal and an earbud create a con�ned space in which temperature stabilizes [202].

Sweat The area around the ear has high sweat-gland density relating to stress and physical
exertion [313]. Sweat gland activity is not symmetric and di�erent between both ears [274].

External / Emitted /
Body Sound

Activities occurring close to the ear (e.g., chewing sounds or tapping around the ear) are
transmitted by body sounds, or bone conduction [11, 361]. The cavity created by the ear and
an earable generates a natural echo chamber that ampli�es body-internal sounds [182, 261],
while external sounds are dampened [261, 263]. Sounds that are actively emitted from a
device at the ear result in characteristic sound re�ections that are utilised by di�erent
phenomena, including detection of ear canal deformation [10]. Compared to smartwatches
and smartphones, earables are less susceptible to motion-induced sound artifacts [232].

Motion The ear provides a robust and stable attachment point [65] with few vibrations and random
movement artifacts [96] when detecting motions across the body and at the ear. This
includes motion induced by the ear canal deforming (e.g., during facial expressions [344]).

Facial Muscle Activity Sensing of facial and neck muscles can be achieved via electrical potential changes in
the area around the ear [221], which is closely located to the temporalis, masseter, and
steroncleodmastoid muscle (see Figure 4). Facial muscles deform the ear canal [14].

Ear Shape /
Deformation

The �ne structures of the ears are unique enough between di�erent users (see Figure 4 A)
for the purpose of biometrics [31, 275]. Additionally, the ear canal deforms during head,
face, mouth, teeth and jaw motions and muscular activity [14, 39, 119, 255], e.g. upon
movement of the temporomandibular joint (see Figure 4 E).

Touch The unique structure of the ear and the earable itself create a surface for interaction and
are easily reached by the hands which a�ords touches by the user [171, 192].

Proximity The ear o�ers a �xed reference point from which distance to external objects can be
measured, or their presence inferred [227]. In addition, in-ear based proximity sensors can
be used to detect ear canal deformation [39].

Eye Movement The standing potential of the eyes and, upon movement of the eyes, changes thereof can
propagate to the ear [46].

Visual / Object
Appearance

The location at the ears can capture the �eld of view of the wearer and also the broader
area around them which contains visual information about the appearance of the surround-
ings [193] and can also determine touch [171].
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Table 3. Sensors can quantify or measure di�erent fundamental phenomena that were identified in Table 2 and Figure 3.
Some fundamental phenomena can still be inferred from other fundamental phenomena.

Sensor Description Fundamental Inferred Fund.

Accelerometer
Inertial acceleration of a body on one or more axes to measure body
motion changes and ear canal deformation motions relating to facial
muscle activity.

Motion
Ear Deformation,
Facial Muscle
Activity

Gyroscope
Angular rotation of a body on one or more axes to measure body
motion changes and ear canal deformation motions relating to
facial muscle activity.

Motion
Ear Deformation,
Facial Muscle
Activity

M
ot
io
n

Magnetometer Magnetic �eld on one or more axis relating to body motion changes Motion -

Microphone Sound transmitted through air or occurring within the body of the
user. Such sounds can relate to touching.

External and
Body Sound Touch, Motion

Microphone
+ emitted sound

Re�ected sound signals of an emitted sound (e.g., constant tone)
corresponding to ear shape and deformation with facial muscle
activity

Emitted sound
Ear Shape / Deform.
Appearance, Facial
Muscle ActivityA

ud
io

Modi�ed Speaker Modi�cation of a speaker to sense sounds that actuate the speaker‘s
membrane. Such sounds can be leveraged to sense touch.

External and
Body Sound Touch

Photoplethysmo-
graphy (PPG)

Absorption of emitted light corresponding to blood perfusion
(possibly at di�erent light frequencies).

Blood
Perfusion

Cardiac Muscle
Activity

Infrared
Thermometry

Temperature based on thermal radiation without physical contact,
commonly obtained at the tympanic membrane.

Body
Temperature

Blood Perfusion,
Appearance, Touch

Proximity Sensor Distance to objects in close proximity with no physical contact
to observe appearance which can sense deformation and touch. Proximity Ear Deformation,

Touch, AppearanceO
pt
ic
al

Camera Capture images to sense visual appearance of surroundings
(e.g., hands), contact to the skin, or deformation of the face.

Visual
Appearance

Touch, Facial
Muscle Activity

Electroence-
phalography
(EEG)

Electrical potential changes of the brain created by neurons in
response to external stimuli (e.g., visual) or internal processes
(e.g., sleep, emotions).

Brain
Activity Motion

Electrooculo-
graphy (EOG)

Movement of the eye’s standing potential (dipole) and eye lid by
change of potential around the eyes measured at the ear.

Eye
Movement -

Electrocardio-
graphy (ECG)

Electrical potential of the heart produced by cardiac muscle
contraction that propagates through the body.

Cardiac
Muscle -

Electromyo-
graphy (EMG)

Electrical potential generated by muscle cells during contraction
to sense the activity of muscles around the ear and of the face.

Facial
Muscles -

Electrodermal
Activity (EDA)

Changes of skin lead resistance upon secreted sweat in response to
psychological or physiological arousal. Sweat -

Bi
op

ot
en
tia

l

Impedance measures the impedance of current in�uenced by tissue Touch Appearance

Thermistor Temperature as resistance change, commonly attached on the object
to be sensed, or inside a con�ned space such as the ear canal.

Body
Temperature -

Hygrometer Measures humidity as the concentration of vaporized water in air
which corresponds to sweat secreted by the skin in the ear canal Sweat -

En
vi
ro
nm

en
ta
l

Barometer Measure air pressure in the ear canal to sense deformations that
corresponds to facial muscle activity.

Ear
Deformation

Facial Muscle
Activity

Piezoelectric/
-resistive

Sense change of electric charge / resistance upon mechanical stress
relating to motion of ear deformations and facial muscle activity.

Touch, Motion,
Ear Defor. Facial Activity

Capacitive Sense change by capacitive coupling to a conductor or materials
with di�erent dieletric properties, such as the �nger.

Proximity,
Touch -

Button Outputs a binary state or pressure force level. Touch -El
ec
tr
ic
al

BLE RSS Bluetooth signal strength between two devices. Proximity -
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a clear structure based on sensors, fundamental phenomena, higher-level phenomena, and their relationships. In
the remainder of this article, we draw on the overview of phenomena to structure our review of earable sensing
literature. For future research, we expect our taxonomy to provide a reference scheme for new work in the �eld,
for which the taxonomy will naturally be extensible for other sensors and phenomena of interest.

4 PHYSIOLOGICAL PARAMETERS AND HEALTH

MOVEMENT AND 
ACTIVITY

4.1 Cardio-Respiratory 
System

4.1.1 Heart Rate
4.1.2 Blood Oxygen Saturation
4.1.3 Blood Pressure
4.1.4 Respiration

4.2 Nervous 
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4.2.1 Brain Activity
4.2.2 Sleep
4.2.3 Drowsiness

4.3 Thermal 
Regulation
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Eating

• Microphone
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• Pressure sensor
• Camera
• Piezoelectric 

sensor
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AUTHENTICATION AND 
IDENTIFICATION

INTERACTION

Ear Shape Based
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② Brain Activity Based
• EEG

Facial Expressions

• EMG
• Microphone (+ emitted 

sound)
• Microphone
• Camera
• Accelerometer 
• Gyroscope

Facial Interaction

Jaw, Teeth, and Tongue Gestures

• Pressure sensor
• EMG
• EEG
• Microphone (+ emitted sound)
• Microphone
• Capacitive sensing
• Photo-reflective sensor
• Accelerometer
• Gyroscope
• Modified Speeaker

Head

• Accelerometer

• Gyroscope

• BLE RSS

• Microphone

Hands

• Infrared camera
• Skin Impedance
• Microphone (+ 

emitted sound)
• Proximity sensor
• Camera

Eye Tracking

• EOG
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Silent Speech

• Proximity Sensor
• Camera
• Accelerometer

Brain Computer 
Interface
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Ear and Earable
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• Proximity Sensor
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Wearing State and Earbud Location

• Capacitive sensing
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• Microphone (+ emitted sound)
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• Magnetometer
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Fig. 5. Structure of the Physiological Parameters and Health section according to di�erent functions of the human body.

Physiological parameters are indicators of an individual’s health status, which has been explored heavily together
with earables. The following sections are structured according to functions of the human body (see Figure 5). They
describe the technical realization and applications of various bodily phenomena detected by sensors attached to
the ear motivated by tracking and maintaining personal health.

4.1 Cardio-Respiratory System
The cardio-respiratory system resembles a close coupling process between two biological phenomena: blood �ow
and breathing cycles. The following sections will introduce the technical realization and applications of heart
rate, blood oxygen saturation, blood pressure, and respiration sensing on the ear.

4.1.1 Heart Rate. Heart rate (HR) is an indicator of the cardiovascular and the autonomic nervous system and,
therefore, a vital sign that is in�uenced by physical �tness, diets, and the overall health [339]. It describes the
frequency at which the heart contracts and relaxes. A typical heartbeat consists of multiple characteristic waves
(most importantly P-, QRS-, and T-waves [127]). Typically, the heart rate is identi�ed from the R-wave and
reported in beats per minute (bpm), with adults having an average resting heart rate of 60-100 bpm [368]. Heart
rate variability (HRV) is the variability in the beat-to-beat time intervals which can predict cardiovascular diseases
and mortality [332, 333]. HRV is reported in milliseconds (ms), with adults typically having an average resting
HRV of approximately 20-200 ms [177, 251].

Heart Rate - Sensing. Table 4 compares seven earable heart rate sensing principles based on the results of
44 studies (for details, see Appendix A). The di�erent sensor locations, experimental protocols, experimental
conditions, and performance metrics reported across papers only allow an ordinal comparison of accuracy and
robustness (low, medium, high). In our work, we de�ne “high accuracy” as medical-grade accuracy in the resting
condition (e.g., mean error < 10% [18, 254]). Robustness refers to the stability against motion artifacts. The
following paragraphs will describe the advantages and disadvantages of the di�erent sensing principles in further
detail.
Photoplethysmography (PPG) measures the blood volume change by illuminating the skin and then tracks

changes in the re�ected or transmitted light. The proximity between the brain and ears o�ers an arterial network
that is ideal for heart rate sensing in comparison to other locations that are subject to peripheral perfusion (see
Figure 2). At the same time, PPG a�ords sensing other phenomena such as blood pressure (see subsubsection 4.1.3),
blood oxygen saturation (see subsubsection 4.1.2), and even respiration (see subsubsection 4.1.4). In general, a
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Table 4. Comparison of heart rate sensing principles. Accuracy based on comparison to medical gold standard under
resting conditions. Robustness refers to the robustness against body movements. PPG = Photoplethysmography, ECG =
Electrocardiography, Mic. = microphone, Acc. = Accelerometer. N = Number of studies

Sensor Accuracy Robustness Advantages Disavantages Best Location N

PPG high moderate supports pulse oximetry, blood
pressure, and respiration rate

sensitive to motion but can be
�ltered up to some degree ear canal 29

ECG high moderate gold standard for HR & HRV,
most detailed heart activity

does not work for everyone, obtrusive,
requires multiple electrodes

ear canal,
mastoid 8

Mic. medium low o�-the-shelf sensitive to motion but can be
�ltered up to some degree

ear canal,
circumaural 5

Acc. medium low o�-the-shelf, �lter movement
supports activity tracking highly sensitive against movement posterior 2

Piezo high low con�gurable ear shapes
robust against temperature

highly sensitive against movement,
requires pressure to the skin ear canal 1

PPG sensor location in the ear canal is preferable even though it may be sensitive to jaw motions [98, 347]. Other
non-ear-obstructing locations with su�cient accuracy are at the tragus, the ear lobe, and the area posterior to
the ear (see Appendix A). Accuracy-wise, earable PPG devices can meet o�cial medical standards in resting and
moving conditions. Most resting state studies reported error scores of less than 1 bpm mean error [98, 270, 309,
334, 341, 343, 345–347] which even outperforms wrist-worn PPG [273, 282]. Within-subject studies showed that
PPG performance decreases with motion artifacts introduced by body movement [98, 279, 309, 334, 365], facial
movement (e.g. talking) [134, 204, 279], or music listening [278]. While several studies report accuracy scores of
less than 10% mean error under motion noise [204, 270, 309, 309], other studies exceed the acceptable range of
medical standards (e.g., [98]). Two promising pathways for reducing earable PPG motion artifacts are the use of
accelerometers [70, 201, 270] and machine learning based calibration procedures [201, 323, 369].

Electrocardiography (ECG) measures the contraction of the cardiac muscle and the resulting electrical activity
with electrodes on the skin surface [316]. ECG provides the highest resolution of heart rate activity and is,
therefore, considered the gold standard for conventional medical measurement. A handful of studies on earable
ECG reported acceptable performance (see Appendix A) with peak delays of only 50 ms [322]. The ear canal was
recommended as the best location for earable ECG [348]. Still, some evidence exists that ECG waves can also be
measured at the mastoid [145, 369] and posterior ear position [69]. However, Jacob et al. [145] could not identify
the fundamental heart beat frequencies for 6 out of 13 study participants. Additionally, multiple ECG-electrodes
are required on the skin (not necessarily on the head), which leads to the conclusion that earable PPG o�ers
signi�cant advantages over ECG with regards to obtrusiveness, generalizability, and possible accuracy.

