
Open access to the Proceedings of the

27th USENIX Security Symposium

is sponsored by USENIX.

Sensitive Information Tracking in Commodity IoT
Z. Berkay Celik, The Pennsylvania State University; Leonardo Babun, Amit Kumar Sikder, and

Hidayet Aksu, Florida International University; Gang Tan and Patrick McDaniel,

The Pennsylvania State University; A. Selcuk Uluagac, Florida International University

https://www.usenix.org/conference/usenixsecurity18/presentation/celik

This paper is included in the Proceedings of the

27th USENIX Security Symposium.

August 15–17, 2018 • Baltimore, MD, USA

978-1-939133-04-5

Sensitive Information Tracking in Commodity IoT

Z. Berkay Celik∗1, Leonardo Babun∗2, Amit K. Sikder2, Hidayet Aksu2,

Gang Tan1, Patrick McDaniel1, and A. Selcuk Uluagac2

1 Systems and Internet Infrastructure Security Lab
Department of CSE, The Pennsylvania State University

{zbc102,gtan,mcdaniel}@cse.psu.edu
2 Cyber-Physical Systems Security Lab

Department of ECE, Florida International University
{lbabu002,asikd003,haksu,suluagac}@fiu.edu

Abstract

Broadly defined as the Internet of Things (IoT), the
growth of commodity devices that integrate physical pro-
cesses with digital connectivity has had profound effects
on society–smart homes, personal monitoring devices, en-
hanced manufacturing and other IoT applications have
changed the way we live, play, and work. Yet extant IoT
platforms provide few means of evaluating the use (and
potential avenues for misuse) of sensitive information.
Thus, consumers and organizations have little informa-
tion to assess the security and privacy risks these devices
present. In this paper, we present SAINT, a static taint
analysis tool for IoT applications. SAINT operates in three
phases; (a) translation of platform-specific IoT source
code into an intermediate representation (IR), (b) iden-
tifying sensitive sources and sinks, and (c) performing
static analysis to identify sensitive data flows. We eval-
uate SAINT on 230 SmartThings market apps and find
138 (60%) include sensitive data flows. In addition, we
demonstrate SAINT on IOTBENCH, a novel open-source
test suite containing 19 apps with 27 unique data leaks.
Through this effort, we introduce a rigorously grounded
framework for evaluating the use of sensitive information
in IoT apps—and therein provide developers, markets,
and consumers a means of identifying potential threats to
security and privacy.

1 Introduction

The introduction of IoT devices into public and private
spaces has changed the way we live. For example, home
applications supporting smart locks, smart thermostats,
smart switches, smart surveillance systems, and Internet-
connected appliances change the way we monitor and in-
teract with our living spaces. Here mobile phones become
movable control panels for managing the environment that
supports entertainment, cooking, and even sleeping. Such
devices enable our living space to be more autonomous,

∗contributed equally.

adaptive, efficient, and convenient. However, IoT has also
raised concerns about the privacy of these digitally aug-
mented spaces [33, 10, 21, 17, 6]. These networked de-
vices have access to data that can be intensely private,
e.g., when you sleep, what your door lock pin code is,
what you watch on TV or other media, and who and when
others are in the house. Moreover, the state of the devices
themselves represents potentially sensitive information.

Because IoT apps are exposed to a myriad of sensitive
data from sensors and devices connected to the hub, one
of the chief criticisms of modern IoT systems is that
the existing commercial frameworks lack basic tools and
services for analyzing what they do with that information–
i.e., application privacy [47, 27, 46]. SmartThings [34],
OpenHAB [31], Apple’s HomeKit [1] provide guidelines
and policies for regulating security [39, 30, 3], and related
markets provide a degree of internal (hand) vetting of the
applications prior to distribution [36, 4]. However, tools
for evaluating privacy risks in IoT implementations is at
this time largely non-existent. What is needed is a suite
of analysis tools and techniques targeted to IoT platforms
that can identify privacy concerns in IoT apps. This work
seeks to explore formally grounded methods and tools for
characterizing the use of sensitive data, and identifying
the sensitive data flows in IoT implementations.

In this paper, we present SAINT, a static taint analy-
sis tool for IoT apps. SAINT finds sensitive data flows
in IoT apps by tracking information flow from sensitive
sources, e.g., device state (door locked/unlocked) and
user info (away/at home) to external sinks, e.g., Internet
connections, and SMS. We conduct a study of three ma-
jor existing IoT platforms (i.e., SmartThings, OpenHAB,
and Apple’s HomeKit) to identify IoT-specific sources
and sinks as well as their sensor-computation-actuator
program structures. We then translate the source code of
an IoT app into an intermediate representation (IR). The
SAINT IR models an app’s lifecycle, including program
entry points, user inputs, and sensor states. In this, we

USENIX Association 27th USENIX Security Symposium 1687

identify IoT-specific events/actions and asynchronously
executing events, as well as platform-specific challenges
such as call by reflection and the use of state variables.
SAINT uses the IR to perform efficient static analysis that
tracks information flow from sensitive sources to sinks.

We present two studies evaluating SAINT. The first is a
horizontal market study in which we evaluated 230 Smart-
Things IoT apps, including 168 market vetted (called offi-
cial) and 62 non-vetted (called third-party) apps. SAINT

correctly flagged 92 out of 168 official and 46 out of 62
third-party apps exposing at least one piece of sensitive
data via the Internet or messaging services. Further, the
study showed that half of the analyzed apps transmit out
at least three different sensitive data sources (e.g., device
info, device state, user input) via messaging or Internet.
Similarly, approximately two-thirds of the apps define at
most two separate sensitive sink interfaces and recipients
(e.g., remote hostname or URL for Internet and contact
information for messaging). In a second study, we intro-
duced IOTBENCH, an open-source application corpus for
validating IoT analysis. Our analysis of SAINT on IOT-

BENCH showed that it correctly identified 25 out of 27
unique leaks in the 19 apps. SAINT produced two false-
positives that were caused by flow over-approximation
resulting from reflective methods calls. Additionally, the
two missed code sites contained side-channel leaks and
therefore were outside the scope of SAINT analysis.

It is important to note that the code analysis identi-
fies potential flows of sensitive data. What the user does
with a discovered sensitive data flow is outside the scope
of SAINT. Indeed, the importance of a flow is highly
contextual–one cannot divine the impact or correctness of
a flow without understanding the environment in which
it is deployed–whether the exposure of a camera image,
the room temperature, or television channel represents a
privacy concern depends entirely on who and under what
circumstances the device and app is used. Hence, we iden-
tify those flows which have the potential impact on user
or environmental security and privacy. We expect that the
results will be recorded and the code hand-investigated
to determine the cause(s) of the data flows. If the data
flow is deemed malicious or dangerous for the domain or
environment, the app can be rejected (from the market) or
modified (by the developer) as needs dictate.

We make the following contributions:

• We introduce the SAINT system that automates
information-flow tracking using inter- and intra-data
flow analysis on an IoT app.
• We evaluate SAINT on 230 SmartThings apps and

expose sensitive information use in commodity apps.
• We validate SAINT on a new open-source IoT-

specific test corpus IOTBENCH, an open-source repos-
itory of 19 malicious hand-crafted apps.

We begin in the next section by defining the analysis task
and outlining the security and attacker models.

2 Problem Scope and Attacker Model

Problem Scope. SAINT analyzes the source code of an
IoT app, identifies sensitive data from a taint source, and
attaches taint labels that describe sensitive data’s sources
and types. It then performs static taint analysis that tracks
how labeled data (source data, e.g., camera image) prop-
agates in the app (sink, e.g., network interface). Finally,
it reports cases where sensitive data transmits out of the
app at a taint sink such as through the Internet or some
messaging service. In a warning, SAINT reports the source
in the taint label and the details about the sink such as the
external URL or the phone number. SAINT does not deter-
mine whether the data leaks are malicious or dangerous;
however, the output of SAINT can be further analyzed to
verify whether an app conforms to its functionality and
notify users to make informed decisions about potential
privacy risks, e.g., when a camera image is transmitted.

We focus on home automation platforms, which have
the largest number of applications and consumer prod-
ucts [19]. Currently, SAINT is designed to analyze Smart-
Things IoT apps written in the Groovy programming lan-
guage. We evaluate the SmartThings platform for two
reasons. First, it supports the largest number of devices
(142) among all IoT platforms and provides apps of var-
ious functionalities [41]. Second, it has a detailed, pub-
licly available documentation that helps validate our find-
ings [40]. As we will detail in Sec. 4.1, SAINT exploits
the highly-structured nature of the IoT programming plat-
forms and extracts an abstract intermediate representation
from the source code of an IoT app. This would allow
the algorithms developed in SAINT to be easily integrated
into other programming platforms written in different
programming or domain-specific languages.

Attacker Model. SAINT detects sensitive data flows from
taint sources to taint sinks caused by carelessness or mali-
cious intent. We consider an attacker who provides a user
with a malicious app that is used to leak sensitive infor-
mation with or without permissions granted by the user.
First, the granted permissions may violate user privacy
by deviating from the functionality claimed by the app.
Second, permissions granted by an IoT programming plat-
form may also be used to leak information; for instance,
permissions to access the hub id or the manufacturer name
are often granted by default to develop device-specific
solutions. We assume attackers cannot bypass the security
measures of an IoT platform, nor can they exploit side
channels [35]. For instance, an app that changes the light
intensity to leak the information about whether anyone is
at home is out of the scope of this work.

3 Background of IoT Platforms

We present background of the SmartThings IoT plat-
form [40] to gain insights into the structure of its apps.
We also discuss two other popular IoT platforms: open-
HAB [31] and Apple’s HomeKit [1]. Our discussion is

1688 27th USENIX Security Symposium USENIX Association

based on a survey, which was performed by reviewing the
platforms’ official documentation, running their example
IoT apps, and analyzing their app construction logic. We
then present the challenges of information flow tracking
in IoT apps. Lastly, we define each potential type of taint
sources, the mechanisms for taint propagation, and taint
sinks by studying their API documentation.

3.1 Overview of IoT Platforms

SmartThings is a proprietary platform developed by
Samsung. The platform includes three components: a
hub, apps, and the cloud backend [36]. The hub con-
trols the communication between connected devices, the
cloud backend, and mobile apps. Apps are developed
with Groovy (a dynamic, object-oriented language) in a
Kohsuke sandboxed environment [10]. The sandbox lim-
its developers to a specific subset of the Groovy language
for performance and security. For instance, the sandbox
bans apps from creating their own classes and threads.
The cloud backend creates software wrappers for physical
devices and runs the apps.

The permission system in SmartThings allows a devel-
oper to specify devices and user inputs required for an
app at install time. User inputs are used to implement the
app logic. For instance, a user input is used to set the heat-
ing point of a thermostat. Devices in SmartThings have
capabilities (i.e., permissions). Capabilities are composed
of actions and events. Actions represent how to control or
actuate devices and events represent the state information
of devices. Actions and events are not one to one. While
a device may support many events, it may have limited
actions. Apps are event-driven. They subscribe to device
events or other pre-defined events such as clicking an
icon; when an event is activated, the corresponding event
handler is invoked to take actions.