Microphones, in most cases electret condenser microphones [93, 215], record air-conducted (and bymodi�cation
also bone-conducted [117]) sound pressure waves elicited by mechanical pulsation of the ear-canal blood vessels.
The recorded audio signal is processed with �ltering algorithms for low (<24Hz) and recurring frequencies
[93, 248], or other denoising algorithms [57, 215]. One advantage is that microphones are commonly built into
commercial earbuds. Fan et al. [93] developed a device that plugs in between a smartphone and any o�-the-shelf
headphone to derive heartbeats from small voltage changes. Most studies report errors below the 10% range
(Appendix A). However, the performance of microphone-based heart rate sensing is generally lower than earable
PPG. Moreover, it has low robustness against motion artifacts (ME=7.5 bpm) [248]. As a result, microphones
should only be considered as a cost-e�cient and o�-the-shelf alternative to PPG sensors.
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Accelerometers measure heartbeats through recurring mechanical vibrations that result from the blood volume
change [134, 256]. Similar to microphones, they are built into several o�-the-shelf earables (e.g., eSense [166]). He
et al. [134] found high regression coe�cients for the R- and J-waves but lower coe�cients for the PPG-measured
stroke volume. Such accelerometers are also useful for �ltering out motion artifacts of other heart rate sensors
[70, 133, 201, 270] (see above).

Moreover, Park et al. [262] used piezoelectric sensors for measuring the heart rate via the variance of surface
pressure in the ear canal. The authors found showed high accuracy scores on a large sample size when the user is
at rest.
None of the sensing principles have high robustness against body movements. PPG and ECG are evaluated

as moderately robust because they had less decline in accuracy compared to other sensing principles and still
enabled an overall identi�cation of the heartbeats. Overall, a combination of PPG sensors in the ear canal and
accelerometers that control for motion artifacts seems most promising for earable heart rate sensing.

Heart Rate - Applications. Most earable heart rate publications were motivated by the possibility to continuously
monitor cardiovascular functions (e.g., [127, 262, 278]). Other use cases are monitoring of stress ([126, 201, 323,
323], see subsubsection 4.4.2), energy expenditure ([183], see subsubsection 5.2.2), and exercising [248, 335].
Heart rate measured at the ear also gives insights into respiration-related events (see subsubsection 4.1.4 and
subsubsection 4.5.4).

4.1.2 Blood Oxygen Saturation. Delivering oxygen-bound hemoglobin to di�erent cells of the body is vital to
human life [355]. The proportion of oxygenated hemoglobin (saturated) to the total amount of hemoglobin
molecules in the arteries (saturated and unsaturated) is de�ned as blood oxygen saturation, and is reported in
percent (%).
Non-invasive methods commonly measure the peripheral oxygen saturation (SpO2) based on computing the

di�erence of absorbed light at two wavelengths by Photoplethysmography (PPG). In medicine, the earlobe is
a popular and reliable location to obtain transmissive PPG-based SpO2 measurements as light can be emitted
on one side of the ear, whereas the absorption is determined on the other side of the tissue [355]. However,
transmissive PPG is limited to the auricle, as the emitting LED and the light sensor are placed on opposing sides
of the skin. Therefore, earables commonly use re�ective PPG sensors that measure the amount of light re�ected
back to the emitting probe.
Appendix B shows that acceptable accuracy can be achieved by re�ective PPG at rest on the earlobe [204],

and in the ear canal [42, 98] based on ground truth �nger SpO2 measurements (< 2% error according to FDA [?
]). Besides, PPG sensors posterior of the ear could also measure reliable values in a range between 70% - 100%
evaluated according to gold standard arterial blood gas values (SaO2) [58]. PPG to sense blood oxygen saturation
su�ers from the same problems as described in the previous heart rate section (see subsubsection 4.1.1), such as
degraded performance by motion artifacts when walking or during jaw movement [98, 347].

Based on the blood oxygen saturation of the wearer, it was suggested to perform sleep apnea detection [343], see
subsubsection 4.5.4. Other possible applications include vital signs tracking and alerting [32, 42, 204] foreseeing
diseases [125, 347], and unobtrusively monitoring the oxygen dosage of patients [175].

4.1.3 Blood Pressure. The circulatory system transports nutrients to all parts of the body while the pressure
generated by the heart pumping plays a decisive role as the driving force. This pressure is known as blood
pressure [224]. High blood pressure (hypertension) is a known risk factor of cardiovascular diseases and even
death which makes it an important vital sign to track [253]. The blood pressure during systole (contraction)
and diastole (relaxation) is called systolic blood pressure (SBP) and diastolic blood pressure (DBP), respectively.
Historically, medicine reports blood pressure in millimeters of mercury (1 mmHg = additional pressure by 1
millimeter of mercury).
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In related work, Teng and Zhang [329] showed a strong relationship between blood pressure and the time
of pulse propagation from the heart to other locations of the body. Therefore, a PPG sensor worn on the ear
and a traditional chest-worn ECG makes it possible to compute the Pulse Transit Time (PTT) and hence, blood
pressure [125]. Selvaraj [305] demonstrated by regression analysis that PPG measured on the earlobe gives about
similar results as the �nger to compute PTT yielding a weak correlation between PTT and SBP / DBP (r < 0.3, see
Appendix C).

In a concept study it was suggested to measure blood pressure in the sealed ear canal based on pressure sensing
with initially encouraging results [367]. The feasibility and precise performance of the principle remains to be
evaluated.

The aforementioned approaches prerequisite chest-worn ECG or sealing the ear canal which reduces everyday
wearability. Bui et al. [62] introduced eBP to measure blood pressure using an ear-worn device only. Very similar
to cu�-worn blood pressure sensing [113], eBP places an in�atable balloon in the ear canal of the user. An
evaluation with 35 users showed that eBP yields an average error of 1.8 mmHg and �3.1 mmHg and a standard
deviation error of 7.2 mmHg and 7.9 mmHg for SBP and DBP, respectively). Though these results are promising,
the acceptable accuracy for at-home blood pressure devices was de�ned to be ±3 mmHg in other works [137].

The primary purpose of ear-worn blood pressure is a frequent assessment throughout the day as diseases may
be episodic and related to speci�c activities [62, 125, 305]. Compared to traditional cu�-based monitors, ear-worn
blood pressure monitoring minimizes the impact during regular activities while maximizing comfort [62, 305].

4.1.4 Respiration. For oxygen gas exchange, the human chest rhythmically expands to perform inspiration
(breathing in), followed by passive relaxation of the chest wall for expiration (breathing out) [60]. This process is
referred to as respiration. Two key characteristics of respiration are inhaled and exhaled volume of air as well as
rate. The number of breath cycles per time interval is commonly reported as cycles per minute (CPM). From
medical research, it is known that particularly high or low breathing rates (< 8 CPM, > 24 CPM) can be associated
with underlying health problems [80]

Respiration rate was quanti�ed by earables based on inertial-, audio-, and heart beat-based sensing which will
be introduced in the following (see Appendix D).

As breathing is a biomechanical process, it produces tiny body movements and friction-induced sounds when
the air enters and leaves the lungs. Röddiger et al. [292] initially reported 2.62 and 2.55 CPM mean absolute error
(MAE) by �ltering respiration-related body motions at the ear from accelerometer and gyroscope data. This
inertial sensing approach was highly dependent on the underlying motion and only suitable when the user is
at rest. Therefore, Ahmed et al. [2] improved the performance by automatically selecting the best sensor and
�ltering out windows with too much motion which reduced the MAE to 1.62 CPM. Alternatively, a microphone
embedded in the ear canal could sense sounds propagating through the body during the respiratory cycle at
2.7 CPM MAE [215]. It was reported that such acoustic respiration rate measurements were reliable above
approximately 12 CPM [117]. Subtle respiration-induced changes in the cardiac cycle may be measured on the ear
to indirectly derive respiration rate through PPG amplitude changes, blood oxygen variations, or the respiratory
sinus arrhythmia [42, 341, 343]. From earable heart beat PPG signals, respiration rate was predicted at -0.558
± 1.406 CPM mean error at the ear canal at rest [42] and around 3 CPM error in the ear canal, concha, and
posterior auricular under varying motion activities [98]. With increasing motion, the performance of PPG-based
respiration rate estimation decreased [98]. PPG-based sensing then could also be used to classify the more
granular inspiration, and expiration phases at 81.5% sensitivity and 86% speci�city [341].

The performance di�erences across sensing principles are relatively small. The U.S. Food and Drug Adminis-
tration (FDA) acceptance criterion for non-vital signs respiration monitors requires a maximum error of ± 2 CPM
[191] (or 10-20% of typical human CPM frequency). While sound-based respiration rate prediction with earables
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can not achieve such accuracy, inertial and PPG-based respiration rate estimation appears to be acceptable when
the user is at rest.

From the application perspective, reasons to obtain respiration from the ear include the detection of interruption
of breathing during sleep (see subsubsection 4.5.4) [292, 343] and more generally monitoring the vital respiratory
state of the user for alerting [42, 341] or of workers in hazardous environments by embedding the sensor in
hearing protection for faster intervention [215].

4.2 Nervous System
The nervous system sends and receives electrical and chemical signals to control body functions and cognitive
processes [236]. The resulting electrical �elds can be measured on the skin surface by Electroencephalography
(EEG) to extract a user’s response to external stimuli internal states. Such states include sleep stages and the
sleep-wake cycle. The following two sections will introduce earable brain activity sensing and sleep tracking.

4.2.1 Brain Activity. Sensing the brain activity of a person based on standard testing protocols is used for diagnos-
ing a number of neurological and psychological disorders [129, 237]. Additionally, brain activity sensing enables
higher-level applications such as sleep (see subsubsection 4.2.2) and emotion (see subsubsection 4.4.1) tracking,
seizure detection (see subsubsection 4.5.5), brain-based authentication and identi�cation (see subsection 7.3), as
well as brain-computer interfaces (see subsection 6.7).

Brain Activity - Sensing. EEG measures the electric �eld potential caused by characteristic brain rhythms (also
called brain waves) that correspond to a user’s internal state or response to external stimuli [49]. The standard
procedure to capture brain waves is Electroencephalography (EEG). Conventional EEG relies on a full-scalp
setup worn all around the user’s head which is obtrusive and not easily portable. In contrast, a smaller number
of electrodes in (e.g., [117]) or around (e.g., [46]) the ear can still capture a subset of interesting brain waves.
Generally speaking, related ear EEG works have shown that in comparison to scalp EEG, brain activities primarily
occurring in the temporal and occipital lobe around the ear can be recorded successfully [46, 47, 170]. Overall, the
reduced size of earable EEG compared to conventional EEG results in several advantages by being more discreet,
unobtrusive, robust, user friendly, and feasible [46, 197].

Slight performance di�erences with regards to impedance and usability aspects speci�c to the possible electrode
positions and accompanying form factors have emerged. For example, 9 out of 10 devices in the posterior and
periauricular region have a generic form factor that �ts on the skin around the ear. Similarly, 10 out of 12 devices
in the ear canal are implemented as generic soft earplugs. In contrast, 19 out of 21 concha-placed ear EEG devices
are custom �t to the wearer as the unique structure of the concha creates a challenging �t across users. Still,
electrodes placed in the concha were more prone to lose contact than in the ear canal [160]. Furthermore, EEG
placed inside the ear leverages it as a mechanical anchoring point (e.g., [47, 117, 229]), whereas EEG around the
ear often demands gluing the electrodes onto the user’s skin (e.g., [46, 213, 250]). While generic in-ear EEG can
�t many di�erent users, there is some preliminary evidence that custom-�t earplugs are more sensitive than
generic ones [163, 168]. At the same time, generic ear EEG worn around the ear was found to be more sensitive
than generic in-ear EEG [41].

Across ear EEG locations and styles, 23 dry and 21 wet electrode setups were identi�ed. Dry electrodes improve
the comfort of the user and simplify attachment. However, they have reduced impedance or sensitivity depending
on the electrode material and compared to wet electrodes [28, 156, 158]. Additionally, the presence of cerumen
was found to increase dry-contact impedance by 86% [268]. In general, the close vicinity of the ear to facial
muscle potentials [35], as well as eye movement and blinking artifacts [46, 92, 164] can result in noise which was
recommended to �lter out in related earables works.
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Table 5. Standard EEG protocols that have been evaluated on the ear using generic form factors that can fit any ear and
devices that have to be custom fit to the user. Ear EEG applies wet and also dry electrodes. The feasibility of standard
EEG protocols shows the general feasibility and enables higher-level applications. In brackets is the number of studies that
confirmed the paradigm. A detailed overview of ear EEG papers and placements can be found in Appendix E.

Auditory Stimulus Visual Stimulus TaskElectrodes P300 MMN ASA ASSR P300 SSVEP AAR

Generic Dry X(3) X(1) - X(7) X(1) X(4) X(5)
Wet X(3) - X(1) X(4) X(3) X(6) X(4)

Custom Dry - X(1) X(1) X(6) X(1) X(5) X(6)
Wet X(3) X(2) - X(6) X(2) X(3) -

Example
Application

psychological /
neurological
disorders
[129]

psychological /
neurological
disorders
[237]

spatial audio
hearing aids

[100]

brain-
computer
interfaces
[136]

psychological /
neurological
disorders
[129]

brain-
computer

interfaces [3]

sleepiness /
drowsiness

detection [46]

Note: Other applications based on EEG are introduced in subsubsection 4.2.2 (sleep), subsubsection 4.4.1 (emotions), subsubsection 4.5.5
(seizures), subsection 7.3 (brain-based authentication and identi�cation), and subsection 6.7 (brain-computer interfaces). P300=Positive

de�ection in brain potential; MMN=Mismatch Negatively; ASA=Auditory spatial attention; ASSR=Auditory steady state response

As to be expected, no works looked into the feasibility of ear EEG on the auricle. Overall, the di�erent design
aspects of ear EEG allow to make trade-o�s between form factor, �t, ease of application, comfort, and desired
accuracy.

Brain Activity - Applications. Table 5 gives an overview of earable EEG implementations and lists standard
protocols that were conducted to show the general feasibility of EEG on the ear (see Appendix E for details). It
also links to other sections that summarize more concrete applications. Generic, dry ear EEG is most generally
applicable in day-to-day usage, while custom-�t ear EEG devices with wet electrodes are more likely to be
relevant for clinical usage.
In EEG research and clinical practice, auditory, visual, and somatosensory (i.e., haptic) cues are applied to

trigger an expected response of the patient’s brain [299]. As it stands, little insights are available about the
response to somatosensory stimuli. However, it was initially shown that skin impedance decreases in response to
tactile stimulation [268]. Nonetheless, a variety of auditory and visual stimulus paradigms have been con�rmed
to be feasible in and around the ear, which will be described in the following.

In a clinical diagnostic context, the P300 response has been associated with dementia, schizophrenia, anxiety
disorders, and more [129]. Presenting a deviant stimulus among continuous auditory or visual signals triggers a
so-called transient P300 response which is a positive de�ection in brain potential approximately 300ms after the
deviant stimulus is presented [321]. Auditory P300 was con�rmed by multiple earable studies even several hours
after initial attachment [46]. Visual P300 with ear EEG was visible in response to letters [47], words [250], symbols
[197], LED lights [116, 117, 170], and black/white checkboards [123]. Similarly, Mismatch Negativity (MMN) has
clinical relevance for diagnosing schizophrenia or aging [237] and represents a negative EEG amplitude de�ection.
It targets the lower-level discrimination abilities without the user having to actively focus their attention on
a stimulus. Kappel et al. [160] found that a reference electrode on one ear is required to capture a signi�cant
MMN response on the other. As such, visual attention or resting may be predicted directly from ear EEG at
>70% accuracy [269]. In sum, earables potentially give easy access to diagnosing or monitoring neurological and
psychological disorders without the need for a full-scale scalp EEG setup.
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Presenting auditory and visual stimuli at a high repetition rate creates an overlap of transient responses, the
so-called steady-state response. As the steady-state response depends on the frequency of the presented stimulus,
it is ideal for selection tasks of brain-computer interfaces (see subsection 6.7). The auditory steady-state response
(ASSR) was con�rmed with ear EEG in and around the ear with amplitude modulation frequencies ranging from
40 Hz [197] up to 90 Hz [157]. The steady-state visual evoked potential (SSVEP) was also con�rmed in and around
the ear at many di�erent frequencies ranging from 5.4 Hz [188], up to 20 Hz [170].

Extracting the direction of a user’s auditory attention creates a compelling use case for hearing aids that could
amplify the sounds from an attended source [100]. In that regard, the auditory spatial attention (ASA) tests the
response of a person attending to simultaneous sounds coming from di�erent directions [76]. Wet periauricular
ear EEG could achieve similar performance to scalp EEG [48]. The feasibility of ASA in the ear canal with dry
electrodes depended on the positioning of the reference electrode [100].

The alpha attenuation response (AAR) describes an increase of alpha frequency power in the EEG signal once
a person closes their eyes. The alpha power (brain waves at 8 - 12 Hz) can be associated with the sleepiness
of a person [315]. It is well possible to observe a statistically signi�cant alpha attenuation response with in-
ear and around-the-ear electrodes. Alpha power increase can also be associated with drowsiness [46], see
subsubsection 4.2.3.

4.2.2 Sleep. It was reported that up to 40% of the U.S. adult population struggles with sleep annually which
results in morbidity and mortality [142], which makes sleep an interesting parameter to track. Sleep can be
divided into four reoccurring stages (N1, N2, N3, REM), which are repeated up to six times per night [267]. Each
stage is characterized by physiological patterns across the body, that are commonly analyzed in professional sleep
labs by polysomnography (includes scalp EEG, EMG, nasal air�ow, etc.). State-of-the-art sleep stage classi�cation
from full-scale polysomnography achieves up to 97% F1 score on diverse datasets [124]. In contrast, earable
computing research aims to reduce the number of required sensors to perform sleep analysis from biopotential
signals at the ear, making it feasible even at the patient’s home [239].

Automatic sleep stage classi�cation from biopotential signals at the ear ties in deeply with the general feasibility
of sensing brain activity (see subsubsection 4.2.1), facial muscles (see subsection 6.5), and movement of the eyes
(see subsection 6.6). Sleep stage prediction in the ear canal (see Appendix F) was performed with wet electrodes
using di�erent evaluation strategies and classi�ers. Accuracies between 66% and 95% in comparison to gold
standard polysomnography were achieved [231, 239, 245]. Sleep latency (the time it takes to fall asleep) was
predicted at less than three minutes error [8]. Based on the presence of sleep spindles in ear-EEG, it was initially
shown, that sleep staging with dry electrodes may be feasible [211, 228]. With data captured over 80 nights from
20 participants, Mikkelsen et al. [230] then showed that custom-�t, dry ear-EEG allowed automatic sleep scoring
at 0.73 Cohen’s kappa in comparison to gold-standard full-scalp EEG. Their results suggest that ear-EEG may be
a real alternative to full-scale Polysomnography, especially for long-term monitoring.
Additionally, the relationship of changes in body temperature from ear-worn infrared thermometry and the

circadian sleep-wake rhythm was initially shown based on a single subject [50] motivated by the possibility to
measure body temperature at high accuracy on the ear (see subsubsection 4.3.1).
From a wearability perspective, sleep-related earables should place "rigid parts behind the ear and [...] soft

materials at the concha and in the ear canal" [291]. While Röddiger et al. [291] found that commercial earbuds
for daytime usage negatively impacted sleep quality, Mikkelsen et al. [230] reported that custom-�t ear-EEG
concha-plugs had little negative e�ects.

4.2.3 Drowsiness. Drowsiness is the feeling of being abnormally sleepy. Drowsiness during the day a�ects
10-20% of the population and can have an adverse in�uence on physical and mental health, especially when
operating vehicles or heavy machinery [350]. A summary table of drowsiness works can be found in Appendix G.
Bleichner and Debener [46] initially found that alpha power measured around the ear increased in the afternoon
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compared to recordings in the morning, indicating that the ear may be a suitable position for sensing drowsiness.
Since then, drowsiness has also been detected by classifying light sleep onset with an accuracy of 80% when
using in-ear EEG recorded in 20 minute sleep sessions [238]. Researchers have also explored multimodal sensing
for microsleep detection. Pham et al. [272] designed a behind-the-ear device which collects data from EEG,
EOG, EMG, and electrodermal activity sensors before streaming them to a mobile phone for classi�cation.
They demonstrated that microsleep can be detected on an unseen subject with average precision and recall of
76% and 85% respectively using a leave-one-subject-out cross-validation design with subjects su�ering from
sleep deprivation and narcolepsy [272]. More generally, Mikkelsen et al. [230] envision that earable drowsiness
tracking methods may support long-term monitoring of daytime sleepiness disorders such as narcolepsy or
hypersomnalence.

4.3 Thermal Regulation
One of the most important processes in humans is thermoregulation which refers to the ability to sustain a steady
core body temperature (CBT) such as under di�erent climate conditions or while exercising [358]. The ear can
support measurements of body temperature and sweating, which will be described in the following.

4.3.1 Body Temperature. Under normal circumstances, body temperature ranges around 37.0°C ± 1°C [59]. In
medical care, core body temperature is commonly measured in the ears as the tympanic membrane is located
close to the carotid artery and, therefore, accurately re�ects its temperature [51].

An infrared thermophile sensor pointing at the eardrummay be used for measuring body temperature according
to medical standards. Bestbier and Fourie [42] applied the principle to an earable form factor and achieved a small
mean error of only 0.02 ± 0.52 °C. However, multiple works found that the principle requires per-user calibration
because of ear canal shape di�erences and orientation of the sensor toward the tympanic membrane [42, 201, 217].
Alternatively, a thermistor measures surface skin temperature at the mastoid with high accuracy (0.03 °C mean
error) [21]. According to Matthies et al. [221] the sensing principle requires an average heat-up time of 7 minutes
and is easily in�uenced by environmental changes [144].

Across earable research, changes of body temperature in response to external weather conditions [32, 50, 212]
and while exercising [50, 71, 212, 217, 319] were con�rmed. This relationship enables various applications
such as alerting or vital signs and parameter tracking based on the identi�ed relationships. Additionally, the
relationship between ear-recorded body temperature and ovulation (see subsubsection 4.5.6) as well as sleep (see
subsubsection 4.2.2) has been shown.

4.3.2 Sweating. Commonly, sweating occurs in response to physical exertion, heat or psychophysiological
arousal [308]. In general, the preauricular area has relatively high sweat gland density [313].
Matsumoto et al. [217] presented an earbud-type wearable prototype with a sweat rate sensor based on

humidity sensing in the ear canal. They showed the relationship to physical exertion and amount of sweat based
on a single user which they envision to apply for early detection and prevention of heat-strokes. Pham et al.
[272] introduced a posterior ear device with integrated electrodermal activity (EDA) sensing. The normalised
cross correlation between the ear EDA signal and a wrist-worn ground-truth evaluated with a single user was
0.37 [272]. As sweat gland activity is not symmetric between the two halves of the body it may be necessary to
place electrodes on each ear to reliably capture sweating [274]. Overall, sweat sensing appears to be feasible on
the ear but more research is necessary.

4.4 Mental State
A person’s mental state entails, among others, emotions and stress, which trigger physiological changes that can
be measured at the ear.
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4.4.1 Emotion. Emotions include the feelings and thoughts of a person, which are commonly associated with
their physical and psychophysiological state. In related literature, emotions are measured either dimensional
(e.g., according to the valence-arousal model [296]) or categorical (e.g., happy, sad, angry, etc. [337]).

Based on in-ear EEG (see subsubsection 4.2.1 for the general feasibility), valence has been classi�ed from low
to high at 71.07% [29] to 94.1% [190] and arousal at 72.89% [29] accuracy (see Appendix H). This accuracy is
close to state-of-the-art performance of full-scale EEG [258]. Dimension-based scales can be applied to derive
categorical emotion classes, which has been done based on in-ear EEG to predict happiness, sadness, calmness,
fear at 53.72% accuracy [29]. Similarly, excited, relaxed, and negative emotions were predicted from in-ear EEG at
58.8% accuracy [190]. Interestingly, higher valence could also be associated with higher movement measured
by an earable accelerometer [106]. Some models suggest up to eight basic emotions that can be observed in
humans [277] which greatly over-exceeds what is currently possible to predict with data obtained from the ear.
Earable-based emotion tracking could enable monitoring patients and elderly remotely for more e�ective

care-taking [29]. Additionally, facial expressions (e.g., facial action units) may be associated with emotions which
are introduced separately in subsection 6.5.

4.4.2 Stress. Stress is triggered when an individual’s mental or physical ability to cope with a situation e�ectively
is over exceeded. It is commonly known that stress is associated with changes of heart rate and heart rate variability
[325]. The previous subsubsection 4.1.1 gives an overview of the general feasibility of di�erent heart rate sensing
principles.
With earables, increasing heart rate and decreasing heart rate variability at the beginning of stress exposure

elicited by a mathematical addition task was con�rmed [201]. In a similar experiment, Suzuki et al. [323] also
showed that higher heart rates at the ear are associated with stress using multivariate regression.
From the literature, the relationship between stress and skin impedance caused by sweat is well known [55].

Even though sweat sensing is possible with earables (see subsubsection 4.3.2), no earable works looked into the
relationship between EDA measured at the ear and stress.

4.5 Health
The principle feasibility of the physiological parameters introduced in the previous sections can be applied to
identify an individual’s health status directly. Meanwhile, the location and phenomena of the ear also make it
possible to derive insights into more speci�c bodily occurrences such as bruxism, coughing, sleep apnea, seizures,
and even the reproductive system.

4.5.1 Bruxism. Bruxism is a movement disorder that is characterized by grinding of teeth and clenching of the
jaw [307]. Tooth damage and headaches are common symptoms associated with bruxism. An initial evaluation
with a single user successfully investigated the possibility to sense teeth grind and jaw clenching using elec-
tromyography on the ear (EMG) [92]. As jaw movements are closely related with ear canal shape deformations
[275], jaw clenching and teeth grinding may be sensed from inertial sensors in the ear canal [52, 295]. Bondareva
et al. [52] concluded that gyroscope-based sensing outperforms accelerometers when mixing with in-the-wild
activities - achieving 76% and 74% accuracy for jaw clenching and teeth grinding, respectively.

4.5.2 Coughing. Cough describes the voluntary or involuntary rapid expulsion of air from the lungs to clear the
airways. A variety of severe viral infections and diseases such as COVID-19, in�uenza, or COPD are accompanied
by cough symptoms [115, 234]. Detecting respiratory illness from cough allows quicker isolation of infectious
patients [289] and monitoring disease activity [244]. The sounds and motion of cough create cough detection
opportunities that may be leveraged by sensing at the ear.

Röddiger et al. [289] initially evaluated predicting simulated weak and strong cough from earable accelerometer
and gyroscope data and achieved 68% sensitivity and 72% speci�city under a variety of noise conditions, including
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laughing, clearing the throat, swallowing, speaking, walking, and �dgeting. They present a statistical meta
analysis that describes how to distinguish episodes of increased cough for a sick individual with the relatively
weak classi�er. Zhang et al. [370] later introduced an algorithm based on template matching that allows tuning
sensitivity and speci�city to the desired use case with about similar performance under noise-predicated situations.
Interestingly, the ear had the best performance to predict simulated cough from accelerometer data in comparison
to the chest, stomach, shirt pocket, and upper arm [90, 91].