Users can install SmartThings apps in two different
ways using a smartphone companion app called Smart-
Things Mobile. First, users may download apps through
the official app market. Second, users may install third-
party apps through the Web IDE on a proprietary cloud
backend. Publishing an app in the official market requires
the developer to submit the source code of the app for
review. Official apps appear in the market after the com-
pletion of a review process that takes around two months
to finish [36]. Users can also develop or install the source
code of a third-party app and make it accessible to only
themselves using the Web IDE. These apps do not require
any review process and are often shared in the Smart-
Things community forum [37]. Compared to other com-
peting platforms, SmartThings supports more devices and
has a growing number of official and third-party apps.

OpenHAB is a vendor- and technology-agnostic open-
source automation platform built in the Eclipse IDE [31].
It includes various devices specifically designed for home
automation. OpenHAB is open source and provides flexi-
ble and customizable device integration and applications

(referred to as rules) to build automated tasks. Similar
to the SmartThings platform, the rules are implemented
through three triggers to react to the changes in the envi-
ronment. Event-based triggers listen to commands from
devices; timing-based triggers respond to specific times
(e.g., midnight); system-based triggers run with certain
system events such as system start and shutdown. The
rules are written in a Domain Specific Language (DSL)
based on the Xbase language, which is similar to the
Xtend language with some missing features [8]. Users can
install OpenHAB apps by placing them in rules folder of
their installations and from Eclipse IoT marketplace [29].

Apple’s HomeKit is a development kit that manages and
controls compatible smart devices [1]. The interaction be-
tween users and devices occurs through Siri and HomeKit
apps. Similar to SmartThing and OpenHAB, each device
has capabilities that represent what a device can do. Ac-
tions are defined to send commands to specific devices
and triggers can be defined to execute actions based on
location, device, and time events. Developers write scripts
to specify a set of actions, triggers, and optional condi-
tions to control HomeKit-compatible devices. Developing
applications in HomeKit can either be written in Swift or
Objective C. Users can install HomeKit apps using the
Home mobile app provided by Apple [2].

3.2 Information Tracking in IoT Apps

Information flow tracking either statically or dynamically
is a well-studied technique, which has been applied to
many different settings such as mobile apps. From our
study of the three IoT platforms, we found that IoT plat-
forms possess a few unique characteristics and challenges
in terms of tracking information flow when compared
to other platforms. First, in the case of Android, it has a
well-defined IR, and analysis can directly analyze IR code.
However, IoT programming platforms are diverse, and
each uses its own programming language. We propose a
novel IR that captures the event-driven nature of IoT apps;
it has the potential to accommodate many IoT platforms
(Sec. 4.1). Second, while all taint tracking systems have
to be configured with a set of taint sources and sinks, iden-
tifying taint sources and sinks in IoT apps is quite subtle,
since they access a diverse set of devices, each of which
has a different set of internal states. We describe common
taint sources and sinks in IoT platforms to understand
why they pose privacy risks (Sec. 3.3). Lastly, each IoT
platform has its idiosyncrasies that can pose challenges
to taint tracking. For instance, the SmartThings platform
allows apps to perform call by reflection and allows web-
service apps; each of these features makes taint tracking
more difficult and requires special treatment (Sec. 4.2).

3.3 IoT Application Structure

From our studying of the three IoT platforms, we found
that their apps share a common structure and common
types of taint sources and sinks. In this subsection, we

USENIX Association 27th USENIX Security Symposium 1689

Internet

Device information

IoT app source code

Messaging

Device states

User inputs

Location
Sensitive sources

Sinks

Programming platform API

Taint Propagation

State variables

Figure 1: SAINT’s source and sink categorization in IoT apps.

describe these common taint sources and taint sinks to
understand why they pose privacy risks and how sensitive
information gets propagated in their app structure (see
Fig. 1). We present the taint sources and sinks of the
SmartThings platform in Appendix C.

Taint Sources. We classify taint sources into five groups
based on information types.

1) Device States. Device states are the attributes of a de-
vice. An IoT app can acquire a variety of privacy-sensitive
information through device state interfaces. For instance,
a door-lock interface returns the status of the door as
locked or unlocked. In our analysis, we marked device
states sensitive as they can be used to profile habits of a
user and pose risks to physical privacy.

2) Device Information. IoT apps grant access to IoT de-
vices at install time. Our investigations reveal the plat-
forms often define interfaces to access device information
such as its manufacturer name, id, and model. This allows
a developer to write device-specific apps. We mark all
interfaces used to acquire device information as sensi-
tive as they can be used for marketing and advertisement.
Note that device information is static and does not change
over the course of app execution. In contrast, device states
introduced earlier may change during app execution; for
instance, an action of an app may change a device’s state.

3) Location. In the IoT domain, location information
refers to a user’s geolocation or geographical location.
Geolocation defines a virtual property such as a garage or
an office defined by a user to control devices in that loca-
tion. Geographical location is used to control app logic
through time zones, longitudes, and latitudes. This infor-
mation is often provided by the programming platform
using the ZIP code of the user at install time. For instance,
local sunrise and sunset times of a user’s location may
be used to control the window shade of a house. Loca-
tion information is acquired through location interfaces;
therefore, we mark these interfaces as taint sources.

4) User Inputs. IoT apps often require user inputs either
to manage the app logic or to control devices. In a simple
example, a temperature value needs to be entered by a
user at install time to set the heating point of a thermostat.
User inputs are also often used to form predicates that
control device actions; for instance, an app may turn off
the switch of a device at a particular time entered by the
user. Lastly, users may enter contact information to enable

notifications through messaging services when specific
events occur. We mark such inputs as sensitive since they
contain personally identifiable data and may be used to
profile user behavior. We will discuss more about the
semantics of user inputs in Sec. 6.

5) State Variables. IoT apps do not store data about their
previous executions. To retrieve data across executions,
platforms allow apps to persist data to some proprietary
external storage and retrieve this data in later executions.
For instance, a SmartThing app may persist a “counter”
that keeps track of how many times a door is unlocked;
during every execution of the app, the counter is retrieved
from external storage and incremented when a door is
unlocked. We call such persistent data app state variables.
As we detail in Sec. 4.2.2, state variables store sensitive
data and needs to be tracked during taint propagation.

Taint Propagation. An IoT app invokes actions to con-
trol its devices when a particular event occurs. Actions
are invoked in event handlers and may change the state
of the devices. For instance, when a motion sensor trig-
gers a sensor-active event, an app may invoke an event
handler to take an action that changes the state of the
light switch from off to on. This is a straightforward ap-
proach to invoke an action. Event handlers are not limited
to implement only device actions. Apps often call other
functions for implementing the app logic, sending mes-
sages, and logging device events to an external database.

During the execution of event handlers, it is necessary
to track how sensitive information propagates in an app’s
logic. To obtain precision in taint propagation, we start
from event handlers to propagate taint when tainted data is
copied or used in computation, and we delete taint when
all traces of tainted data are removed (e.g., when some
variable is loaded with a constant). We will detail event
handlers and SAINT’s taint propagation logic in Sec. 4.

Taint Sinks. Our initial analysis also uses two taint sinks
(although adding more later is a straightforward exercise).

1) Internet. IoT apps may send sensitive data to exter-
nal services or may act as web services through which
external entities acquire sensitive information. For the
first kind, HTTP interfaces may be used to send out in-
formation. For instance, an app may connect to a weather
forecasting service (e.g., www.weather.com) and send out
its location information to get the local weather. For the
second kind, a web-service IoT app may expose a URL
that allows external entities to make requests to the app.
For instance, a request from a remote server may be used
to get the room temperature value. We will detail how
SAINT tracks taint of web-service apps in Sec. 4.2.2.

2) Messaging Services. IoT apps use messaging APIs to
deliver push notifications to mobile-app users and to send
SMS messages to designated recipients when specific
events occur. We consider all messaging service interfaces
taint sinks–naturally, as they exfiltrate data by design.

1690 27th USENIX Security Symposium USENIX Association

	

IoT	App		
source	code	

Perform	
data	flow	
analysis	

	
Obtain	IR	

(source,	sink	and	
entry	point	detec@on)	

	

SainT	analyzer	

Sec$on	4.2	

Report	details	of	
discovered	flows	

SainT	web	console	

Sec$on	4.3	

	
	

SainT’s	taint	
sources	and	
taint	sinks	

Sec$on	4.1	

Figure 2: Overview of SAINT architecture.

4 SAINT

We present SAINT, a static taint analysis tool designed
and implemented for SmartThings apps. Fig. 2 shows the
overview of SAINT architecture. We implement the SAINT

analyzer that extracts an intermediate representation (IR)
from the source code of an IoT app. The IR is used to
construct an app’s entry points, event handlers, and call
graphs (Sec. 4.1). Using these, SAINT models the lifecycle
of an app and performs static taint analysis (Sec. 4.2).
Finally, based on static taint analysis, it reports sensitive
data flows from sources to sinks; for each data flow, the
type of the sensitive information, as well as information
about sinks, are reported (Sec. 4.3).

4.1 From Source Code to IR

The first step toward modeling the app lifecycle is to ex-
tract an IR from an app’s source code. We exploit the
highly-structured nature of IoT programming platforms
based on our analysis in Sec. 3. We found that IoT systems
are generally structured similarly regardless of their pur-
pose and complexity. The dominant IoT platforms struc-
ture their app’s design around the sensor-computation-

actuator idioms. Therefore, we translate the source code
of an IoT app into an IR by exploiting this structure.

SAINT builds the IR from a framework-agnostic com-
ponent model, which is comprised of the building blocks
of IoT apps, shown in Fig. 3. A broad investigation of
existing IoT environments showed three types of com-
mon building blocks: (1) Permissions grant capabilities
to devices used in an app; (2) Events/Actions reflect the
association between events and actions (when an event is
triggered, an associated action is performed); and (3) Call

graphs represent the relationship between entry points
and functions in an app. The IR has several benefits. First,
it allows us to precisely model the app lifecycle as de-
scribed above. Second, it is used to abstract away parts of
the code that are not relevant to property analysis, e.g., def-
inition blocks that specify app meta-data or logging code.
Third, it allows us to have effective taint tracking, e.g., by
associating permissions with the corresponding taint tags
and by knowing what methods are entry points.

We use a sample app presented in Fig. 4 to illustrate
the use of the IR. When a user arrives at home, the app
unlocks the front door and turns on the lights. When she
leaves, it turns off the lights, locks the front door, and
sends to a security service a short message that she is
away based on the time window specified by her.

Permissions. Permissions are granted when a user installs
or updates an app. This is where various types of devices

Actuator	

…	
Device	

Device	
ComputaDon	

Devices	

Device	

Events/AcDons	 Call	Graph	Permissions	

Mode	

Timer	

App	touch	 Web	service	

Sensor		readings	

Figure 3: Components of the Intermediate Representation (IR).

//	Permissions	block	
input	(p,	presenceSensor,	type:device)	
input	(s,	switch,	type:device)	
input	(d,	door,	type:device)	
input	(fromTime,	time,	type:user_defined)	
input	(toTime,	time,	type:user_defined)	
input	(c,	contact,	type:user_defined)	
	

//	Events/Actions	block	
subscribe(p,	“present”,	h1)	
subscribe(p,	“not	present”,	h2)	
	
	

//	Entry	point	
h1(){	

	x()	
}	
	 	

//	Entry	point	
h2(){	

	s.off()	
	d.lock()	
	def	between=	y()	
	if	(between){	
						z() 		
	}	

}	
	
	

x(){	
	s.on()	
	d.unlock()	

}	
		
	

y(){	
		 	return	timeOfDayIsBetween(fromTime,	toTime,	 	

																	new	Date(),	location.timeZone)	
}	
		

z(){	
	sendSms(c,	“...”)	 		

}	

1:	
2:	
3:	
4:	
5:	
	6:	
7:	

	
	

8:	

9:	

10:	
11:	
12:	
13:	
14:	

	

15:	
16:	
17:	
18:	
19:	
20:	
21:	
22:	
23:	

	
	

24:	
25:	
26:	
27:	

	
		

28:	
29:	
30:	

	

31:	
	

32:	
33:	

	

34:	

Figure 4: The IR of a sample app constructed by SAINT from

the app’s source code to demonstrate the precise modelling of

the app’s lifecycle. (Appendix A presents its source code.)

and user inputs are described and granted access. The
permissions are read-only, and app logic is implemented
using the permissions. The SAINT analyzer analyzes the
source code of an app and extracts permissions for all
devices and user inputs. Turning to the IR example in
Fig. 4, the permission block (Lines 1-7) defines: (1) the
devices: a presence sensor, a switch, and a door; and
(2) user inputs: security-service “contact” information
for sending notification messages, and “fromTime” and
“toTime” values that are used to determine whether no-
tification messages should be sent. For each permission,
the IR declares a triple following keyword “input”. For
devices, the first two entries map device identifiers to their
platform-specific device names in order to determine the
interfaces that a device may access. For instance, an app
that grants access to a switch may use theswitchState
object to access its “on” or “off” state. For a user input,
the line in the IR contains the string name that stores the
user input and its type. The next entry labels the input
with a taint tag showing the type of information such as
the user-defined tag. As noted in Sec. 3.3, we consider
user inputs sensitive.

We also include in the permission block a set of com-
mon interfaces designed for all apps that may leak sen-
sitive data. For instance, location.currentMode gives
the location mode either set to “home” or “away”. We

USENIX Association 27th USENIX Security Symposium 1691

assign each sensitive value to its label based on taint tags
defined in Sec. 3.3. In this way, we obtain a complete list
of sensitive interfaces an app may access.
Events/Actions. Similar to mobile applications, an IoT
app does not have a main method due to its event-driven
nature. Apps implicitly define entry points by subscribing
to events. The events/actions block in an IR is built by
analyzing how an app subscribes to events. Each line
in the block includes three pieces of information: the
mapping used for a device, a device event to be subscribed,
and an event handler method to be invoked when that
event occurs. The event handler methods are commonly
used to take device actions. Therefore, an app may define
multiple entry points by subscribing to multiple events
of a device or devices. Turning to our example, the event
of state changing to “present” is associated with an event
handler method named h1() and the event of changing
to “not present” with the h2() method.

We also found that events are not limited to device
events, and can be generated in many other ways: (1)
Timer events; event handlers are scheduled to take ac-
tions within a particular time or at pre-defined times
(e.g., an event handler is invoked to take actions after
a given number of minutes has elapsed or at specific times
such as sunset); (2) Web service events; IoT program-
ming platforms may allow an app to be accessible over
the web. This allows external entities (e.g., If This Then
That (IFTTT) [18]) to make requests to the app, and get
information about or control end devices; (3) App touch

events; for example, some action can be performed when
the user clicks on a button in an app; (4) what actions get
generated may also depend on mode events, which are
behavior filters that automate device actions. For instance,
an app running in “home” mode turns off the alarm and
turns on the alarm when it is in the “away” mode. The
SAINT analyzer analyzes all event subscriptions and finds
their corresponding event handler methods; it creates a
dummy main method for each entry point.
Asynchronously Executing Events. While each event
corresponds to a unique event handler, the sequence of
the event handlers cannot be decided in advance when
multiple events happen at the same time. For instance, in
our example, there could be a third subscription in the
event/actions block that subscribes to the switch-off event
to invoke another event-handler method. We consider
eventually consistent events, which means any time an
event handler is invoked, it will finish execution before
another event is handled, and the events are handled in
the order they are received by an edge device (e.g., a hub).
We base our implementation on path-sensitive analysis
that analyzes an app’s event handlers, which can run in
arbitrary sequential order. This is enabled by constructing
a separate call graph for each entry point.
Call Graphs. We create a call graph for each entry point
that defines an event-handler method. Turning to IR de-
picted in Fig. 4, we have two entry points h1() and h2()

Algorithm 1 Computing dependence from taint sinks

Input: ICFG : Inter-procedural control flow graph

Output: Dependence relation dep

1: worklist← /0; done← /0; dep← /0

2: for an id in a sink call’s arguments at node n do

3: worklist← worklist∪{(n, id)}
4: end for

5: while worklist is not empty do

6: (n, id)← worklist.pop()

7: done← done∪{(n, id)}
8: for node n′ with id def.⋆ in assignment id = e do

9: ids← {(n′, id′) | id′ is an identifier in e}
10: worklist← worklist∪ (ids \ done)

11: dep← dep∪{(n : id,n′ : ids)}
12: end for

13: end while
1 An id definition means that there is a control-flow path from
n′ to n and on the path there is no other assignments to id.

(Lines 12 and 16). h1() invokes x() to unlock the door
and turn on the lights. The entry point h2() turns off the
light and locks the door. It then calls method y() to check
the time to decide whether to send a short message to
a predefined contact via method z(). We note that the
next section will detail how to construct call graphs, for
example, in the case of call by reflection.

4.2 Static Taint Tracking

We start with backward taint tracking (Sec. 4.2.1). We
then present algorithms to address platform- and language-
specific taint-tracking challenges like state variables, call
by reflection, web-service IoT apps, and Groovy-specific
properties (Sec. 4.2.2). Last, we discuss the problem of
implicit flows in static taint tracking (Sec. 4.2.3).

4.2.1 Backward Taint Tracking

From the inter-procedural control flow graph (ICFG) of an
app, SAINT’s backward taint tracking consists of two steps:
(1) it first performs taint tracking backward from taint
sinks to construct possible data-leak paths from sources
to sinks; (2) using path- and context- sensitivity, it then
prunes infeasible paths to construct a set of feasible paths,
which are the output of SAINT’s static taint tracking.

In the first step, SAINT starts at the sinks of the ICFG
and propagates taint backward. The reason that SAINT

uses the backward approach is to reduce the processing
overhead by starting from a few sinks instead of from a
huge number of sensitive sources. This is confirmed by
checking the ratio of sinks over sources in analyzed IoT
apps (see Fig. 7 in Sec. 5 for taint source analysis and see
Fig. 9 in Sec. 5 for taint sink analysis).

Algorithm 1 details the steps for computing a depen-

dence relation that captures how values propagate in an
app. It is a worklist-based algorithm. The worklist is ini-
tialized with identifiers that are used in the arguments of
sink calls. Note that each identifier is also labeled with the
node information to uniquely identify the use of an iden-
tifier because the same identifier can be used in multiple
locations. The algorithm then takes an entry (n, id) from

1692 27th USENIX Security Symposium USENIX Association

preferences	{		
		section(“Select	thermostat	device”)	{		
			input	“ther”,	"capability.thermostat”}	

		section(“threshold	value”){	
			input	“thld”,	“number”}		

}	
	

def	initialize()	{	
		subscribe(app,	appHandler)	

}	
	

def	appHandler(evt)	{	
		f()	

}	

def	f(){	
		temp=ther.latestValue("temperature")	
		temp_cel=convert	(temp)	+	thld	

		bar(temp_cel)	
}	
	

def	convert(t){	

		return((t-32)*5)/9)	
}	
	

def	bar(t){	

		ther.setHeatingSetpoint(t) 		
		sendSMS(phone,	“set	to	${t}”)			

}	
13

4

25

1:	
2:	
3:	

4:	
5:	

6:	
	

7:	
8:	

9:	
	

10:	
11:	

12:	

13:	
14:	
15:	

16:	
17:	

	

18:	

19:	
20:			

	

21:	

22:	
23:	

24:	
	

Figure 5: Taint tracking under backward flow analysis.

the worklist and finds a definition for id on the ICFG; it
adds identifiers on the right-hand side of the definition
to the worklist; furthermore, the dependence between id

and the right-hand side identifiers are recorded in dep.
For ease of presentation, the algorithm treats parameter
passing in a function call as inter-procedural definitions.

To illustrate, we use the code in Fig. 5 as an exam-
ple. There is a sink call at place 1 . So the worklist
is initialized to be ((23:phone), (23:t)); for illustration,
we use line numbers instead of node information to la-
bel identifiers. Then, because of the function call at 2 ,
(16:temp cel) is added to the worklist and the depen-
dence (23:t, 16:[temp cel]) is recorded in dep. With
similar computation, the final output dependence relation
for the example is as follows:

(23:t, 16:[temp cel]), (16:temp cel, 15:[temp, thld]),

(15:temp, 14:[ther.latestValue])

With the dependence relation computed and information
about taint sources, SAINT can easily construct a set of
possible data-leak paths from sources to sinks. For the
example, since the threshold value thld is a user-input
value (Lines 4 and 5 in Fig. 5), we get the following
possible data-leak path: 5:thld to 16:temp cel to 23:t.

In the next step, SAINT prunes infeasible data-leak
paths using path- and context-sensitivity. For a path, it
collects the evaluation results of the predicates at condi-
tional branches and checks whether the conjunction of
those predicates (i.e., the path condition) is always false;
if so, the path is infeasible and discarded⋆. For instance,
if a path goes through two conditional branches and the
first branch evaluates x > 1 to true and the second eval-
uates x < 0 to true, then it is an infeasible path. SAINT

does not use a general SMT solver to check path condi-
tions. We found that the predicates used in IoT apps are
extremely simple in the form of comparisons between
variables and constants (such as x == c and x > c); thus,
SAINT implemented its simple custom checker for path
conditions. Furthermore, SAINT throws away paths that
do not match function calls and returns (using depth-one
call-site sensitivity). At the end of the pruning process,
we get a set of feasible paths from taint sources to sinks.

4.2.2 SmartThings Idiosyncrasies

Our initial prototype implementation of SAINT was based
on the taint tracking approach we discussed. However,
SmartThings platform has a number of idiosyncrasies that

⋆Similar to how symbolic execution prunes paths via path conditions.

Listing 1: Sample code blocks for SmartThings idiosyncrasies

1 /∗ A code block of an app using a state variable ∗/
2 def initialize() {
3 state.switchCounter = 0
4 subscribe(theswitch, "switch.on", turnedOnHandler)
5 }
6 def turnedOnHandler() {
7 state.switchCounter = state.switchCounter + 1
8 taintedVar = state.switchCounter // tainted
9 }

10 /∗ A code block of app using call by reflection ∗/
11 def getMethod(){
12 httpGet("http://url"){
13 resp –> if(resp.status == 200){
14 methodName = resp.data.toString()
15 }
16 "$methodName"() //call by reflection
17 }
18 def foo() {...}
19 def bar() {...}
20 /∗ A code block of an example web–service app ∗/
21 mappings {
22 path("/switches") {
23 action: [GET: "listSwitches"] }
24 path("/switches/:command") {
25 action: [PUT: "updateSwitches"] }
26 }
27 def listSwitches() {
28 switches.each {
29 resp << [name: it.displayName, value:
30 it.currentValue("switch")]} //tainted
31 return resp
32 }
33 def updateSwitches() {...}
34 /∗ A code block of an app using closures ∗/
35 def someEventHandler(evt) {
36 def currSwitches = switches.currentSwitch //tainted
37 def onSwitches = currSwitches.findAll { //tainted
38 switchVal –> switchVal == "on" ? true : false
39 }
40 }
41 /∗ Implicit flows in an example app ∗/
42 def batteryHandler(evt) {
43 def batLevel = event.device?.currentBattery;
44 if (batLevel < 25) {
45 switches.off()
46 def message = "battery low for device"
47 sendSMS(phone, message)
48 }
49 }

may cause imprecision in taint tracking. We next discuss
how these issues are addressed in SAINT.