Combining audio and motion data obtained at the ear decreased the false positive rate of cough detection and
achieved 83% sensitivity, and 91.7% speci�city, which is an increase by 55% compared to audio-only [244]. An
advantage of audio-based cough prediction is the availability of audio cough datasets, even for speci�c diseases
such as COVID-19 [246].
It remains to be evaluated how the proposed earable-based techniques perform based on real-world cough

sounds and motion data.

4.5.3 Face Touching. Earables have also been used for detecting unconscious face touching which increases the
risk of passing and spreading pathogens into the body, especially pertinent given the COVID-19 pandemic [153,
293]. Kakaraparthi et al. [153] used a hybrid sensing approach of thermal sensors embedded into an earable
combined with facial skin impedance to monitor the user’s face touching behavior. Using a deep learning
model to combine the two signals resulted in an F1 score of 84.4% for touch detection and 70.1% for touch zone
identi�cation (rising to 90.1% for personalised models). Rojas et al. [293] introduced Saving Face which uses
unmodi�ed commercial earphones to sense the face touches through the distortion patterns in an ultrasound
signal. The user’s earphones are transformed into a sonar system with one earbud (positioned on the collar)
emits the ultrasound signal which is captured by the microphone. The system was evaluated in a number of
activities, achieving a sensitivity of 93.7% and precision of 91.5%.

4.5.4 Sleep Apnea. The interruption of breathing for 10 seconds or more during sleep is referred to as sleep
apnea which, if not treated, poses a serious health risk [99]. As breathing results in subtle changes of the pulse
wave in the PPG signal (see subsubsection 4.1.1), the interruption of breathing can be sensed with earables. In a
whole-night study, 94.6% sensitivity and 93.4 % speci�city was achieved for three out of six patients based on a
PPG sensor worn at the tragus [343].

4.5.5 Epilepsy. As described in subsubsection 4.2.1, the brain activity of a person can be well quanti�ed from
ear-worn EEG. Epilepsy often entails seizures which are episodic abnormal neural activities that can result in body
shaking or awareness loss. Given the high portability and unobtrusiveness of ear EEG, a natural application is the
detection of seizures from ear-worn EEG for better health management and intervention [122, 152]. Bleichner
and Debener [46] initially presented a periauricular EEG setup revealing epileptiform brain activity of a patient.
Gu et al. [122] applied EEG posterior to the ear and reported 94.5% sensitivity and a false detection rate of 0.52
per hour to detect seizures of patients with focal epilepsy. Juez et al. [152] identi�ed inter-ictal spikes in the EEG
trace of a pre-diagnosed patient wearing an in-ear device. These spikes are known to occur in epilepsy patients.

4.5.6 Ovulation. Reproduction is critical to sustaining the human species. The possibility to capture core body
temperature at the ear (subsubsection 4.3.1) and its relationship to ovulation creates a compelling use case for the
earable platform. During the menstrual cycle, ovulation can be associated with the highest fertility, making it
an important event to track when seeking pregnancy. It is well known that ovulation can be associated with
basal body temperature changes [33]. In an earable context, Luo et al. [202] recorded body temperature every
5 minutes during the night using a thermistor placed in the ear canal with 34 study participants. They could
correctly predict ovulation within three days at 82.35% accuracy when tracking multiple cycles.
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5 MOVEMENT AND ACTIVITY
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Fig. 6. Structure of the Movement and Activity section according to di�erent activities.

Researchers have explored how the earable platform can be used to sense user movement and infer information
about activities the user is performing; see Figure 6. Movement detected at the ear can be classi�ed into discrete
classes to infer a user’s pose, how they are moving, or what type of activity they are undertaking. Beyond just
classifying the sensor data, researchers have also explored how physical quantities can be derived from the user’s
movement to provide useful information for a wide variety of applications including �tness tracking, gait analysis,
food and drink consumption, and inertial navigation.

5.1 Activity Recognition
Sensor-based activity recognition has been a staple of the of the ubiquitous computing community for many years,
both as a technical pursuit focused on improving recognition rates but also as a means to understand activity
context that can be used to personalise devices and systems. Earables are compelling for activity recognition
because many people wear ear-based devices, such as earphones or hearing aids, as they perform their everyday
activities. In contrast, other wearables are commonly abandoned as activity trackers due to their inability to be
incorporated into a person’s everyday life (e.g., knee or waist trackers) [30, 130].

5.1.1 Activity Classification. Prior research has explored how ear-based devices can successfully recognise a
wide variety of activities. For basic activity recognition tasks, such as determining whether a user is walking or
running, earable-based accelerometers on their own provide an almost perfect accuracy of 99% [65]. Similarly, Min
et al. [232] reported an F1-score of 95% when determining the mobility of a user (stationary, walking, stepping up,
stepping down) and 80% when performing a head gesture (nodding, shaking) by utilising both the accelerometer
and gyroscope and using a nearest-neighbour classi�er. Hammour and Mandic [128] show that motion artefacts
from in-ear EEG can be used to classify four basic activities (sitting, walking, speaking, and chewing) with 85%
testing accuracy. For estimating a user’s understanding of an online lecture, Kim et al. [172] classi�ed whether a
user is gazing at a monitor or looking down at the desk based on the accelerometer and gyroscope of the earable,
achieving F1-scores of ⇡ 0.92 and ⇡ 0.90 respectively. These results demonstrate how earables can detect simple
movements and gestures with high accuracy.
However, more advanced activity recognition tasks show more variable results. Atallah et al. [25] explored

one-versus-all classi�cation rates for ear-based accelerometer sensing using di�erent activities groups based on
the “compendium of physical activities” [5]. Activity recognition using a nearest neighbour classi�er was similar
for the high-level (running and cycling) and low-level (preparing and consuming food, socialising, reading, and
getting dressed) activities with approximately 65-70% F1-score. However, medium level activities (walking and
cleaning) performed much worse than both with approximately 50% F1-score. Similar results were also found in
previous research by Atallah et al. [24], although Nirjon et al. [248] reported 96.8% accuracy when classifying
only the level of activity (i.e., physical intensity) rather than the activity itself.
Advances in the underlying classi�ers may also increase recognition performance on the ear. More recent

work has explored how end-to-end deep learning can classify �ve scripted activities (nodding, speaking, eating,
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staying, and head shaking) with an F1-score of 82% [181] and physical exercises with 82% accuracy (squats, lunges
with dumbbells, alternating bicep curls, sit-ups, push-ups, sitting overhead dumbbell triceps extensions, standing
dumbbell rows, jumping jacks, sitting dumbbell shoulder press, and dumbbell lateral shoulder raises) [318]. Across
these works, we see how earables are able to achieve good recognition performance despite the di�culty in
detecting movements of other parts of the body.

Researchers have addressed the di�culties of using earables to detect complex movements by combining them
with other devices in a complementary manner, leading to greater recognition rates than are possible with any
single device. Strömbäck et al. [318] recorded motion data from ten participants performing ten di�erent exercises
while carrying commodity wearable devices – a smartphone, smartwatch, and earbuds equipped with inertial
sensors. Fusing the data using deep-learning techniques across wearables achieved 96% activity recognition
accuracy, which was signi�cantly higher compared with using the data from only a single wearable (earbuds -
82%, smartwatch - 94%, and smartphone - 85%) [318]. Radhakrishnan et al. [284] pair earables with dumbbells,
both augmented with an accelerometer and a gyroscope, in order to classify the free-weight exercise a user is
performing with a test-set accuracy of 96.85% from 3 exercises (bicep curls, triceps extension, and lateral raises),
93.72% from 6 exercises (also including squats, lunges, and side bend), and 88.6% from 12 exercises (also including
seated barbell shoulder press, inclined chest �yes, weighted crunch, dumbbell triceps kickback, barbell deadlifts,
and alternating bicep curls). Other work suggests fusing accelerometer and gyroscope data from an earable with
optical �ow from cameras can also improve classi�cation accuracy for basic gestures including reaching for items
and dressing oneself [222].

5.1.2 Sensor Performance. Accelerometers and gyroscopes are the main sensors used to detect motion of the
earable for activity recognition, with the exception of one paper which explored the motion artefacts of in-ear
EEG [128]. For many applications it is only the accelerometer that is used [25, 324]. Min et al. [232] found
that the accelerometer signi�cantly outperformed the gyroscope, and that fusing the two sensors resulted in a
marginal performance increase over the accelerometer-only approach (only 1% for head gestures). Using only the
accelerometer is compelling because they are more energy-e�cient than gyroscopes [232]. However, despite
�nding the same relative performance di�erences between the three conditions, Laporte et al. [181] found the
di�erence in performance between accelerometer-only and hybrid approach to be larger, and between accelerom-
eter and gyroscope to be smaller, when using end-to-end deep learning with F1 scores of 75% (accelerometer),
69% (gyroscope), and 80% (both).

Comparisons between the ear and other locations show it to be among the best positions for activity detection.
Atallah et al. [25] compared accelerometer placement of seven di�erent locations on the body whilst tracking
di�erent high-level activities (including preparing food, getting dressed, cleaning, and socializing) of eleven users.
The ear was second best after the knee, without signi�cant loss in classi�cation accuracy, and better than the
chest, arm, wrist, waist, and ankle. More recent work has also shown similar results with only the knee and shin
outperforming the head for activity classi�cation for activities including climbing stairs, jumping, lying, standing,
sitting, running/ jogging, and walking [324].

However, more recent work that uses deep learning suggests that other commodity wearables may outperform
earables when classifying physical exercises. Earables achieved an accuracy of 82%, lower than both a smartwatch
(94%) and smartphone (85%) [318]. Earables are also susceptible to falling out during heavy movements, even
when adjusted correctly, and therefore certain activities may be less suitable for ear-based devices [138]. In
addition, earables produce greater wearing variability in comparison to a smartwatch, with di�erences of roll
and pitch of about 10-20 degrees in earables compared with 3-8 degrees [233] in smartwatches. Despite these
disadvantages, earables provide good recognition performance across a wide range of activities, and when used
in combination with other wearable sensors can further improve recognition accuracy [318].
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5.2 Fitness Tracking and Support
Sedentary lifestyles account for 25% of all medical expenses and cause millions of deaths worldwide [13]. Beyond
just classifying physical activities or sports, as we saw in the previous sub-section, earables can help to improve
and manage a user’s �tness and health [25, 32, 53, 65, 139, 183, 280]. To date earable research has covered a range
of di�erent �tness activities ranging from weight-lifting [284] and general exercise routines [235, 318], to sports
including cycling [23, 25, 53], rowing [23], climbing [259], and basketball [138].

5.2.1 Step Counting. Counting how many steps a user takes is one of the most commonly used metrics for
tracking and assessing physical activity, and for encouraging users to stay active [34]. Earables are ideally suited
for step counting because the body acts as a �lter which stabilises the head during locomotion [121, 162]. Prakash
et al. [280] show the initial feasibility of step counting at the ear with a variety of walking speeds including very
slow, slow, normal, and running that can be tracked with 95% accuracy [280]. They also propose to detect and
measure jumping to assess the physical health of a user, with a limited user trial reporting jump heights of within
1-3cm of the ground truth.

5.2.2 Energy Expenditure. Motion of the human body measured on the ear directly relates to physical activities
performed by the user, and this relationship can be used to infer a user’s energy expenditure [105]. This approach
provides amore generalised way of measuring a user’s activity in comparison to step counting. Energy expenditure
can be estimated from acceleration forces measured at the ear with high correlation con�rmed by calorimetry
(r=0.92 [183], r=0.74 [53]). This relationship was con�rmed for lying down, standing, computer work, vacuuming,
walking stairs, slow walking, fast walking, slow running, fast running, cycling, and rowing [23, 53]. Consequently,
a mean absolute deviation of only 27 kcal per day was achieved [53]. Beyond tracking a user’s activity to monitor
their �tness, energy expenditure prediction can be combined with dietary measures to maintain long term weight
loss [183] or to monitor patients remotely [24]. Also, Nirjon et al. [248] used the concept of energy, derived from
the accelerometer, to detect the activity level of a user which was then used to control music being played.

5.2.3 Repetition Counting. Strömbäck et al. [318] used earables for counting the number of repetitions performed
whilst exercising for a variety of ten physical exercises. Whereas accelerometers are favoured for activity
classi�cation, the authors found that gyroscope data results in better performance for repetition counting,
although only marginally. Earables achieved a mean absolute repetition counting error of 1.31 (all results
reported are for gyroscope), outperforming a smartphone (1.61), but signi�cantly worse than a smartwatch (0.34).
Interestingly though, the percentage of exercise sets within two repetitions of the actual number of repetitions
was slightly higher for the smartphone (82.95%) than for the earable (81.33%). Again the smartwatch signi�cantly
outperformed both with 98.70% of exercise sets within 2 repetitions.

5.2.4 Performance Feedback. Earables can also be used to provide feedback to users whilst performing a physical
activity in addition to analysing their form afterwards. Radhakrishnan et al. [284] not only classi�ed the type of
exercise a user was performing, but also developed a feedback system for use during weight-based exercises that
combined earable motion data with motion data of a dumbbell which detected exercise mistakes (94%) of 33 users
which helped to reduce subsequent mistakes by more than 10%. Similarly, Motokawa et al. [235] explored how
acceleration data from the ear and chest can be combined to provide real-time corrective feedback during planks.
Rather than providing real-time feedback, Pansiot et al. [259] used the accelerometer in an earable to collect data
so that climbers could assess the �uidity, speed, strength-to-weight ratio, and endurance of their performances
and to provide insights into their pro�ciency level. Hermann et al. [135] applied earables to support life-saving
cardiopulmonary resuscitation (CPR). Based on an evaluation with twenty users on a test dummy, acceleration
data measured at the ear of the rescuer can predict chest compression depth and rate at 5.9 mm and 1.6 cycles per
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minute median absolute deviation. Though that was worse than on the rescuer’s wrist or chest, the performance
of earables was still within the acceptable range for real-world feasibility of CPR.

5.2.5 Posture. Poor posture when sitting at a desk can cause back pain and poor circulation that can lead to
other health issues [81, 131]. Earables equipped with an accelerometer and a gyroscope can be used for corrective
posture feedback by detecting when a user leans forward with their head while sitting down [283, 326]. An initial
simulated experiment based on �ve participants using their smartphone or laptop 30 minutes each yielded perfect
precision at 89% recall to detect a forward-leaning posture [283].

5.3 Gait
Gait describes the motion performed by a user when walking. Earables can accurately detect several temporal
and spatial gait parameters including heel contact time, toe o� event, swing time, stance time, stride time,
step cycle time, and step asymmetry [27, 146, 148]. The relationship between gait-speci�c motion data and
acceleration measured at the ear has been con�rmed in conjunction with gold standard procedures including
an in-shoe pressure measurement system [146], a force-plate instrumented treadmill [26, 27], and a high-speed
camera [148, 149]. Extracting these precise gait parameters provides clinicians with the opportunity to monitor
rehabilitation from either surgery or a stroke, or progression of pathologies including osteoarthritis [27]. Ear-worn
devices are a much cheaper and simpler platform for detecting gait patterns and parameters than traditional gait
platforms and force plates, and have the added advantage that they can be deployed in-the-wild.

Gait parameters have been successfully extracted using earables and applied to assess health outcomes of an
individual. Appendix I details all earable papers that have explored gait-related parameters. Recovery after surgery
can be tracked using acceleration signals at the ear which capture the irregularity of a user’s gait pattern [22].
Atallah et al. [22] used this possibility to both assess the recovery over time as well as approximating the user’s
gait to a healthy control group. Similarly, Jarchi et al. [147] conducted a validation study which showed that stride
time, amplitude asymmetry, and step time measured at the ear improved one year post-surgery. The amplitude
asymmetry level was also found to correlate with the Knee Injury and Osteoarthritis Outcome Score [146].
Impairment of gait, e.g., because of skeletal malfunctions or due to aging, can also be extracted directly

using earable devices. Accuracy of more than 95% was achieved for predicting truncal [19] and lower limb
impairment [19, 20] using an accelerometers on the ear. Lorenzi et al. [199] used an inertial measurement unit
consisting of an accelerometer, gyroscope, and magnetometer to measure the freezing of gait of Parkinson’s
disease patients. The choice of an ear-based sensor was motivated through wearability and also the need to
provide auditory feedback to feedback to the patient. The risk of falls in elderly people has been clinically
measured using the Tinetti Gait and Balance Assessment (TGBA) [340]. King et al. [173] discovered that certain
aspects of TGBA can be assessed base on motion data from the ear (2 out of 17 test-related activities), however
this small fraction is likely not enough for practical use. Similarly, ear-based devices have been equipped with
accelerometers for detecting fall events aimed at elderly patients [349].

5.4 Food and Drink Consumption
Dietary monitoring involves detecting both when someone consumes food or drink and, ideally, also what they
are consuming. The ability to automatically monitor dietary activity can take the burden of self-reporting away
from a user or patient and assist with mindful eating, tackling unhealthy behavior, and preventing diseases
by supporting healthier diets [11, 12, 37]. Earables are suitable for automatic dietary monitoring because they
are non-invasive [111, 260, 263, 266, 303], socially acceptable [39, 45, 303] and can be worn throughout the
day [111, 249, 266]. Appendix J details all of the work that has explored how to detect when and what a user is
eating or drinking on the earable platform.
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5.4.1 Eating Detection. The �rst step of dietary monitoring is detection of eating events. The repetitive nature of
jaw movement when chewing and eating is bene�cial when trying to predict eating phases under real-world
conditions [37] and can be detected using several sensing principles. Air- and bone-conduction microphones sense
chewing sounds; proximity, piezoelectric, and inertial sensors track ear canal deformations induced by mouth
motions; and electromyography (EMG) quanti�es chewing-based muscle activity directly. On their own these
di�erent sensing modalities achieve roughly similar accuracy rates ranging from 80-90% in �eld experiments,
however fusing multiple sensors can further improve recognition accuracy [44, 200, 261].

Each sensing principle used to detect eating behaviour has advantages and trade-o�s. For audio-based eating
detection, body-internal vibrations and sounds can be measured due to the ear cavity that are ampli�ed by the
ear’s physiology [11, 45]. However, external and background sounds not relating to the chewing activity should
be dampened for optimal recognition [261], which remains a critical challenge for audio-based approaches [111].
This issue is further exacerbated when chewing softer foods as the amplitude of the chewing signal is much
lower compared with crunchier foods [200]. An additional microphone which measures and �lters sounds from
the surroundings can improve performance [225, 263], and deep learning approaches have also been shown to
increase recognition accuracy up to 77-94% even with ambient noise [111]. Audio-based approaches are still an
active research area because they possess a key advantage to other sensing modalities as microphones are already
commonly embedded in many commercial ear-worn devices.

Motion-based approaches sense movement of the jaw when eating. They do not face the same privacy concerns
and are more robust against soft food types than audio-based approaches [200]. Similar to audio-based approaches,
motion-based eating detection also su�er from signal noise induced by unrelated body movement [200]. Bedri
et al. [37] showed how it is possible to �lter out undesired motions by using additional body-worn sensors, in the
form of an IMU behind the user’s neck, resulting in an F1-score of 80.1% based on �eld experiments. However,
having the additional IMU in a form-factor that a user is likely to use is still an open challenge.

Proximity sensors can be used to detect ear canal deformation as a result of jaw movements when eating. They
are compelling as they require less power and do not su�er from the same level of privacy concerns in comparison
to audio-based approaches [39]. Bedri et al. [39] measured ear canal deformation using three orthogonal proximity
sensors and a gyroscope embedded in an o�-the-shelf earpiece which resulted in 95.3% accuracy when detecting
eating events. Also, Bedri et al. [37] explored the use of an in-ear proximity sensor but found that users found it
uncomfortable when wearing for prolonged periods and especially when eating.
Other sensing principles have been used to detect eating at the ear via jaw movements. Wet EMG electrodes

located behind the ear on the mastoid detect the jaw’s muscle activity [44], PPG senses the changes in blood
�ow as a result of the jaw movement [260, 261], and piezoelectric strain gauges located on the lower jaw directly
measure jaw movement [101, 303]. EMG and PPG were both signi�cantly outperformed by audio-based detection,
yet when fused resulted in an overall increase in accuracy [44, 260].

Multiple lab studies investigated how to predict individual bites and chew strength on the ear using pressure,
bend, and piezoelectric strain sensors [141, 302]. However, individual chews are more complicated to predict
than general eating activity due to the higher temporal resolution that is required [261].

5.4.2 Drinking Detection. Staying hydrated is important for cognitive function and overall health [287]. Tracking
the consumption of liquids (including liquid foods) is a challenging detection task for earables because it lacks
the characteristic chewing information (e.g., [111, 200, 263, 302]). Some works reported good results based on
sound sensing for a subset of study participants [311], however drinking detection can not be reliably detected
with earables (see Appendix J).

5.4.3 Food Type Prediction. In addition to detecting when the user eats, automatic dietary monitoring should
detect what food the user is consuming, and how much of it they are eating. The amount and type of consumed
food are key contributors to the success of weight loss maintenance [178]. Research to date has focused on
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distinguishing foods of di�erent textures in a lab setting using audio data collected at the ear, with a success rate of
79% [266]. Alternatively, cameras located on the ear can be triggered by a microphone when chewing is detected
and images are taken of the meal which can be later analysed for an overview of the user’s food-intake [193]. No
�eld studies or studies involving food type predictions of complex meals have been undertaken.

5.4.4 Tooth Brushing. Closely related to food and drink consumption is tooth brushing, as sugary diets in
particular can lead to cavities and problems with dental hygiene. Researchers have explored how tooth brushing
location can be tracked using earables in order to help form better tooth brushing habits [257, 281]. Prakash et al.
[281] modi�ed an o�-the-shelf earphone speaker to detect the vibrations from tooth brushing with 89% accuracy
over 7 locations of the upper and lower teeth. Ouyang et al. [257] explored a larger number of locations (16) and
achieved a similar prediction accuracy by using a combination of throat and ear microphones.

5.5 Navigation
Navigation can be achieved by leveraging the inertial sensors in an earable to track the position and orientation of
the user over space and time without having to rely on a GPS connection [4, 360]. Listening to music or wearing
earphones is common when travelling and the stable attachment and fewer random movements of earables in
comparison to other locations on the body makes them a suitable platform for inertial navigation [96, 114].
However, the accuracy of inertial navigation is dependent upon a �xed global reference point which is

commonly the magnetic �eld of the earth and detected by a magnetometer. In earable devices, the close proximity
of communication circuitry and the speaker introduce signi�cant electromagnetic noise which has so far proved
problematic for inertial navigation on the earable platform [96]. To overcome this problem, Ferlini et al. [96]
developed an automatic magnetometer calibration method in combination with the user’s smartphone that
reduces the average error from 30 degrees to less than 5 degrees at any given time. Based on a 9-axis inertial
measurement unit and the described magnetometer calibration method, an inertial navigation drift of 0.15m/s
when using one earable and 0.11m/s when using two earables could be achieved [4]. Gong et al. [114] presented a
deep learning based pipeline that fuses the inertial data from a smartphone and earables. This pipeline takes into
account the reliability of each sensor at any given point in time prior to fusing, and only relies on the earables
accelerometer and gyroscope readings for inertial navigation, achieving accuracy improvements in comparison
to other state-of-the-art navigation models.

To navigate indoors, Schindler et al. [304] proposed an ear-based device that tracks footsteps from acceleration
data and doorways through proximity sensing. From this data, a topological graph of the environment is generated
which is applied to localise the user based on a particle �ltering approach with preliminary success.

6 INTERACTION

6.5 Facial 
Expressions
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6.4.1 Jaw Gestures
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Fig. 7. Structure of the Interaction section according to di�erent research topics.

Earables present an exciting opportunity for unique and novel interaction techniques given the rich and diverse
sensing capabilities available on the earable platform. To date, researchers have explored how input can be
provided on the ear or earable itself, as well as how the earable platform can be used to detect other modalities
which can be used to provide input.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 135. Publication date: September 2022.



135:28 • Röddiger et al.

6.1 Ear and Earable Input
The location of the earable device makes it compelling as an interaction device that can be directly manipulated
by the user to provide input. This enables common basic interactions including tap and double tap on and around
the ear, however researchers have also investigated how more complicated sliding gestures or manipulation of
the ear itself can be utilised for interaction purposes, see Appendix K.

6.1.1 Gesture Elicitation on the Ear. Abstracting from any speci�c sensing modality, Chen et al. [74] used an
elicitation study (N=28) to explore user-de�ned gestures for ear-based interactions for a number of smart device
tasks. The majority of user-de�ned gestures involved mid-air interactions (57%), with 39% involved touches
directly on the ear. Of those touch-based gestures, the most common part of the ear for touch-based gestures
was the helix (8.4%), followed by the tragus (and cheek) (6.8%), the lobe (4.7%), the back (4.4%) and �nally the
center (2%). The remaining touch-based gestures involved multiple ear parts (0.9%) or the location did not matter
(11.6%). The study’s user-de�ned gesture set contained a number of touch-based inputs involving single and
double taps on di�erent parts of the ear, covering of the ear itself, sliding gestures on the helix, and pinching of
the ear lobe. They also discuss the design space of deforming the ear through manipulation, similar to Kikuchi
et al. [171]’s EarTouch, however these gestures did not feature heavily and the authors speculate that these could
cause physical discomfort.

Xu et al. [361] also introduce and explore a rich set of 27 gestures on and around the ear which include single
and double tap, as well as simple and complex sliding gestures. They then proceeded to select 8 gestures based
on technical properties (signal-to-noise ratio and similarity) of their acoustic-based sensing principle, and user
preference based on simplicity, social acceptance and fatigue. Their �nal gesture set included single and double
taps on the cheek, mastoid, and middle ear, as well as two sliding gestures (one on the ear rim and one below the
mastoid).

6.1.2 Bu�on Input. Pressing a button on an earable device is one of the most basic forms of input. However,
the action of pressing inherently requires force to be applied in order to depress the button. In comparison with
other parts of the body the ear can be more sensitive to pressure and force which can cause discomfort, especially
when applied to the inner canal. Buil and Hollemans [63] found that users (N=16) were split on their preference
for the amount of force required to depress a button on an earable, with 85 grams being within the acceptable
range of most users.

6.1.3 Touch. In contrast, touch-based gestures enable a similar input bandwidth without requiring the same
levels of physical force to be applied to the ear. Capacitive sensing has been applied to detect explicit user input
using the hands [64, 192, 356]. Buil et al. [64] demonstrated how simple interactions of tap, double tap, and hold
could be implemented on the earable platform using capacitive antennas built into the earphones. Lissermann
et al. [192] extended this concept to 12 electrodes spanning from the beginning of the ear helix to the ear lobe.
They sought to answer how well one can touch their own ear and discovered that users (N=27) are capable of
detecting four salient points on the ear arc, with greater precision found at the extrema of the ear arc. Weigel
et al. [356] introduced iSkin which demonstrated how capacitive sensing can go beyond traditional capacitive
form factors and be achieved using a low-cost, thin, stretchable form factor made up of two layers. Light touch is
sensed using the capacitive principle, while �rm touch can be detected using the resistive principle when the
two layers are in contact due to the pressure exerted. This sensing concept is operationalised in an application
called EarSticker which consists of a �ve-element slider located behind the ear, however the sensor itself was not
evaluated on the ear.