Field-sensitive Taint Tracking of State Variables. As
discussed before, IoT apps use state variables that are
stored in the external storage to persist data across execu-
tions. In SmartThings, state variables are stored in either
the global state object or the global atomicState ob-
ject. Listing 1 (Lines 1–9) presents an example app using
the state object to store a field named switchCounter

to track the number of times a switch is turned on. To taint
track potential data leaks through state variables, SAINT

applies field-sensitive analysis to track the data dependen-
cies of all fields defined in the state and atomicState

objects. We label fields in those two objects with a new
taint label “state variable” and perform taint tracking. For
instance, the taintedVar variable in Listing 1 is labeled
with the state-variable taint by SAINT.

Call by Reflection. The Groovy language supports pro-
gramming by reflection (using the GString feature) [38],
which allows a method to be invoked by providing its
name as a string. For example, a method foo() can be
invoked by declaring a string name="foo" and thereafter
called by reflection through $name; see Listing 1 (Lines
10–19) for another example. This can be exploited if an at-

USENIX Association 27th USENIX Security Symposium 1693

SainT	Analysis	Console	

saint-project.appspot.com	

Ac#ons														Analyze	SmartThings	App							Reset	Console					Publish	This	App					View	Recent	Apps	

.	.	.		
def	iniAalize()	{	

	ecobee.poll()	
	subscribe(app,	appTouch)	

}	
private	void	sendMsgWithDelay()	{	

	if	(state?.msg)	{	
	 	send	state.msg	
	}	

}	
def	appTouch(evt)	{	

	def	plugSeLngs	=	[holdType:	"${givenHoldType}”]		
		

	
Taint	Sink:	Messaging	Services,	SMS	and	Push	NoAficaAon	
	

Interface:	sendPush()	in	Line	123	
Interface:	sendSms()	in	Line	128	
	
	

Data	Flow	Path	1:	sendSms	-->	$plugName	[Device	InformaAon]	
Data	Flow	Path	2:	sendSms	-->	state.msg	[State	Variable]	
Data	Flow	Path	3:	SendPush-->	state.msg	[State	Variable]	
	

Finding	#1:	PotenAal	leak	of	State	Variable:		msg		
Finding	#2:	PotenAal	leak	of	Device	InformaAon:	plugName	
Finding	#3:	Recipient	is	defined	by	user	
Finding	#4:	Content	of	the	message	is	defined	by	developer	

Analysis	Result	 Stacktrace	

IoT	Test	Suite	

Figure 6: Our SAINT data flow analysis tool designed for IoT apps. The left region is the analysis frame, and the right region is the

output of an example IoT app for a specific data flow evaluation.

tacker can control the string used in call by reflection [10],
e.g., if the code has name=httpGet(URL) and the URL
is read from an external server. While SmartThings does
not recommend using reflective calls, our study found that
ten apps in our corpus use this feature (see Sec. 5). To
handle calls by reflection, SAINT’s call graph construction
adds all methods in an app as possible call targets, as a
safe over-approximation. For the example in Listing 1,
SAINT adds both foo() and bar() methods to the targets
of the call by reflection in the call graph.

Web-service Applications. A web-service SmartThings
app allows external entities to access smart devices and
manage those devices. Such apps declare mappings re-
lating endpoints, HTTP operations, and callback meth-
ods. Listing 1 (Lines 20–33) presents a code snippet of a
real web-service app. The /switches endpoint handles
an HTTP GET request that returns the state information
of configured switches by calling the listSwitches()
method; the /switches/:command endpoint handles
a PUT request that invokes the updateSwitches()

method to turn on or off the switches. The first prototype
of SAINT did not flag the web-service apps for leaking
sensitive data. However, our manual investigation showed
that the web-service apps respond to HTTP GET, PUT,
POST, and DELETE requests from external services and
may leak sensitive data. To correct this, we modified the
taint-tracking algorithm to analyze what call back meth-
ods are declared through the mappings declaration key-
word [42]. Sensitive data leaked through those call back
methods are then flagged by SAINT.

Closures and Groovy-Specific Operations. The
Kohsuke sandbox enforced in SmartThings allows for
closures and other Groovy-specific operations such
as array insertions via <<. The SmartThings official
developer guideline [40] imposes certain restrictions on
these operations. For instance, closures are disallowed
outside of methods. SAINT’s implementation follows
the guideline and imposes the same restrictions. For
closures, we found that apps often loop through a list
of devices and use a closure to perform computation on
each device in the list. Listing 1 (Lines 34–40) shows
an example in which a closure is used to iterate through
the currSwitches object to identify those switches that

are turned on. For correct taint tracking, SAINT analyzes
the structure of closures and inspects expressions in the
closures to see how taints should be propagated.

4.2.3 Implicit Flows

An implicit flow occurs if the invocation of a sink inter-
face is control dependent on a sensitive test used in a
conditional branch. SAINT implements an algorithm de-
signed to track implicit flows [23]. It checks the condition
of a conditional branch and sees whether it depends on
a tainted value. If so, it taints all elements in the condi-
tional branch [26]. Listing 1 (Lines 41–49) presents an
example app, in which an implicit flow happens because
a sendSMS() call is control dependent on a test that in-
volves sensitive data batLevel. We found that IoT apps
often use tainted values in control flow dependencies. In
our analysis, approximately two-thirds of analyzed apps
implement device actions (such as unlocking a door) in
branches whose tests are based on tainted values (such
as a user’s presence). We leave the detection of implicit
flows optional in SAINT, and evaluate the impact of im-
plicit flow tracking on false positives in Sec. 5.2.

4.3 Implementation

The IR construction from the source code of the input IoT
app requires the building of the app’s ICFG. SAINT’s
IR-building algorithm directly works on the Abstract
Syntax Tree (AST) representation of Groovy code. The
Groovy compiler supports customizing the compilation
process by supporting compiler hooks, through which
one can insert extra passes into the compiler (similar to
the modular design of the LLVM compiler [24]). The
SAINT analyzer visits AST nodes at the compiler’s se-
mantic analysis phase where the Groovy compiler per-
forms consistency and validity checks on the AST. Our
implementation uses an ASTTransformation to hook
into the compiler, GroovyClassVisitor to extract the
entry points and the structure of the analyzed app, and
GroovyCodeVisitor to extract method calls and expres-
sions inside AST nodes [14]. This allows our implemen-
tation to use AST visitors to analyze expressions and
statements, and get all necessary information to build IR.

1694 27th USENIX Security Symposium USENIX Association

Official† Third party Taint Sources Taint Sinks

App functionality Nr. Nr. Device State Device Info† Location User Inputs State Var. Internet Messaging

Convenience 80 26 96.2% 87.7% 51.9% 97.2% 43.4% 25.5% 43.4%

Security and Safety 19 10 100% 100% 37.9% 100% 31.0% 3.4% 86.2%

Personal Care 10 0 90.0% 60.0% 50.0% 90.0% 60.0% 20.0% 70.0%

Home Automation 48 24 98.6% 77.8% 55.6% 100% 52.8% 8.3% 40.3%

Entertainment 10 0 90.0% 70.0% 70.0% 100% 60.0% 20.0% 10.0%

Smart Transport 1 2 100% 100% 66.7% 100% 66.7% 33.3% 66.7%

Total 168 62

† Ten official apps and one third-party app do not request permission to devices, yet SmartThings platform explicitly grants access to device

information such as hub ID and manufacturer name (not shown).

Table 1: Applications grouped by permissions to taint sources and sinks. App functionality shows the diversity of studied apps.

SAINT’s taint analysis also uses Groovy AST visitors.
It extends the ASTBrowser class implemented in the
Groovy Swing console, which allows a user to enter and
run Groovy scripts [13]. The implementation hooks into
the IR of an app in the console and dumps information
to the TreeNodeMaker class; the information includes
an AST node’s children, parent, and all properties built
at the pre-defined compilation phase. This allows us to
acquire the full AST including the resolved classes, static
imports, the scope of variables, method calls, and inter-
faces accessed in an app. SAINT then uses Groovy visitors
to traverse IR’s ICFG and performs taint tracking on it.

Output of SAINT. Fig. 6 presents the screenshot of
SAINT’s analysis result on a sample app. A warning report
by SAINT contains the following information: (1) full data
flow paths between taint sources and sinks, (2) the taint
labels of sensitive data, and (3) taint sink information,
including the hostname or URL, and contact information.

5 Application Study

This section reports our experience of applying SAINT

on SmartThings apps to analyze how 230 IoT apps use
privacy-sensitive data. Our study shows that approxi-
mately two-thirds of apps access a variety of sensitive
sources, and 138 of them send sensitive data to taint sinks
including the Internet and messaging channels. We also
introduce an IoT-specific test suite called IOTBENCH [20].
The test suite includes 19 hand-crafted malicious apps that
are designed to evaluate taint analysis tools such as SAINT.
We next present our taint analysis results by focusing on
several research questions:

RQ1 What are the potential taint sources whose data can
be leaked? And, what are the potential taint sinks
that can leak data? (Sec 5.1)

RQ2 What is the impact of implicit flow tracking on false
positives? (Sec. 5.2)

RQ3 What is the accuracy of SAINT on IOTBENCH apps?
(Sec. 5.3)

Experimental Setup. In late 2017, we obtained 168 offi-

cial apps from the SmartThings GitHub repository [39]
and 62 community-contributed third-party apps from the
official SmartThings community forum [37]. Table 1 cate-

gorizes the apps along with their requested permissions at
install time. We determined the functionality of an app by
checking its category in the SmartThings online store and
also the definition block in the app’s source code imple-
mented by its developer. For instance, the “entertainment”
category includes an app to control a device’s speaker
volume. We studied each app by downloading the source
code and running an analysis with SAINT. The official
and third-party apps grant access to 49 and 37 “different”
device types, respectively. The analyzed apps often imple-
ment SmartThings and Groovy-specific properties. Out
of 168 official apps, SAINT flags nine apps using call by
reflection, 74 declaring state variables, 37 implementing
closures, and 23 using the OAuth2 protocol; out of 62
third-party apps, the results are one, 34, nine, and six,
respectively. SAINT identifies when sensitive information
is leaked via the internet and messaging services.

Performance. We assess the performance of SAINT on
230 apps. It took less than 16 minutes to analyze all apps.
The experiment was performed on a laptop computer with
a 2.6GHz 2-core Intel i5 processor and 8GB RAM, using
Oracle’s Java Runtime 1.8 (64 bit) in its default settings.
The average run-time for an app was 23±5 seconds.