Due to the importance of real estate in such a small form factor, researchers have explored innovative solutions
to detect input by using the built-in components of commodity earphones [209, 361]. Manabe and Fukumoto
[209] developed an external adapter which allowed taps on the shell of commodity earphones to be detected
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through the speaker unit. They tested this technique on ten di�erent pairs of earphones with six users, �nding
promising results for some earphones, while others did not work due to residual sound. In contrast, EarBuddy
uses the built-in microphone from earphones to detect a wide range of touches and sliding gestures with an
accuracy of > 90% by utilising deep learning based on mel spectrograms [361]. Input was not limited to just on the
ear, but also included interactions around the ear including cheek and mastoid. Similarly, Fan et al. [93] leverage
the coupling e�ect of headphone drivers detected using a peripheral device attached to unmodi�ed headphones.
Using this principle, they sense touch and sliding gestures on the earphone enclosure using a cumulative sum
algorithm. As a proof-of-concept they found success rates of >99% when audio is o� and >97.7% with audio signal
with gestures performed 300 times.

In contrast to detecting manipulation of the sensing device, Lee et al. introduced EarTouch which uses a camera
to detect touches on the ear [184]. The proposed technique was designed to be obfuscated, i.e. hidden from an
observer by turning the head, miniaturized due to the small size of the ear, and camou�aged as common actions
such as scratching. Their evaluations showed high (approx. 40%) error rates for tapping detection using a “land
on” strategy, similar to those found by Lissermann et al. [192], however detection using a “lift o�” or “dwell”
approach resulted in much lower error rates (approx. 10%).

6.1.4 Ear-Shape Changes. Sensing dynamic changes in the shape of the outer ear and ear canal can also be used
in the context of interaction. Kikuchi et al. [171] introduced EarTouch which uses photo re�ective sensors to
detect shape changes of the ear caused by physical manipulation of the helix with the hands. A support vector
machine classi�es four directional gestures of moving the ear helix, which in turn can be used to classify �ve
symbolic gestures (line, check mark, inverted caret, square, and stairs) with an average accuracy of 77.43%.

6.1.5 Tensor Tympani Contraction. Researchers have also explored novel methods of that leverage the ear’s
unique physiology. Röddiger et al. [290] introduced EarRumble which uses pressure sensing to detect changes in
the shape of the ear canal when the tensor tympani (a middle ear muscle) contracts. They leverage the ability that
some people can voluntarily contract the tensor tympani (43.2%, N=192) to provide subtle input and demonstrate
that three ear rumble gestures can be detected with 95% accuracy.

6.1.6 Wearable State. Researchers have also explored how the location of the earables relative to the user can
be sensed for both implicit and explicit interactions. Sensing whether the earables are located in the ear can be
used for locking the on-ear controls to prevent accidental activation [64], pausing music or answering phone
calls [182], or detecting whether the earphones are positioned correctly (i.e. left ear bud in left ear, right ear bud
in right ear) [219].
The wearable state of the earables can be detected using capacitive sensing [64], proximity sensors [219],

ultrasound frequency sweeping [182], and the coupling e�ect through the headphone drivers [93]. HeadFi,
introduced by Fan et al. [93], provide an extensive study on detecting the wearable state of the earphones using
54 pairs of earphones grouped into �ve types. By leveraging the coupling e�ect through the headphone drivers
they achieved success rates per group between 97.9% and 99.8%.
Beyond detecting just whether the user is wearing the earables or not, EarphoneTrack uses acoustic motion

tracking to �nd out where the earphones are located in 3D space with millimeter level accuracy [66]. The system
leverages an inaudible single frequency acoustic signal and can be used with commercial earphones. They propose
self-interference and frequency o�set techniques to allow for the tracking of both wired and wireless earphones
respectively. This approach creates an interesting and untapped design space where the earables themselves can
be used for spatial input.
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6.2 Hand Gestures and Location
Besides direct manipulation of the earable or the ear for input, hand movements can also sensed and leveraged
for input. Using an elicitation study (N=28), and abstracting from any speci�c sensing modality, Chen et al. [74]
found that the majority of user-de�ned gestures for ear-based interactions involved mid-air hand interactions
(57%) around the ear. Other researchers have operationalised sensing mechanisms which can detect motion of
the hands using earables, see Appendix L.
Metzger et al. [227] introduced FreeDigiter which allows rapid, contact-free entry of digits based on �nger

gestures. To enter a digit, the user spreads their �ngers to show the desired number and then slide it over a
proximity sensor embedded in the earbud to encode the digit. The earbud detects the digit by the re�ections of
the infrared light emitted by the proximity sensor which can be used for selecting a numbered item from (e.g.)
a list of tracks or to manage phone calls. SonicASL by Jin et al. [151] uses deep learning techniques to classify
re�ections of a sonic wave into 42 di�erent sign language words. This technique enables mid-air input in front
of the earable that can be used to enable communication with hard-of-hearing individuals. Tamaki et al. [327]
presented Brainy Hand which embeds a mini-projector and a color camera inside an earbud capable of detecting
hand gestures. The projector gives the user feedback where input can be performed (camera �eld of view), and in
another con�guration the projector displays words and images on the user’s palm for richer feedback.

Beyond detecting mid-air hand movement for explicit user input, hand movements have also been detected in
more subtle and novel ways. Yan et al. [362] introduced PrivateTalk, a subtle interaction technique to activate
voice input by partially covering the mouth with the hand from one side. This action causes di�erences of the
audio signals arriving at the left and right ear which can be used to signify that the user intends to interact with
the voice assistant when the hand covers the face. This removes the necessity to use wake-up words or pressing
a button while increasing the privacy of the user by reducing the spread of voice and concealing lip movements.

6.3 Head Gestures and Pointing
Head movement provides a hands-free input mechanism when the hands are busy or unavailable. The head has
been used for input by either semantically mapping pre-de�ned gestures to system commands (e.g., [363]), or by
using the direction as a pointing device to select targets spatially (e.g., [301]). Earables are perfectly situated to
detect head movements, and researchers have explored how sensing on the earable can be used to operationalise
both of these interaction paradigms.

6.3.1 Head Gestures. In addition to being hands-free, head gestures, such as nodding or shaking, are compelling
because they can also be invoked in an eyes-free manner due to proprioception, and do not require visual feedback.
The inertial sensors within an earable can be used to detect di�erent head gestures intended for interaction. Gashi
et al. [112] combines a hierarchical classi�cation with transfer learning to detect typical activities including head
shaking and nodding from accelerometer and gyroscope data. They achieved an F1-score of 88.24%. Similarly,
Laporte et al. [181] detected nodding and shaking (and three other activities) with an end-to-end deep learning
approach with an F1-score of 82%. Rather than using inertial sensors, Ando et al. [14] leveraged the fact that the
ear canal changes shape when the sternocleidomastoid muscle is used to move the head. They used in-ear pressure
sensing to recognize six head gestures (rotate left/right, rotate up/down, tilt left/right) with a recognition accuracy
of 87.6% (which also included �ve facial gestures). While these paper show a promising future direction for
earables interaction, they also highlight a common challenge with semantic gestures – distinguishing movement
intended for interaction versus natural head movement.

6.3.2 Head Pointing. Pointing is a fundamental interaction principle that is at the core of graphical user interfaces.
An inertial measurement unit that can track yaw, pitch, and roll can be used as a pointing device with three
degrees of freedom. However, a magnetometer is required to measure the absolute yaw position which has proved

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 135. Publication date: September 2022.



Sensing with Earables: A Systematic Literature Review and Taxonomy of Phenomena • 135:31

problematic for earables due to electromagnetic noise in such a small form factor [96]. Odoemelem et al. [252]
used head motion to control a robot arm, however due to the lack of yaw information of the head they map
the roll of the head to the yaw of the robot. Two research threads have emerged due to the di�culties with the
magnetometer: the �rst seeks to understand the source of the error and overcome it using calibration techniques,
and the second thread seeks alternate ways of detecting the yaw position of the head.
Ferlini et al. [97] aimed to compensate for the lack of magnetometer by utilizing an additional gyroscope.

Instead of detecting a speci�c yaw angle of the head, they classi�ed from 30 degrees to 90 degrees in 15 degree
increments. They demonstrate errors of between 5 - 15 degrees between the ground truth and proposed approach,
which increases when the user is chewing or speaking. The prediction error also increases when the user maintains
their position due to sensor drift. More recently, Ferlini et al. [96] demonstrated how an automatic magnetometer
calibration method can overcome the electromagnetic interference resulting in an error of less than 5 degrees over
a wide range of yaw angles. This approach may be key to future opportunities for earable-based head pointing.

As a result of di�culties with head pointing on the earable platform, other work has looked at innovative ways
of leveraging the earables relationship to other devices to infer head direction. Hashem et al. [132] introduced
the Look&Lock system which determines which device a user is looking at by using the Bluetooth received signal
strength (RSS) on a set of earables.In a single subject study, the system was capable of 100% accuracy when
detecting objects on the walls or in the corner, spaced by 15 degrees, at short distances of less than 3m. Closely
related, Pfreundtner et al. [271] used the same principle with audio signals instead. They used four microphones
(two on each ear) to estimate the direction of a sound source in relation to the head with an accuracy of 14
degrees on the horizontal and 5 degree on the vertical plane. Whereas the previous two papers used �xed devices
in the environment, Gamper et al. [108] tracked the head orientation between multiple earable wearers by taking
the speaker’s voice as sound emission source and estimating the relative head angle to the listener using binaural
microphones with an accuracy of around 10 degrees. This set of approaches may provide interesting opportunities
for cross-device interactions, however they do not provide the accuracy required for pointing selection on a
single device.

6.4 Mouth-Based Interaction
Similar to head movements, mouth-based movements a�ord hands- and eyes-free opportunities for input. The
mouth provides a surprisingly rich input space for interaction [73] involving movement of the jaw, clicking of
the teeth, and positioning of the tongue. Appendix M provides details on the di�erent systems that have been
used for explicit input using the jaw, teeth, tongue.

6.4.1 Jaw Gestures. Physiologically, jaw movements can be detected on the ear due to changes in the shape
of the ear canal, however the magnitude of these changes can strongly vary between users [119, 275]. More
speci�cally, when the jaw moves the shape of the ear canal changes depending on the position of the mandibular
condyle [14]. Researchers have explored how the resultant ear canal deformations can be sensed using in-ear
pressure sensing [14], proximity sensors [36], or piezoelectric bending sensors [68].
Ando et al. [14] explored how sensing in-ear pressure can be used to detect a wide variety of facial and head

gestures due to the ear canal changing shape. They showed that gestures involving sliding the jaw left and
right, as well as basic open and closing of the mouth, can be detected with >88.2% accuracy against other head
movements (which also cause ear canal deformation). They also explored how di�erent levels of mouth open can
be detected, with four levels (closed, slight, open, wide) showing a minimum accuracy of 79.2%.

In contrast, Bedri et al. [36] used three orthogonal proximity sensors to detect the change in shape of the ear
canal, and Carioli et al. [68] used bend sensors on a custom �tted ear piece. Proximity sensors were used in the
context of silent speech recognition [297] and eating detection [38], but in theory both sensing modalities could
be used for interaction.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 135. Publication date: September 2022.



135:32 • Röddiger et al.

6.4.2 Teeth Gestures. Movement of the jaw can also involve clicking the teeth together which results in vibrations
and an audible sound. Tooth-based interaction has been used as an activation gesture [320] as well as for navigating
menus [17, 281], answering phone calls [320], and typing on a keyboard in both assistive and non-assistive use
cases (e.g., while working out) [17]. Such smaller interactions reduce the e�ort required to perform short input
tasks [17] and maintain the privacy of the user [281], however users reported issues of jaw muscle fatigue when
using teeth for typing [17].

Tooth-based interaction is commonly sensed using audio-based approaches to classify the distinctive sounds
and vibrations from teeth clicking, similar to eating detection in subsection 5.4. Ashbrook et al. [17] reported a
recognition accuracy of 96% for �ve di�erent tooth pairs using bone conduction microphones, showing that the
location of the click can be determined. Prakash et al. [281] expanded the input space for tooth-based interaction
by exploring sliding gestures and found that these can be distinguished from taps with >90% accuracy (using six
gestures). Sun et al. [320] used a fusion of audio-based and inertial sensors to detect 13 gestures, consisting of
hold gestures combined with single, double, and triple taps with 90.9% accuracy in a lab environment.

6.4.3 Tongue Gestures. Interestingly, movement of the tongue can also be sensed on the ear as a result of the
deformation of the ear canal [67, 205, 328]. This principle can be used for private input techniques when in a public
setting [247, 328], and provides an accessible means of input for users who have a speech impairment [67, 205, 247]
or physical disability [67, 247]. Interaction can be based upon pointing with the tongue in pre-de�ned directions
within the mouth, or by detecting whether the tongue is protruding or retracted in the mouth [67, 205, 247, 328].

Earable form factors have shown how detecting tongue movements is possible. Maag et al. [205] use in-
ear pressure sensing to detect ear canal deformation of three tongue gestures (left, right, and front) and two
interfering movements (removing device and moving head) with comparable accuracy but signi�cantly lower
power requirements than other audio-based approaches. Taniguchi et al. [328] use a miniaturised optical sensor
to detect when the tongue pushes the roof of the mouth in a small (N=5) feasibility study which shows promising
results.
Other work, has explored how sensing more advanced tongue movement is possible at the ear. Nguyen et al.