5.1 Data Flow Analysis

In this subsection, we report experimental results of track-
ing explicit “sensitive” data flows by SAINT in IoT apps
(implicit flows are considered in Sec. 5.2). Table 2 sum-
marizes data flows via Internet and messaging services
reported by SAINT. It flagged 92 out of 168 official, and
46 out of 62 third-party apps have data flows from taint
sources to taint sinks. We manually checked the data
flows and verified that all reported ones are true posi-
tives. The manual checking process was straightforward
to perform since the SmartThings apps are comparatively
smaller than the apps found in other domains such as mo-
bile phone apps. Finally, although user inputs and state
variables may over-approximate sources of sensitive in-
formation, during manual checking, we made sure the
reported data flows do include sensitive data.

SAINT labels each piece of flow information with the
sink interface, the remote hostname, the URL if the sink

USENIX Association 27th USENIX Security Symposium 1695

Apps Nr. Internet Messaging Both

Official 92 24 (26.1%) 63 (68.5%) 5 (5.4%)
Third-party 46 10 (21.7%) 36 (78.3%) 0 (0%)

Total 138 34 (24.6%) 99 (71.8%) 5 (3.6%)

Table 2: Number of apps sending sensitive information through

Internet and Messaging taint sinks.

0

10

20

30

40

50

60

70

80

90

100

%
A

p
p

s

Device state Device info. User input Location State variable

1. 2. 1.3. 3.2. 4.4. 5.

#57 #29
#28

#4

#34

#76

5.
Offical apps

#60

#10#9

Third-party apps

#12

3. 4. 5.2.1.

Figure 7: Percentages of apps sending sensitive data for specific

kinds of taint sources. The absolute numbers of apps are also

presented after the # symbol.

is the Internet, and contact information if the sink is a
messaging service. In Table 2, the Internet column lists
the number of apps that include only the taint source of
the Internet. The Messaging column lists the number of
apps that include only the taint source of some messaging
service. 71.8% of the analyzed apps are configured to send
an SMS message or a push notification. As shown in the
table, 47.2% more apps include taint source in messaging
services than the Internet. Finally, the Both column lists
the number of apps (3.6% of apps) that includes a taint
source through both the Internet and messaging services.

Taint Source Analysis. Fig. 7 shows the percentages of
apps that have sensitive data flows of a specific kind of
taint sources. To measure this, we used sensitive data’s
taint labels provided by SAINT, which precisely describe
what sources the data comes from. More than half of
the apps send user inputs, device states, and device in-
formation. Approximately, one-ninth of the apps expose
location information and values in state variables. We
found that 64 out of 92 official apps and 30 out of 46
third-party apps send multiple kinds of data (e.g., both
device state and location information).

To better characterize the taint sources, we present the
types of taint sources flagged by SAINT for apps that
sends data in Table 3. There are 92 official apps that send
sensitive data, marked with “O1” to “O92”, and 46 third-
party apps that send sensitive data, marked with “T1” to
“T46”. Out of 92 official apps, 28 apps (O1-O28) send
one single kind of sensitive data, 16 apps (O29-O44) send
two kinds of sensitive data, and the remaining 48 apps
(O45-O92) send more than two and at most four kinds
of sensitive data. Similar results are also identified for
third-party apps. Our investigation suggests that apps at
the top of the Table 3 implement simpler tasks such as
managing motion-activated light switches; the apps at

1			2				3		4			5	

O1	 		 		 		 		 		 		 O47	 		 		 		 		 		 		 T1	 		 		 		 		 		

O2	 		 		 		 		 		 		 O48	 		 		 		 		 		 		 T2	 		 		 		 		 		

O3	 		 		 		 		 		 		 O49	 		 		 		 		 		 		 T3	 		 		 		 		 		

O4	 		 		 		 		 		 		 O50	 		 		 		 		 		 		 T4	 		 		 		 		 		

O5	 		 		 		 		 		 		 O51	 		 		 		 		 		 		 T5	 		 		 		 		 		

O6	 		 		 		 		 		 		 O52	 		 		 		 		 		 		 T6	 		 		 		 		 		

O7	 		 		 		 		 		 		 O53	 		 		 		 		 		 		 T7	 		 		 		 		 		

O8	 		 		 		 		 		 		 O54	 		 		 		 		 		 		 T8	 		 		 		 		 		

O9	 		 		 		 		 		 		 O55	 		 		 		 		 		 		 T9	 		 		 		 		 		

O10	 		 		 		 		 		 		 O56	 		 		 		 		 		 		 T10	 		 		 		 		 		

O11	 		 		 		 		 		 		 O57	 		 		 		 		 		 		 T11	 		 		 		 		 		

O12	 		 		 		 		 		 		 O58	 		 		 		 		 		 		 T12	 		 		 		 		 		

O13	 		 		 		 		 		 		 O59	 		 		 		 		 		 		 T13	 		 		 		 		 		

O14	 		 		 		 		 		 		 O60	 		 		 		 		 		 		 T14	 		 		 		 		 		

O15	 		 		 		 		 		 		 O61	 		 		 		 		 		 		 T15	 		 		 		 		 		

O16	 		 		 		 		 		 		 O62	 		 		 		 		 		 		 T16	 		 		 		 		 		

O17	 		 		 		 		 		 		 O63	 		 		 		 		 		 		 T17	 		 		 		 		 		

O18	 		 		 		 		 		 		 O64	 		 		 		 		 		 		 T18	 		 		 		 		 		

O19	 		 		 		 		 		 		 O65	 		 		 		 		 		 		 T19	 		 		 		 		 		

O20	 		 		 		 		 		 		 O66	 		 		 		 		 		 		 T20	 		 		 		 		 		

O21	 		 		 		 		 		 		 O67	 		 		 		 		 		 		 T21	 		 		 		 		 		

O22	 		 		 		 		 		 		 O68	 		 		 		 		 		 		 T22	 		 		 		 		 		

O23	 		 		 		 		 		 		 O69	 		 		 		 		 		 		 T23	 		 		 		 		 		

O24	 		 		 		 		 		 		 O70	 		 		 		 		 		 		 T24	 		 		 		 		 		

O25	 		 		 		 		 		 		 O71	 		 		 		 		 		 		 T25	 		 		 		 		 		

O26	 		 		 		 		 		 		 O72	 		 		 		 		 		 		 T26	 		 		 		 		 		

O27	 		 		 		 		 		 		 O73	 		 		 		 		 		 		 T27	 		 		 		 		 		

O28	 		 		 		 		 		 		 O74	 		 		 		 		 		 		 T28	 		 		 		 		 		

O29	 		 		 		 		 		 		 O75	 		 		 		 		 		 		 T29	 		 		 		 		 		

O30	 		 		 		 		 		 		 O76	 		 		 		 		 		 		 T30	 		 		 		 		 		

O31	 		 		 		 		 		 		 O77	 		 		 		 		 		 		 T31	 		 		 		 		 		

O32	 		 		 		 		 		 		 O78	 		 		 		 		 		 		 T32	 		 		 		 		 		

O33	 		 		 		 		 		 		 O79	 		 		 		 		 		 		 T33	 		 		 		 		 		

O34	 		 		 		 		 		 		 O80	 		 		 		 		 		 		 T34	 		 		 		 		 		

O35	 		 		 		 		 		 		 O81	 		 		 		 		 		 		 T35	 		 		 		 		 		

O36	 		 		 		 		 		 		 O82	 		 		 		 		 		 		 T36	 		 		 		 		 		

O37	 		 		 		 		 		 		 O83	 		 		 		 		 		 		 T37	 		 		 		 		 		

O38	 		 		 		 		 		 		 O84	 		 		 		 		 		 		 T38	 		 		 		 		 		

O39	 		 		 		 		 		 		 O85	 		 		 		 		 		 		 T39	 		 		 		 		 		

O40	 		 		 		 		 		 		 O86	 		 		 		 		 		 		 T40	 		 		 		 		 		

O41	 		 		 		 		 		 		 O87	 		 		 		 		 		 		 T41	 		 		 		 		 		

O42	 		 		 		 		 		 		 O88	 		 		 		 		 		 		 T42	 		 		 		 		 		

O43	 		 		 		 		 		 		 O89	 		 		 		 		 		 		 T43	 		 		 		 		 		

O44	 		 		 		 		 		 		 O90	 		 		 		 		 		 		 T44	 		 		 		 		 		

O45	 		 		 		 		 		 		 O91	 		 		 		 		 		 		 T45	 		 		 		 		 		

O46	 		 		 		 		 		 		 O92	 		 		 		 		 		 		 T46	 		 		 		 		 		

O	=	Official	app	 T	=	Third-party	app	

1	=	Device	State				2	=	Device	InformaDon	

3	=	User	Input				4	=	LocaDon				5	=	State	variable		

					1			2			3			4			5	1			2			3			4			5	

Table 3: Data flow behavior of each official (O1-O92) and third-

party (T1-T46) app. 43.2% of the official and 25.8% of the

third-party apps do not send sensitive data (not shown).

the bottom tend to manage and control more devices to
perform complex tasks such as automating many devices
in a smart home. However, data flows depend on the
functionality of the apps. For instance, a security and
safety app managing few devices may send more types of
sensitive data than an app designed for convenience that
manages many devices.

In general, we found that there is no close relationship
between the number of devices an app manages and the
number of sensitive data flows. Fig. 8 shows the number
of apps for each combination of device numbers and num-
bers of data flows. As an example, there are two apps that

1696 27th USENIX Security Symposium USENIX Association

Number	of	devices	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	

N
u
m
b
e
r
	o
f	
d
a
ta
	fl
o
w
s
	 4	

O	 		 2	 4	 		 		 1	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 1	

T	 		 6	 		 		 		 		 1	 2	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		
		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		

3	
O	 3	 15	13	 3	 		 2	 1	 1	 		 		 1	 1	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		

T	 		 7	 4	 		 		 1	 1	 		 		 		 		 1	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		
		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		

2	
O	 1	 7	 5	 2	 		 1	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		

T	 		 4	 1	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 1	 		 		 		 		 		 		 		 		 1	
		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		

1	
O	 2	 15	 1	 1	 4	 1	 1	 1	 		 		 1	 		 		 		 		 		 1	 		 		 		 		 		 		 		 		 		 		

T	 1	 7	 1	 		 		 1	 		 		 		 		 		 3	 		 		 		 		 		 		 		 		 		 		 		 		 		 		 3	

Figure 8: The number of devices vs. the number of data flows

based on taint labels in official (O) and third-party (T) apps. The

numbers in the grids show the frequency of the apps.

manage seven devices and have four data flows. As shown
in the figure, 15 official apps with a single device have
three data flows, while an app with 16 devices has a single
data flow. Similar results hold for third-party apps. Out of
46 third-party apps, 16 apps (T1-T16) have a single data
flow, and the remaining 30 apps (T17-T46) have two to
four data flows.

Taint Sink Analysis. For a data flow, SAINT reports the
interface name and the recipient (contact information, re-
mote hostname or URL) defined in a taint sink. We use
this information to analyze the number of different (a)
sink interfaces and (b) recipients defined in each app. For
(a), we consider apps that invoke the same sink interface
such as sendSMS() multiple times a single data flow, yet
sendNotification() is considered a different interface
from sendSMS(). We note that for taint sink analysis we
have a more refined notion of sinks than just distinguish-
ing between the Internet and the messaging services; in
particular, we consider 11 Internet and seven messaging
interfaces defined in SmartThings (see Appendix C). For
(b), we report the number of different recipients in invo-
cations of sink interfaces used in an app.

A vast majority of apps contain data flows through ei-
ther a push notification or an SMS message or makes a
few external requests to integrate external devices with
SmartThings. Fig. 9a presents the CDF of the different
sinks defined in official and third-party apps. Approxi-
mately, 90% of the official apps contain at most four, and
90% of the third-party apps contain at most three different
invocations of sink interfaces (including apps that do not
invoke sink interfaces). We also study the recipients at
each taint sink reported in an app by SAINT. We first get
the contact information for messaging, and hostname and
URL for the Internet sinks. We then collect different con-
tact addresses and URL paths to determine the recipients.
Fig. 9b shows the CDF of the number of recipients defined
in apps. The vast majority of apps involve a few recipi-
ents; they typically send SMS and push notifications to
recipients. Approximately, 90% of the official apps have
less than three sink recipients, and 90% of the third-party
apps define at most two different recipients (including
apps that do not implement taint sinks). A large number
of recipients observed in official apps respond to external
HTTP requests. For instance, a web-service app connects

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Official apps

Third-party apps

Number of different exfiltrations

(a)

0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Official apps

Third-party apps

Number of different recipients

(b)

Figure 9: Cumulative Distribution Function (CDF) of the num-

ber of different (a) sink interfaces and (b) recipients (contact

information, remote hostname or URL) identified by SAINT.

to a user’s devices, accesses their events and commands,
and uses their state information to perform actions, and an
app allows users to stream their device events to a remote
server for data analysis and visualization. This leads to
using a variety of taint sinks and URLs to access and
manage various devices.

Recipient and Content Analysis.When a piece of data
is transmitted to a sink, SAINT reports information about
who defines the recipient and content of the data. The
recipient refers to who receives the message in a mes-
saging service or who is the destination in Internet com-
munication. The content refers to the message used in
a messaging service or the parameter of a request (e.g.,
HTTP GET or PUT) used in Internet communication. For
instance, a call to sendSMS() requires a phone number as
the recipient and a message to that recipient. We extended
SAINT to output whether the recipient and the content of
a sink-interface call are specified by a user at install time,
by a developer via some hard-coded string in an app’s
source code, or by an external entity such as a remote
server (in this case, a remote server sends the recipient
information, and then the app sends sensitive data to the
recipient). The knowledge about who defines the recipient
and content of data to a sink call enables a refined under-
standing of data flow. In particular, this helps identify if
the recipient is authorized by a user, if sensitive data is
sent to a legitimate or malicious external server, and if the
app conforms to its functionality.

Table 4 presents the number of times a user, a developer,
or an external party specifies the recipient and the content
used in a data flow. The messaging rows of the table
tell that, in official apps, users specify recipients 154
times, while contents are specified by users five times
and 149 times by developers; for third-party apps, users
define recipients 67 times, while message contents are
specified by users five times, and 63 times by developers.
In contrast, message contents are often hard-coded in the
apps by developers. Table 4 shows a different story for
Internet-sink calls. In this case, recipients and contents are
often specified by developers and external services. An
app in which recipients and contents of Internet-sink call
are specified by external services is often a web-service
app. As detailed in Sec. 4.2.2, web-service apps expose

USENIX Association 27th USENIX Security Symposium 1697

Taint sink analysis

Recipient defined by Content defined by

Taint Sinks Apps User Developer External User Developer External

Messaging
Official 154 0 0 5 149 0

Third-party 67 0 0 4 63 0

Internet
Official 2 48 44 0 54 40

Third-party 0 13 12 0 13 12

Table 4: Recipient and content analysis of data flows.

endpoints and respond to requests from external services.
These apps allow external services to access and manage
devices. Additionally, in some apps, developers hard-code
the recipients and contents of Internet communications to
send information to external remote servers.

Summary. Our study of 168 official and 62 third-party
SmartThings IoT apps shows the effectiveness of SAINT

in accurately detecting sensitive data flows. SAINT flagged
92 out of 168 official apps, and 46 out of 62 third-party
apps transmit at least one kind of sensitive data over a
sink-interface call. We analyzed reported data’s taint la-
bels provided by SAINT, which precisely describe the data
source. Using this information, we found that half of the
analyzed apps transmit at least three kinds of sensitive
data. We used sink interface names and recipients to ana-
lyze the number of different Internet and messaging inter-
faces and recipients in an app. Approximately, two-thirds
of the apps define at most two separate sink interfaces
and recipients. Moreover, we extended our analysis to
identify whether the recipient and the content of a sink-
interface call are specified by a user, a developer, or an
external entity. All recipients of messaging-service calls
are defined by users, and approximately nine-tenths of
message contents are defined by developers. For Internet
sinks, nine-tenths of the Internet recipients and contents
are specified by developers or external servers.

5.2 Implicit Flows

We repeated our experiments by turning on both explicit
and implicit flows tracking. Approximately two-thirds
of the apps invoke some sink interface that is control-
dependent on sensitive tests. However and somewhat sur-
prisingly, there are only six extra warnings produced when
turning on implicit flows. The reason we found is that
most of those sink calls already leak data through explicit
flows. For example, in one app, x gets the state of a de-
vice x=currentState("device") and, when a user is
present, x is sent out via an SMS message; even though
there is an implicit flow (because sending the message
depends on whether the user is present), there is also an
explicit flow as the device information is sent out. The
six extra warnings are all about sending out hard-coded
strings: “Your mail has arrived!”, “Your ride is here!”, “No
one has fed the dog”, “Remember to take your medicine”,
“Potential intruder detected”, and “Gun case has moved!”.
These messages contain information in themselves and
are sent conditionally upon sensitive information; there-
fore, we believe information is indeed leaked in these

cases. We note that turning on implicit flow tracking in-
creases the tracking overhead as more identifiers need
to be tracked; however, based on the results, turning on
implicit flow tracking on SmartThings IoT apps does not
lead to an unmanageable number of false positives.

5.3 IoTBench

We introduce an IoT-specific test suite, IOTBENCH [20],
an open repository for evaluating information leakage in
IoT apps. We designed our test suite similar to those de-
signed for mobile systems [5, 9] and the smart grid [25];
they have been widely adopted by the security community.
IOTBENCH currently includes 19 hand-crafted malicious
SmartThings apps that contain data leaks. Sixteen apps
have a single data leak, and three have multiple data leaks;
a total of 27 data leaks via either Internet and messag-
ing service sinks. We crafted the IOTBENCH apps based
on official and third-party apps. They include data leaks
whose accurate identification through program analysis
would require solving problems including multiple entry
points, state variables, call by reflection, and field sen-
sitivity. Each app in IOTBENCH also comes with ground
truth of what data leaks are in the app; this is provided
as comment blocks in the app’s source code. IOTBENCH

can be used to evaluate both static and dynamic taint
analysis tools designed for SmartThings apps; it enables
assessing a tool’s accuracy and effectiveness through the
ground truths included in the suite. We present three ex-
ample SmartThings apps and their privacy violations in
Appendix B. We made IOTBENCH publicly available:

https://github.com/IoTBench.

SAINT results on IOTBENCH. We next report the results
of using SAINT on 19 IOTBENCH apps. In the discussion,
we will use app IDs defined in Table 3 in Appendix B.
SAINT produces false warnings for two apps that use call
by reflection (Apps 6 and 7). These two apps invoke a
method via a string. SAINT over-approximates the call
graph by allowing the method invocation to target all
methods in the app. Since one of the methods leaks the
state of a door (locked or unlocked) to a malicious URL
and the mode of a user (away or home) to a hard-coded
phone number, SAINT produces warnings. However, it
turns out that the data-leaking method would not be called
by the reflective calls in those two apps. This pattern did
not appear in the 230 real IoT apps we discussed earlier.
SAINT did not report leaks for two apps that leak data via
side channels (Apps 18 and 19). For example, in one app,
a device operates in a specific pattern to leak information.
As our threat model states, data leaks via side channels
are out of the scope of SAINT and are not detected.

6 Limitations and Discussion

SAINT leaves detecting implicit flows optional. Even
though our evaluation results on SmartThings apps show
that tracking implicit flows does not lead to over-tainting

1698 27th USENIX Security Symposium USENIX Association

https://github.com/IoTBench

and false positives, whether this holds on apps of other
IoT platforms and domains would need further investi-
gation. Another limitation is SAINT’s treatment of call
by reflection. As discussed in Sec. 4, it constructs an im-
precise call graph that allows a call by reflection target
any method. This increases the number of methods to be
analyzed and may lead to over-tainting. We plan to ex-
plore string analysis to statically identify possible values
of strings and refine the target sets of calls by reflection.

SAINT treats all user inputs and state variables as taint
sources even though some of those may not contain sensi-
tive information. However, this has not led to false pos-
itives in our experiments. Another limitation is about
sensitive strings. An app may hardcode a string such as
“Remember to take your Viagra in the cabinet” and send
the string out. Though the string contains sensitive infor-
mation, SAINT does not report a warning (unless there is
an implicit flow and implicit flow tracking is turned on).
Determining whether hard-coded strings contain sensitive
information may need user help or language processing.

Finally, SAINT’s implementation and evaluation are
purely based on the SmartThings programming platform
designed for home automation. There are other IoT do-
mains suitable for studying sensitive data flows, such as
FarmBeats for agriculture [43], HealthSaaS for health-
care [16], and KaaIoT for the automobile [22]. We plan
to extend SAINT’s algorithms designed for SmartThings
to these platforms and identify sensitive data flows.

7 Related Work

There has been an increasing amount of recent research ex-
ploring IoT security. These works centered on the security
of emerging IoT programming platforms and IoT devices.
For example, Fernandes et al. [10] identified design flaws
in permission controls of SmartThings home apps and re-
vealed the severe consequences of over-privileged devices.
In another paper, Xu et al. [45] surveyed the security prob-
lems on IoT hardware design. Other efforts have explored
vulnerability analysis within specific IoT devices [28, 17].
These works have found that apps can be easily exploited
to gain unauthorized access to control devices and leak
sensitive information of users and devices.

Many of previous efforts on taint analysis focus on the
mobile-phone platform [9, 48, 15, 7, 5, 12]. These tech-
niques are designed to address domain-specific challenges
such as designing on-demand algorithms for context and
object sensitivity. Several efforts on IoT analysis have
focused on the security and correctness of IoT programs
using a range of analyses. To restrict the usage of sen-
sitive data, FlowFence [11, 32] enforces sensitive data
flow control via opacified computation. ContexIoT [21]
is a permission-based system that provides contextual in-
tegrity for IoT programs at runtime. ProvThings [44] cap-
tures system-level provenance through security-sensitive
SmartThings APIs and leverages it for forensic recon-
struction of a chain of events after an attack. In contrast,

to our best knowledge, SAINT is the first system that pre-
cisely detects sensitive data flows in IoT apps by carefully
identifying a complete set of taint sources and sinks, ade-
quately modeling IoT-specific challenges, and addressing
platform- and language- specific problems.

8 Conclusions

One of the central challenges of existing IoT is the lack
of visibility into the use of data by applications. In this
paper, we presented SAINT⋆, a novel static taint analy-
sis tool that identifies sensitive data flows in IoT apps.
SAINT translates IoT app source code into an intermediate
representation that models the app’s lifecycle–including
program entry points, user inputs, events, and actions.
Thereafter we perform efficient static analysis tracking in-
formation flow from sensitive sources to sink outputs. We
evaluated SAINT in two studies; a horizontal SmartThings
market study validating SAINT and assessing current mar-
ket practices, and a second study on our novel IOTBENCH

app corpus. These studies demonstrated that our approach
can efficiently identify taint sources and sinks and that
most market apps currently contain sensitive data flows.