[247] built a more complex setup from multiple sensors including EEG, EMG, and skin surface deformation
and demonstrated the feasibility of detecting ten di�erent touch points using the tongue that can be used to
provide input. Their setup achieved >85% accuracy for eight out of ten locations including four on the tongue-side
(lingual) of the teeth, and six on the cheek-side (buccal). Participants found the cheek-side movements easier
than the tongue-side, however many found the technique di�cult to use. Finally, Cao et al. [67] use a smartphone
held to the ear to sense ear canal deformation by sensing acoustic re�ections measured using the microphone.
Both of these are promising avenues, however it is unclear how well they can be translated to a practical earable
form factor.

6.4.4 Silent Speech Input. Silent speech recognition is a unique use case of detecting both jaw and mouth
movement in synergy on an ear-based device. Silent speech o�ers the user a privacy-preserving, socially acceptable
interaction technique [72, 167] which can be used in noisy environments [72, 297] and by users with medical
conditions [297].
Ear canal deformation can be used to detect silent speech, similar to jaw and tongue movements. Khanna

et al. [167] developed JawSense, an accelerometer-based approach that uses ear canal deformations to classify 9
phonemes with 92% accuracy (N=6). Sahni et al. [297] combined an earable equipped with proximity sensors
and a magnet attached to the tongue, sensed by a magnetometer, to detect 11 sentences at 90.5% accuracy (N=6).
Chen et al. [72] opted to sense cheek deformation instead of ear canal deformation. They used a camera attached
on the ear of a user to predict eight words with 84.7% accuracy (N=6). These early works demonstrate how silent
speech recognition is possible on the ear, however there are still open research questions and challenges with
regards to using and deploying this technology in-the-wild.
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6.5 Facial Expressions
Facial expressions can either be voluntary or involuntary. Voluntary facial expressions are a form of non-verbal
communication and can be used for explicit input for mobile and wearable devices [10, 72, 221, 300]. Involuntary
facial expressions can be used in a�ective computing to capture the underlying feelings, mood, or emotions of
a user and can be used as implicit context Verma et al. [344]. Additional insights into emotion detection with
earables can be found in subsubsection 4.4.1). Appendix N details a complete list of the di�erent sensing principles
and facial expression gestures explored with earables.

The muscles which control facial expressions (i.e., sternocleidomastoid, masseter, and temporalis muscles – see
Figure 4) all run close to the ear. Preliminary work has shown how in-ear EMG can be used to sense the muscle
contractions in the ear when someone performs a facial expression [300]. Facial expressions can also be sensed
indirectly using the deformation of the ear canal. Matthies et al. [221] explored the use of electrical �eld sensing
which, based on a single user, performed similar to EMG in a lab environment, but when studied in a mobile
context with 3 users, the electrical �eld sensing approach was more robust resulting in better performance. They
also found that placing non-insulated electrodes in a vertical arrangement produces better results for detecting
the in-ear deformation caused by facial expressions

Amesaka et al. [10] sensed the deformation of the ear canal using re�ected sound, by measuring the ear canal
transfer function with a microphone in the earable device. They show that it is possible to achieve a recognition
accuracy of 62.5% when classifying 21 gestures, increasing to 90.0% with a smaller subset of 6. This approach of
exploring a larger number of facial expression gestures (20+) before deciding on a smaller subset to increase the
recognition accuracy is common in the literature [10, 187, 221].
Similarly, inertial data was applied to extract characteristic motions during facial expressions [112, 187, 344].

Verma et al. [344] reported very high accuracy (89.9%) for up to 32 facial expressions when training a user-speci�c
classi�er, however this performance decreased to 42.1% for a user-independent model. Ear-mounted miniature
cameras can also be used reconstruct the outline of the cheeks with a mean square di�erence of 0.77mm and
0.74mm for both earphones and headphones respectively, with little degradation in performance when the
user wears a mask (0.717mm) or glasses (0.824mm) [72]. Despite these promising results, the applications of
camera-based approaches may be limited as they require signi�cant power and raise potential privacy concerns
of passers-by.

6.6 Eye Tracking
Eye movement requires less energy and e�ort than movement of the head or hands [180, 312]. Eye tracking has
been used in the �eld of HCI and ubiquitous computing as both a method of explicit input [207] and as a means to
understand user behaviour [364]. Detecting eye movement from the ear can be achieved using electrooculography
(EOG) – which detects electric �eld changes when the eyes move because the eyeballs have a negative charge
on the retina and a positive charge on the cornea [208]. EOG provides relative information about the relative
movement of the eyes, but does not allow one to know what the user is looking at. In general, qualitative results
have shown that EOG traces are visible when electrodes are attached in the ear canal [164, 245], posterior [272],
periauricular [46, 351], preauricular [208], and close to the temple [94] at the ear. Some early results suggest that
preauricular electrodes achieve gaze angle prediction with an error of 4.4° (horizontal) and 8.3° (vertical) [208].
Manabe et al. [210] introduced three sequential eye gestures measured by wet in-ear electrodes to control a music
player (play/pause, next, previous), however an error rate of up to 33% was reported for some users. Work on
interaction techniques using ear-based EOG are still in their infancy, but other work has leveraged the movement
of the eyes measured at the ear for sleep detection [245, 272], see details in subsubsection 4.2.2.
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6.7 Brain Computer Interfaces
Brain-computer interfaces (BCI) o�er input based on brain activity alone. Commonly, users have to execute
a speci�c task or follow a stimulus that triggers an expected response of the brain which can be quanti�ed
by electroencephalography (EEG), which was evaluated broadly with earables (see subsubsection 4.2.1). In the
context of BCI, the steady-state response of the brain plays a critical role as it creates a response in the EEG trace
that matches the frequency of an auditory or visual stimulus attended by the user. By o�ering multiple stimuli at
the same time and at di�erent frequencies, a user can select a desired option by attending the speci�c stimulus
[47, 196]. Accuracies of 79.9% (six visual stimuli, [3]), and 87.92% (four visual stimuli, [353]) were achieved with
in-ear electrodes. Based on the principle, text-spelling was possible at 2.4 characters per minute [250]. Brain
activity also depends on the task a user is performing. Up to 90% binary selection accuracy was achieved when
selecting the two ideal tasks among a list of 5 activities (breath, imagine song, listen to tone, imagine a face,
imagine a cube rotating shown on screen) [226].

6.8 Actuation
Earables commonly use auditory output to share feedback with the user, or rely on visual feedback from an
external device. Visualisations on the earable can not provide information to the wearer directly during use due
to the location of the ear, however visual cues, such as colour-changing LEDs, have been used to provide feedback
to other users [75]. Beyond these common output modalities, researchers have explored how ear-based devices
can provide alternative output mechanisms based on haptics, thermal cues, and mechanical deformation.

6.8.1 Haptics. The ear is one of the best body locations for perceiving vibrating stimuli based on research which
has shown that vibrations on the ear had the highest perceivability compared with other body parts including
the hand, foot, and neck [88]. However, other work suggests that users could better perceive vibration stimuli
at the ear because they could hear them [357]. To make full use of the ear as a tactile display, Lee et al. [186]
performed a thorough investigation of vibration stimuli at the lobe, concha, and superior crus (under the helix) on
each ear. Across all locations, users perceived 15 Hz to be the clearest and most unobtrusive vibration frequency.
Additionally, sequential stimuli were easier to perceive and distinguish than simultaneous stimuli, while 25
spatio-temporal dual-ear patterns yielded 58.2% recognition accuracy with 4.8 seconds average response time.
Vibrotactile feedback at the ear may also give hard-of-hearing users the ability to understand the sound of their
surroundings better. For example, they could identify simple words and environmental sounds from vibrations at
di�erent intensities depending on the frequency of the incoming sound [357].

6.8.2 Thermal Cues. Hot and cold sensations can be created around the ear using Peltier elements [6, 241,
242]. Akiyama et al. [6] initially presented how thermal sensation changes around the ear may enhance the
excitement and comfort of users listening to music. An in-depth evaluation of the thermal cues revealed that
four periauricular thermal cues could be distinguished reliably by users at >99% recognition accuracy, while 5
parallel cues signi�cantly reduced recognition performance to 86% [241]. Superior auricular cues were perceived
less accurately due to the user’s hair, while the posterior auricular area was most sensitive. Spatio-temporal
combinations of cues on one or two ears resulted in 14 patterns with 85.3% recognition accuracy and 2.3 seconds
average response time.

6.8.3 Ear Deformation. Inspired by the movement of the ears during communication of animals, Huang et al.
[143] introduced a system that applies mechanical actuators to deform the ear with a view to extending the body
language of disabled users. They propose 22 static and dynamic auricular postures which they link to di�erent
emotions based on an online survey. Closely related, Shirota et al. [310] applied linear actuators behind the ear to
change the opening angle of the ear which could successfully manipulate the perceived direction of sound.
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Fig. 8. Structure of the Authentication and Identification section according to di�erent principles.

Protected access to sensitive data on mobile devices is commonly based on the biometrics of the user (e.g.,
�ngerprints). Biometric earable methods have been explored based on the unique shape of the ear, skull, or body
and through brain activity or body motion (see Figure 8). More traditional passcode-based authentication methods
based on rhythmic patterns have also been proposed. A general distinction is made between veri�cation, where a
user claims to be a person and the system decides if the user is accepted or rejected, and identi�cation, with the
goal to “�nd” the user from a set of pre-enrolled users [240]. Throughout the following sections, performance is
commonly reported in equal error rate (ERR), which is the threshold at which the false acceptance rate (FAR) and
false rejection rate (FRR) are the same.

7.1 Shape-Based Authentication and Identification
Unique inter-participant di�erences between the characteristic shape and tissue softness of the ears, surrounding
skull, and the overall body can be utilized for veri�cation and identi�cation purposes [9, 89, 194, 275, 285]. The
performance across papers in this area is summarized in Appendix O.

7.1.1 Ear. In-ear and over-ear devices can determine user identity by measuring the characteristic re�ections
of the sound of the static enclosed ear canal [7, 16, 110, 206] or covered ear [7, 87] based on both - audible and
inaudible frequencies. Additionally, authentication may be performed based on the dynamic shape of the ear
canal while talking [354] or by the response of the basilar membrane in the cochlea to a sound stimulus [195].
When measuring sound re�ections of the complete ear an audible chirp gave better results than an audible

sequence (14.9% vs. 0.8 - 5% EER, N ⇡ 30, [7, 87]). No works explored inaudible sound re�ections to sense the
complete ear. For the ear canal, inaudible chirps outperformed audible chirps (< 0.01% vs. 0.28 - 1% EER, N ⇡ 30,
[7, 206]). In contrast to existing results from sensing the complete ear, an audible sequence could still achieve
comparable performance to a chirp in the ear canal with < 1% EER at = 45 users [16]). Instead of just sensing the
static shape of the ear canal, dynamic changes of the ear canal while speaking can be combined with an inaudible
probing tone which achieves 4% EER at 24 users [354].
Multiple authors reported that wearing variability degrades performance between wearing sessions [16, 110,

206]. Audible probe signals were identi�ed to be more robust against wearing variability, but inaudible signals
could achieve better performance [206]. Additionally, di�erent background disturbances (room, cafe, mall, street)
were found to decrease performance by only 2% FRR [110]. Still, a higher sound pressure level of the probe tone
improves performance in loud environments [110]. In general, inaudible frequencies have the advantage of not
disturbing the user [206, 354]. Veri�cation performance converged at 3 seconds audible probe tone duration [110].
Moving, walking, running, and eating degrades the veri�cation performance [93, 110], by an absolute increase of
up to 6% FAR and 26% FRR for ear canal based veri�cation [110].

In contrast to the previous approaches that sense ear canal or ear shape, Liu and Hatzinakos [195] introduced
the biometric principle of transient evoked otoacoustic emission (TEOAE) to the earable platform. Originally
introduced by Grabham et al. [118], TEOAE is a 20ms response of the basilar membrane in the cochlea after a
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low-level click sound. According to the authors, the principle is very hard to falsify because replication of the
auditory system is almost impossible, and replay attacks are unlikely to be feasible. The technique outperforms
all previous approaches at 0.02% EER evaluated on 54 users. The same principle can be applied for identi�cation
at high accuracy (99.4%).

7.1.2 Skull. The face is a common biometric property to authenticate or identify a user. While the ears can not
directly observe the face, sounds produced by the body are propagated by the unique structures and tissue of the
skull, which can be leveraged for authentication. In an initial study, air- and body-conducted sounds on both ears
employ the voice of the wearer as a probing signal of skull bones and tissue [109]. The principle is independent
of the spoken text and achieves 3.64% EER at 23 subjects. Also, it is relatively robust against environmental noise,
wearing variability, and user movement (< 5% EER) and appears to be resistant against multiple replay attacks.
Instead of audio signals, Liu et al. [194] employ an accelerometer attached to the ear canal to measure vibrations
propagating from the mandible to the ear upon voicing an ’EMM’ sound. An evaluation with 34 participants
reveals 1.28% EER. The technique is also robust against food intake and wearing variability.

7.1.3 Body. Expanding upon the idea of sensing the unique bone and tissue structures of the user, Ding et al.
[89] introduced an authentication method that measures the leakage current propagated through the body by an
earable as the user touches a metal-encased laptop. The principle achieves 93.6% identi�cation accuracy based on
15 users. Additionally, performance is hardly in�uenced by replay or mimicry attacks.

7.2 Motion-Based Authentication and Identification
The way a person moves is a common soft-biometric in wearable computing [214]. Ferlini et al. [95] introduced a
gait-based method based on the low-frequency sounds propagated through the body, which are ampli�ed in the
occluded ear canal when walking. The principle achieves 3.23% false acceptance rate and 2.25% false rejection
rate. Soft grounds such as a carpet or wearing slippers decreased the performance slightly but was still always <
8% FAR and FRR. The technique is stable against speech and playing music because it occurs in lower frequencies
(< 50Hz). Additionally, merging data from both ears was bene�cial over using one ear alone. For identi�cation,
Clarke et al. [78] introduced a spontaneous device association method which matched the acceleration of an
earable to the movement of a user’s head in the camera view to allow for private audio channels in public settings.
They conducted a lab study with seven di�erent movements (including random movements) at three speeds,
which revealed an accuracy of 86% to identify an individual from a set of 10 participants.