SAINT represents a potentially important step forward
in IoT analysis, but further work is required. In future
work, we will expand our analysis to support more plat-
forms as well as refine our analysis for more complex
and subtle properties. At a higher level, we will extend
the kinds of analysis provided by the online systems and
therein provide a suite of tools for developers and re-
searchers to evaluate implementations and study the com-
plex interactions between users and the IoT devices that
they use to enhance their lives. Lastly, we will expand the
IOTBENCH app suite. In particular, we are studying the
space of privacy violations reported in academic papers,
community forums, and from security reports, and will
reproduce unique flow vectors in sample applications.

9 Acknowledgments

Research was sponsored by the Army Research Labora-
tory and was accomplished under Cooperative Agreement
Number W911NF-13-2-0045 (ARL Cyber Security CRA)
and the National Science Foundation Grant No. CNS-
1564105. This work is also partially supported by the US
National Science Foundation (Awards: NSF-CAREER-
CNS-1453647, NSF-1663051) and Florida Center for Cy-
bersecurity (FC2)’s CBP (Award#: AWD000000007773).
The views and conclusions contained in this document
are those of the authors and should not be interpreted
as representing the official policies, either expressed or
implied, of the Army Research Laboratory or the U.S.
Government. The U.S. Government is authorized to re-
produce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

⋆SAINT is available at http://saint-project.appspot.com.

USENIX Association 27th USENIX Security Symposium 1699

http://saint-project.appspot.com

References

[1] APPLE’S HOMEKIT. https://www.apple.com/ios/home/.
[Online; accessed 9-January-2018].

[2] APPLE’S HOMEKIT APP MARKET. https://support.apple.
com/en-us/HT204893. [Online; accessed 9-January-2018].

[3] APPLE’S HOMEKIT SECURITY AND PRIVACY ON

IOS. https://www.apple.com/business/docs/iOS_
Security_Guide.pdf. [Online; accessed 9-January-2018].

[4] APPLE’S HOMEKIT SUBMISSION GUIDELINE. https://
developer.apple.com/app-store/review/guidelines.
[Online; accessed 9-January-2018].

[5] ARZT, S., RASTHOFER, S., FRITZ, C., BODDEN, E., BARTEL,
A., KLEIN, J., LE TRAON, Y., OCTEAU, D., AND MCDANIEL,
P. FlowDroid: Precise Context, Flow, Field, Object-sensitive and
Lifecycle-aware Taint Analysis for Android Apps. ACM SIGPLAN

Notices (2014).

[6] CELIK, Z. B., MCDANIEL, P., AND TAN, G. Soteria: Automated
IoT Safety and Security Analysis. In USENIX ATC (2018).

[7] CLAUSE, J., ET AL. Dytan: a Generic Dynamic Taint Analysis
Framework. In ACM Software Testing and Analysis (2007).

[8] EFFTINGE, S., EYSHOLDT, M., KÖHNLEIN, J., ZARNEKOW,
S., VON MASSOW, R., HASSELBRING, W., AND HANUS, M.
Xbase: Implementing Domain-specific Languages for Java. In
ACM SIGPLAN Notices (2012).

[9] ENCK, W., GILBERT, P., HAN, S., TENDULKAR, V., CHUN,
B.-G., COX, L. P., JUNG, J., MCDANIEL, P., AND SHETH,
A. N. TaintDroid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones. ACM Transaction

on Computer Systems (2014).

[10] FERNANDES, E., JUNG, J., AND PRAKASH, A. Security Analysis
of Emerging Smart Home Applications. In IEEE Security and

Privacy (SP) (2016).

[11] FERNANDES, E., PAUPORE, J., RAHMATI, A., SIMIONATO, D.,
CONTI, M., AND PRAKASH, A. FlowFence: Practical Data Pro-
tection for Emerging IoT Application Frameworks. In USENIX

Security (2016).

[12] GORDON, M. I., KIM, D., PERKINS, J. H., GILHAM, L.,
NGUYEN, N., AND RINARD, M. C. Information Flow Anal-
ysis of Android Applications in DroidSafe. In NDSS (2015).

[13] GROOVY CONSOLE: THE GROOVY SWING CONSOLE. http://
groovy-lang.org/groovyconsole.html. [Online; accessed
10-January-2018].

[14] GROOVYCODEVISITOR: AN IMPLEMENTATION OF THE

GROOVY VISITOR PATTERNS. http://docs.groovy-lang.
org/docs. [Online; accessed 10-January-2018].

[15] GU, B., LI, X., LI, G., CHAMPION, A. C., CHEN, Z., QIN, F.,
AND XUAN, D. D2Taint: Differentiated and Dynamic Information
Flow Tracking on Smartphones for Numerous Data Sources. In
INFOCOM (2013).

[16] HEALTHSAAS: THE INTERNET OF THINGS (IOT) PLATFORM

FOR HEALTHCARE. https://www.healthsaas.net/. [On-
line; accessed 20-January-2018].

[17] HO, G., LEUNG, D., MISHRA, P., HOSSEINI, A., SONG, D.,
AND WAGNER, D. Smart Locks: Lessons for Securing Commodity
Internet of Things Devices. In ACM AsiaCCS (2016).

[18] IFTTT (IF THIS, THEN THAT). https://ifttt.com/, 2017.
[Online; accessed 11-January-2018].

[19] IOT PLATFORM COMPARISON. https://goo.gl/y8kzmY.
[Online; accessed 29-January-2018].

[20] IOTBENCH: A MICRO-BENCHMARK SUITE TO ASSESS THE

EFFECTIVENESS OF TOOLS DESIGNED FOR IOT APPS. https:
//github.com/IoTBench. [Online; accessed 29-April-2018].

[21] JIA, Y. J., CHEN, Q. A., WANG, S., RAHMATI, A., FERNAN-
DES, E., MAO, Z. M., PRAKASH, A., AND UNVIERSITY, S. J.
ContexIoT: Towards Providing Contextual Integrity to Appified
IoT Platforms. In NDSS (2017).

[22] KAAIOT: CONNECTED CAR AND IOT AUTOMOTIVE. https:
//www.kaaproject.org/automotive/. [Online; accessed 20-
January-2018].

[23] KANG, M. G., MCCAMANT, S., POOSANKAM, P., AND SONG,
D. Dta++: Dynamic Taint Analysis with Targeted Control-flow
Propagation. In NDSS (2011).

[24] LATTNER, C. LLVM compiler infrastructure project. The archi-
tecture of open source applications, 2012.

[25] MCLAUGHLIN, S., AND MCDANIEL, P. SABOT: Specification-
based Payload Generation for Programmable Logic Controllers.
In ACM CCS (2012).

[26] MYERS, A. C. JFlow: Practical Mostly-static Information Flow
Control. In ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (1999).

[27] NAEINI, P. E., ET AL. Privacy expectations and preferences in an
iot world. In USENIX SOUPS (2017).

[28] OLUWAFEMI, T., KOHNO, T., GUPTA, S., AND PATEL, S. Ex-
perimental Security Analyses of Non-Networked Compact Fluo-
rescent Lamps: A Case Study of Home Automation Security. In
USENIX LASER (2013).

[29] OPENHAB IOT APP MARKET (ECLIPSE MARKET PLACE).
http://docs.openhab.org/eclipseiotmarket. [Online;
accessed 9-January-2018].

[30] OPENHAB IOT APP SUBMISSION GUIDELINE. https://goo.
gl/W63tEo. [Online; accessed 9-January-2018].

[31] OPENHAB: OPEN SOURCE AUTOMATION SOFTWARE FOR

HOME. https://www.openhab.org/. [Online; accessed 9-
January-2018].

[32] RAHMATI, A., FERNANDES, E., AND PRAKASH, A. Applying
the Opacified Computation Model to Enforce Information Flow
Policies in IoT Applications. In IEEE Cybersecurity Development

(SecDev) (2016).

[33] RONEN, E., SHAMIR, A., WEINGARTEN, A.-O., AND O’FLYNN,
C. IoT Goes Nuclear: Creating a ZigBee Chain Reaction. In IEEE

Security and Privacy (SP) (2017).

[34] SAMSUNG SMARTTHINGS. https://www.smartthings.
com/. [Online; accessed 9-January-2018].

[35] SIKDER, A. K., AKSU, H., AND ULUAGAC, A. S. 6thSense: A
Context-aware Sensor-based Attack Detector for Smart Devices.
In USENIX Security (2017).

[36] SMARTTHINGS CODE REVIEW GUIDELINES AND BEST

PRACTICES. http://docs.smartthings.com/en/latest/
code-review-guidelines.html. [Online; accessed 29-
January-2018].

[37] SMARTTHINGS COMMUNITY FORUM FOR THIRD-PARTY APPS.
https://community.smartthings.com/. [Online; accessed
10-January-2018].

[38] SMARTTHINGS OFFICIAL API DOCUMENTATION.
http://docs.smartthings.com/en/latest/ref-docs/
reference.html. [Online; accessed 9-January-2018].

[39] SMARTTHINGS OFFICIAL APP REPOSITORY. https://
github.com/SmartThingsCommunity. [Online; accessed 10-
January-2018].

[40] SMARTTHINGS OFFICIAL DEVELOPER DOCUMENTATION.
http://docs.smartthings.com. [Online; accessed 29-
January-2018].

[41] SMARTTHINGS SUPPORTED IOT PRODUCTS (DEVICES).
https://www.smartthings.com/products. [Online; ac-
cessed 29-January-2018].

1700 27th USENIX Security Symposium USENIX Association

https://www.apple.com/ios/home/
https://support.apple.com/en-us/HT204893
https://support.apple.com/en-us/HT204893
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://developer.apple.com/app-store/review/guidelines
https://developer.apple.com/app-store/review/guidelines
http://groovy-lang.org/groovyconsole.html
http://groovy-lang.org/groovyconsole.html
http://docs.groovy-lang.org/docs
http://docs.groovy-lang.org/docs
https://www.healthsaas.net/
https://ifttt.com/
https://goo.gl/y8kzmY
https://github.com/IoTBench
https://github.com/IoTBench
https://www.kaaproject.org/automotive/
https://www.kaaproject.org/automotive/
http://docs.openhab.org/eclipseiotmarket
https://goo.gl/W63tEo
https://goo.gl/W63tEo
https://www.openhab.org/
https://www.smartthings.com/
https://www.smartthings.com/
http://docs.smartthings.com/en/latest/code-review-guidelines.html
http://docs.smartthings.com/en/latest/code-review-guidelines.html
https://community.smartthings.com/
http://docs.smartthings.com/en/latest/ref-docs/reference.html
http://docs.smartthings.com/en/latest/ref-docs/reference.html
https://github.com/SmartThingsCommunity
https://github.com/SmartThingsCommunity
http://docs.smartthings.com
https://www.smartthings.com/products

[42] SMARTTHINGS WEB-SERVICE APP OVERVIEW.
http://docs.smartthings.com/en/latest/
smartapp-web-services-developers-guide/overview.
html, 2017. [Online; accessed 9-January-2018].