7.3 Brain-Based Authentication and Identification
The ability to sense the brain activity of a user with earables (see subsubsection 4.2.1) has led to the development
of novel biometric veri�cation and identi�cation systems. Commonly, the user is asked to perform a speci�c task
during which the individual EEG response is captured. Curran et al. [82] have investigated this principle with a
small group of seven users. They conclude that the approach could achieve perfect false acceptance and false
rejection rate (0% = FAR = FRR) when choosing the most distinctive mental task for every user among a selection
of nine di�erent tasks (e.g., open / close the eyes, think of a personal secret, react to external stimulus). An
evaluation of 5 mental tasks with 12 users revealed that the best general task across all participants was “listening
to 40Hz tone”, which achieved 19.9% FAR and 25.8% FRR [83]. Identi�cation based on the unique patterns in alpha
waves after closing the eyes (see subsubsection 4.2.1) resulted in a 67.8% identi�cation rate [240].

7.4 Passcode-Based Authentication
In comparison to the aforementioned biometric principles, Bi et al. [43] introduced an authentication method
based on rhythmic tapping on the earbud measured by an accelerometer. They analyzed the tap energy, tap
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interval, and rhythm timing for di�erent users-chosen rhythms, which they found were su�ciently di�erent for
authentication. An evaluation with 20 users yields < 5% FAR and FRR even when the system is attacked by brute
force or imitation. Introducing motion by train riding and wearing variability degrade the performance but FRR
and FAR was still <10% and <5%, respectively. The main advantage of the technique compared to other earable
methods is that it does not rely on biometrics which may be subject to change.

8 DISCUSSION
We have demonstrated how earables have great potential in four main research areas. Earables present a unique
opportunity to leverage a platform already embedded in our everyday lives through ear-based devices such as
earphones and hearing aids. As a result, earables are socially acceptable to wear [36] and have the potential to
be unobtrusive (e.g., [82, 187, 221]), discreet (e.g., [163, 187, 196]), inconspicuous (e.g., [79, 117, 138]), concealed
(e.g., [85, 110]), privacy preserving (e.g., [185, 187, 278]), and non-stigmatizing [170, 278].

Earables can sense a multitude of body functions from 9 (out of 11) major systems of the human body, including
skeletal (e.g., gait [27]), muscular (e.g., facial expressions [221]), nervous (e.g., brain activity [85]), endocrine
(e.g., emotions [29]), cardiovascular (e.g., blood pressure [62]), respiratory (e.g., breathing [292]), reproductive
(e.g., ovulation [202]), immune (e.g., coughing [289]). and digestive (e.g., food intake [111]) systems. Earables are
already showing promising results in the health domain, and as the sensing and processing capabilities continue
to advance we are likely to see earables playing a vital role in at-home monitoring and even possibly diagnosis.

The location of the earable presents a relatively stable platform from which to sense a wide range of movements
and activities, in turn enabling recognition of exercises, sports, and other daily activities. Despite earables not
achieving the best performance when used in isolation, they can support and complement other devices in the
wider wearable eco-system [318], and the everyday use of ear-based form factors make them easier to integrate
into everyday life than many other devices – an important factor for successful habit formation [30]. Beyond just
classi�cation, quanti�cation of sensed phenomena can also support users to self-regulate healthy behaviours
in their everyday life, from monitoring their levels of physical activity to tracking what food and drink they
consume. Combined with the physiological parameters and health data available on the platform, earables have
the potential to be a powerful self-tracking tool in the quanti�ed self movement [203].

In the context of human-computer interaction (HCI), earables present an exciting opportunity for unique and
novel interaction techniques given the rich and diverse sensing capabilities available on the earable platform.
The ear itself is easily and comfortably reached by the hands [171, 361], while the distinctive surface area creates
opportunities for targeted interactions [192]. The possibility to bend the ear and its unique shape as well as �at
surface area around it also opens up an interesting interaction design space [171, 361]. Even the physiological
nature of the ear has been harnessed for interaction by using the tensor tympani, a small inner ear muscle,
which can be sensed and used as a discreet, eyes- and hands-free binary switch [290]. Beyond the ear itself, the
earable platform can also be used to detect other modalities for interaction, including head position [14], facial
gestures [221], mouth movements [320], and eye gaze [46, 272].
Fingerprint and face-based biometrics of smartphones are reported to have a false acceptance rate of 1 in

50,000 or lower [15]. Earable authentication techniques were evaluated with 50 users and less while most have a
false acceptance rate of ⇡ 1-5% [16, 95]. This performance suggests that earable-speci�c authentication principles
currently can not compare to methods available on other mobile platforms, however they have great potential for
providing seamless authentication and identi�cation by integrating the process into common everyday tasks.
Earables are also well positioned to provide “continuous” authentication which are capable of repeatedly checking
to see if the correct user is still wearing the earable device, which may compensate for the lower accuracy rates
as evidence accumulates over time. In addition, these continuous authentication methods have the potential to be
combined with traditional passcode-based authentication at the beginning of a session.
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8.1 Future Opportunities and Challenges
Earables are a growing research area, as demonstrated in Figure 1. Despite technological advances, the limited
space of the earable form factor creates, and will remain, an engineering challenge as components need to be
miniaturised (e.g., [29, 54, 262]). The need for miniaturisation and small form factor introduces a number of
potential constraints on the available computational performance, storage, and power on the earable device itself.
From our review, we have identi�ed several overarching opportunities and challenges to overcome in order for
earables to realise their full potential across the four research areas identi�ed.

8.1.1 Self-contained Platform. Earables have the potential to be a self-contained, light-weight wearable platform
that does not depend on other devices due to the vast array of sensing principles available on the platform and
the audio, and potentially haptic, output capabilities. However, in part due to the currently available computing
resources on-board, it is common that other devices are used for further processing of the earable sensor data.
Out of the research papers we examined, only 12 (4%) reported processing of sensor data on the earable device
itself, with 22 studies (8%) using a smartphone for processing. The vast majority of research papers used higher
powered computing devices (e.g., laptops and desktop computers). While this does not necessarily mean the
systems developed could not run on lower-powered devices, it highlights a lack of research into earables as a
self-contained platform.

8.1.2 Power Consumption. In addition to maximising the computational resources on the platform, power
sources are also required to �t into the earable form factor which makes power consumption an important
consideration (e.g., [181, 196, 205]). This requirement can be a considerable barrier for applications requiring
frequent computationally expensive operations (e.g., machine learning models) or large and/or continuous
data throughput which can quickly drain the battery. However, because the earable form factor is commonly
used in wearable, mobile contexts there is the potential for energy to be harvested on the device itself, with
preliminary research showing the feasibility of harvesting energy from jawmovements [54, 86] and thermoelectric
generators [1]. Energy harvesting technologies may be required to supplement earable’s on-board power capacity
and extend battery life as the platform matures.

8.1.3 Wearable and Smart Device Ecosystem. Earables are ideally placed to, and will likely become, part of the
commodity wearable and smart device ecosystem alongside smartphones and smartwatches. Earables can, and
often do, o�oad processing onto other devices which can be bene�cial for many applications and usage contexts
in which other devices would likely be present anyway. O�oading sensor data provides access to additional
computing resources, helps to extend the battery life of the earables, and allows earables to bene�t from other
devices providing higher-level contextual information about the user and their location. Researchers have also
started to explore how earables can work in synergy with other wearables and smart devices. This emerging
research space has yielded promising results which have shown how combining earables with other devices
results in improved performance compared with the devices in isolation (e.g., [114, 225, 318]). It is important
that the research community explores and understands how earables best �t into and complement the current
and future wearable and smart device ecosystems. We also note that the “self-contained” and “device ecosystem”
research directions are not mutually exclusive, and each will play an important role in unlocking the potential of
the earable platform.

8.1.4 Integration of Multiple Sensors. Earables can come in many di�erent form factors, from subtle in-ear
hearing aids to over-the-ear headphones and mechanically anchored earphones for exercising. In this survey
we have seen multiple sensing principles (see Table 3) that have been demonstrated on the earable platform.
However, di�erent sensors and their required methods of attachment present a challenge when considering
what can be simultaneously sensed on the ear by one device. An earable than encompasses multiple sensing
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modalities will inherently be limited by what attachments are viable for a given combination of sensing principles.
This introduces trade-o�s between the sensing capabilities and method of attachment, and we have shown how
some sensors have di�erent performance characteristics that are dependent on the form factor (e.g., electrode
placement for EMG and EEG).
To date, research into earables equipped with multiple sensing modalities or solutions that span di�erent

application domains is limited. However, commercial o�erings such as the eSense1 or more recently Cosinuss
Two2 provide platforms that remove the need for bespoke hardware to be created and may allow researchers to
consider the relationship of multiple solutions on a single platform. Further research into this area will open
up opportunities for novel multi-modal sensing applications and/or solutions to other common issues on the
platform, such as suppressing unwanted motion artefacts.

8.1.5 Assessment Heterogeneity. The ability to understand and compare the performance of di�erent sensing
principles on the earable platform is crucial. However, both Masè et al. [216] and Ne et al. [243] noted in their
hearable reviews that the literature su�ers from a wide variety of protocols and measurements that made
comparisons between studies di�cult [216, 243]. We found this issue extends to the research papers reviewed in
this work and is evidenced in the Appendices. For example, research into heart rate (Appendix A) and blood
oxygen saturation (Appendix B) shows multiple performance metrics being used across research groups.

Not only does assessment heterogeneity make it di�cult to compare sensors across the earable literature, but
it also limits and obfuscates our understanding of earables compared to other wearable and smart devices (e.g.,
smartphones or smartwatches) and gold standards. In this review, we have attempted to bridge this gap where
possible by providing gold standard comparison points, as does Ne et al. [243] in their review. However, it should
be of primary importance moving forward for researchers investigating new and novel sensing principles on the
earable platform to make a concerted e�ort to establish standard protocols for speci�c sensing principles and
phenomena.

8.1.6 Ecological Validity. On top of assessment heterogeneity, earable research to date generally su�ers from a
lack of ecological validity. Work showing preliminary results and proofs of concepts is common, with over half
(52%) of the papers surveyed having a study with less than 10 participants, and 48 (18%) papers’ evaluations are
based on a single user only. While preliminary research is important for the laying the foundations and exploring
what is capable on the platform, there are signi�cant questions being raised as to whether these innovations,
often studied in limited lab conditions, will hold up in-the-wild during the mobile use cases and scenarios that
earables will likely be used in.
We found only 26 (< 10%) papers included �eld experiments in their evaluation. Researchers need to take

into account the context of use which is likely going to be varied, dynamic, and possibly on-the-move in noisy
environments or for prolonged periods. Researchers should consider any discomfort created by exerting force on
the ear canal (e.g., [63, 209, 291]) or through blocking the hearing abilities of the user (e.g., [79]). Similarly, the form
factor of the earable will a�ect the stability during di�erent activities, but there also exists variability between
wearing sessions (e.g., [110, 233]) and earables are susceptible to motion artefacts (e.g., [46, 134, 200, 292]), audio
noise (e.g., [10, 205, 357]), and environmental weather conditions (e.g., [50]). Filling in these research gaps and
embracing the opportunities they present will support and accelerate the transition from experimental prototypes
to impactful, real-world products.

8.1.7 User Variability. Another issue related to ecological validity, which is also highlighted in this review,
concerns user variability. Ergonomics research has shown that anthropometric di�erences exist between di�erent
genders and populations, including di�erences in upper ear height, concha width, lower ear height, and ear
1eSense earable computing platform: https://www.esense.io/
2Cosinuss: https://store.cosinuss.com/
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protrusion [31, 107, 189]. Another source of variability between users involves varying ear canal conditions
which includes earwax blockages, ear infections, or other skin conditions that could a�ect the ear canal. These
may a�ect some sensors more than others, for example those that require line-of-sight. Similarly, it is common for
people to have ear piercings that may a�ect attachment. This is in addition to the potential problems introduced
by attaching and maintaining contact with the sensors. Users may not be able to attach the sensors correctly �rst
time (e.g., [37, 182, 233]) and there is the possibility that skin contact of a sensor is lost during use (e.g., [144]).
This highlights the need for diverse research participation, and to understand how these factors a�ect wearability
over long periods, and in the use contexts in which they were intended.

9 CONCLUSION
This paper systematically reviewed 271 earable publications, resulting in a taxonomy of phenomena and a
comprehensive, in-depth overview of what can be sensed and inferred using the earable platform. Four overarching
research areas demonstrate the versatility and wide variety of applications that earables enable, from detecting a
user’s physiological state for health monitoring, to interacting with devices in an eye- and hands-free manner.
The anatomical properties and location of the ear create unique sensing opportunities that provide distinct
advantages compared to other parts of the body, resulting in a wide variety of phenomena that can be detected.
Our analysis shows how these can be derived from 13 fundamental phenomena and sensed using 21 di�erent
sensors. Further sensing developments will likely expand the already rich set of phenomena sensed by earables,
and new applications will emerge that leverage those currently available. While the number of sensors and
phenomena available on the ear will continue to grow, some will start making the transition to commercially-
viable products. However, to-date most earable sensing research has not been rigorously tested in-the-wild. As
the technology transitions out of the lab and into real-world deployments, a whole host of new research questions
will emerge. Future work will have to demonstrate ecological validity and overcome robustness and engineering
challenges to unleash the full potential that earables have to o�er as a ubiquitous, general-purpose platform.
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