[43] VASISHT, D., KAPETANOVIC, Z., WON, J., JIN, X., CHAN-
DRA, R., SINHA, S. N., KAPOOR, A., SUDARSHAN, M., AND

STRATMAN, S. FarmBeats: An IoT Platform for Data-Driven
Agriculture. In NSDI (2017).

[44] WANG, Q., HASSAN, W. U., BATES, A., AND GUNTER, C. Fear
and logging in the internet of things. In NDSS (2018).

[45] XU, T., WENDT, J. B., AND POTKONJAK, M. Security of
IoT Systems: Design Challenges and Opportunities. In IEEE

Computer-Aided Design (2014).

[46] YANG, Y., ET AL. A survey on Security and Privacy Issues in
Internet-of-Things. IEEE Internet of Things Journal (2017).

[47] ZENG, E., MARE, S., AND ROESNER, F. End User Security &
Privacy Concerns with Smart Homes. In USENIX SOUPS (2017).

[48] ZHU, D. Y., JUNG, J., SONG, D., KOHNO, T., AND WETHER-
ALL, D. TaintEraser: Protecting Sensitive Data Leaks Using
Application-level Taint Tracking. SIGOPS Operating Systems

Review (2011).

A Source Code of the Example App

We present the Groovy source code of the home-
automation app’s IR shown in Figure 4, Sec. 4.

Listing 1: An example home-automation app

1 definition(
2 name: "SmartApp",
3 namespace: "mygithubusername",
4 author: "SainT",
5 description: "This is an app for home automation",
6 category: "My Apps",
7 iconUrl: "https://s3.amazonaws.com/smartapp-icons/

Convenience/Cat-Convenience.png",
8 iconX2Url: "https://s3.amazonaws.com/smartapp-icons/

Convenience/Cat-Convenience@2x.png",
9 iconX3Url: "https://s3.amazonaws.com/smartapp-icons/

Convenience/Cat-Convenience@2x.png")
10
11 preferences {
12 section("When you are away/home") {
13 input "presenceSensor", "capability.presenceSensor",

multiple: true,
14 required: true, title: "Which presence sensor?"
15 }
16
17 section("Turn on the lights") {
18 input "theSwitches", "capability.switch", required:

true, multiple: true,
19 title: "Which lights?"
20 }
21
22 section("Lock/Unlock door") {
23 input "theDoor", "capability.door", multiple: false,
24 required: true, title: "Which door?"
25 }
26
27 section("Notify between what times?") {
28 input "fromTime", "time", title: "From", required: true
29 input "toTime", "time", title: "To", required: true
30 }
31
32 section("Send Notifications?") {
33 input("recipients", "contact", title: "Send

notifications to") {
34 input "phone", "phone", title: "Warn security with

text message",
35 description: "Phone Number", required: true
36 }
37 }
38 }
39
40 def installed() {
41 initialize()
42 }
43
44 def updated() {
45 log.debug "Updated with settings: ${settings}"
46 unsubscribe()
47 initialize()

48 }
49
50 def initialize() {
51 log.debug "initialize configured"
52 subscribe(presenceSensor, "present", h1)
53 subscribe(presenceSensor, "not present", h2)
54 }
55
56 def h1(evt) {
57 log.debug "presence active called: $evt"
58 x()
59 }
60
61 def h2(){
62 log.debug "presence not active called: $evt"
63 theSwitches.off()
64 theDoor.unlock()
65
66 def between = y()
67 if (between){
68 z()
69 }
70
71 def currSwitches = theSwitches.currentSwitch
72 def onSwitches = currSwitches.findAll { switchVal –>
73 switchVal == "on" ? true : false
74 }
75 log.debug "${onSwitches.size()} out of ${switches.size

()} switches are on"
76 }
77
78 def x(){
79 theSwitches.on()
80 theDoor.unlock()
81 def currSwitches = theSwitches.currentSwitch
82 def onSwitches = currSwitches.findAll { switchVal –>
83 switchVal == "on" ? true : false
84 }
85 log.debug "${onSwitches.size()} out of ${theSwitches.

size()} switches are on"
86 }
87
88 def y(){
89 log.debug "In time method"
90 return timeOfDayIsBetween(fromTime, toTime, new

Date(), location.timeZone)
91 }
92
93 def z(){
94 log.debug "recipients configured: $recipients"
95 sendSms(phone, "The ${theDoor.displayName} is locked

and the ${theSwitches.displayName} is off!")
96 def latestValue = theDoor.latestValue("door")
97 log.debug "message sent, the door status is

$latestValue"
98 }

B IoTBench Apps

Table 3 presents IOTBENCH apps categorized by their data
leak ground-truth. We present three example apps and
their privacy violations below.

Our first app “Implicit Permission 1” (ID: 11) sends
a short message to household members when everyone
is away. We update an existing legitimate app to include
a code block that transmits the state of the door via the
leak() method to a remote server (see Listing 2). A
privacy violation occurs because the door state, which
informs households are not at home, is leaked to the mali-
cious server.

Listing 2: Device state leak through Internet interface

1 if (everyoneIsAway()){
2 //app logic
3 leak() // invoke when everyone is away
4 }
5 def leak() {
6 Params = [
7 uri: "https://malicious-url",
8 body: ["condition":"$thedoor.latestValue("door")"]]
9 httpPost(Params) // leak

10 }

USENIX Association 27th USENIX Security Symposium 1701

http://docs.smartthings.com/en/latest/smartapp-web-services-developers-guide/overview.html
http://docs.smartthings.com/en/latest/smartapp-web-services-developers-guide/overview.html
http://docs.smartthings.com/en/latest/smartapp-web-services-developers-guide/overview.html

The second app “Explicit-Implicit” (ID: 14) sends a
short message to users when a door lock has a low bat-
tery. A code block is added to an existing app to send the
battery level (implicit permission) and hub id (explicit per-
mission) to a third-party’s phone number via sendSms()
when the sms send variable is true (see Listing 3). Here,
sms send is tainted via the state object’s SMS field. The
leaked battery level is a privacy violation.

Listing 3: Leak of battery level and hub ID

1 def BatteryPowerHandler(evt) {
2 sms send = state.SMS // true
3 msg = "$doorBattery.currentValue("battery")
4 power is out in hub ${evt.hubId}!"
5 sendPush(msg) // user gets a push notification
6
7 if (sms send) { // attacker gets the same message
8 sendSms(attacker phone, msg) // leak
9 }

10 }

Our final example is the “Call by Reflection 1” app
(ID: 5). The app is used to trigger the alarm when smoke
is detected. This app obtains the method name string
from a remote server and uses this string to invoke
$state.method (see Listing 4). Thus, the updateApp()
method can be called by reflection. Because SAINT adds
all methods in an app as possible call targets, it detects
a data leak in updateApp(), which disables alarm by
unsubscribing the “smoke-detected” event and sends this
information to a hardcoded phone number.

Listing 4: Leak via a reflective call

1 def attack(){
2 httpGet("http://maliciousServer.com"){
3 resp –>
4 if(resp.status == 200){
5 state.method = resp.data.toString()
6 }
7 "$state.method"() // reflective call
8 }
9 updateApp() {

10 unsubscribe() // revoke smoke detector events
11 sendSms(attacker phone,"$detector is revoked")
12 }

C Taint Source and Taint Sink APIs

We present SmartThings APIs that are taint sinks in Ta-
ble 1 and APIs that are taint sources in Table 2. We refer
the interested reader to SmartThings API documentation
for the details [38]. For taint sinks, SmartThings recently
announced asynchronous HTTP requests available as a
beta development feature [40]. However, the analyzed
apps do not use asynchronous HTTP APIs; thus we ex-
clude them from the list. We note that some taint-source
APIs are used together with the device names assigned
by the developer, or require specific device capabilities to
use them. Therefore, the number of taint sources used in
an app differs based on the app’s context.

Internet Messaging

httpDelete() sendSms()

httpGet() sendSmsMessage()

httpHead() sendNotificationEvent()

httpPost() sendNotification()

httpPostJson() sendNotificationToContacts()

httpPut() sendPush()

httpPutJson() sendPushMessage()

GET (web service apps)

PUT (web services apps)

POST (web service apps)

DELETE (web service apps)

Table 1: SmartThings taint-sink APIs.

1702 27th USENIX Security Symposium USENIX Association

N
a
m

e
o
f

th
e

in
te

rf
a
ce

D
efi

n
it

io
n

N
a
m

e
o
f

th
e

in
te

rf
a
ce

D
efi

n
it

io
n

D
ev

ic
e

In
fo

rm
a
ti

o
n

D
ev

ic
e

S
ta

te

ca
p
ab

il
it

iy
.<

d
ev

ic
e

ty
p
e

o
r

at
tr

ib
u
te
>

A
ll

o
w

s
to

ab
st

ra
ct

d
ev

ic
es

in
to

th
ei

r
u
n
d
er

ly
in

g
ca

p
ab

il
it

ie
s

la
te

st
S

ta
te

()
G

et
s

th
e

la
te

st
D

ev
ic

e
S

ta
te

re
co

rd
fo

r
th

e
sp

ec
ifi

ed
at

tr
ib

u
te

g
et

M
an

u
fa

ct
u
re

rN
am

e(
)

G
et

s
th

e
m

an
u
fa

ct
u
re

r
n
am

e
o
f

th
e

d
ev

ic
e

st
at

es
S

in
ce

()
G

et
s

a
li

st
o
f

D
ev

ic
e

S
ta

te
si

n
ce

th
e

d
at

e
sp

ec
ifi

ed

g
et

M
o
d
el

N
am

e(
)

G
et

s
th

e
m

o
d
el

n
am

e
o
f

th
e

d
ev

ic
e

g
et

A
rg

u
m

en
ts

()
G

et
s

th
e

li
st

o
f

ar
g
u
m

en
t

ty
p
es

fo
r

th
e

co
m

m
an

d

g
et

N
am

e(
)

G
et

s
th

e
in

te
rn

al
n
am

e
o
f

th
e

d
ev

ic
e,

H
u
b
,
co

m
m

an
d
,
o
r

at
tr

ib
u
te

g
et

D
at

eV
al

u
e(

)
G

et
s

th
e

v
al

u
e

o
f

th
e

ev
en

t
as

a
D

at
e

o
b
je

ct

g
et

S
u
p
p
o
rt

ed
A

tt
ri

b
u
te

s(
)

G
et

s
th

e
li

st
o
f

d
ev

ic
e

at
tr

ib
u
te

s
g
et

D
es

cr
ip

ti
o
n
T

ex
t(

)
G

et
s

th
e

d
es

cr
ip

ti
o
n

o
f

th
e

ev
en

t

g
et

S
u
p
p
o
rt

ed
C

o
m

m
an

d
s(

)
G

et
s

th
e

li
st

o
f

d
ev

ic
e

co
m

m
an

d
s

g
et

D
o
u
b
le

V
al

u
e(

)
G

et
s

th
e

v
al

u
e

o
f

th
e

ev
en

t
as

a
D

o
u
b
le

h
as

A
tt

ri
b
u
te

()
D

et
er

m
in

es
if

th
e

d
ev

ic
e

h
as

th
e

sp
ec

ifi
ed

at
tr

ib
u
te

g
et

F
lo

at
V

al
u
e(

)
G

et
s

th
e

v
al

u
e

o
f

th
e

as
a

F
lo

at

h
as

C
ap

ab
il

it
y
()

D
et

er
m

in
es

if
th

e
d
ev

ic
e

su
p
p
o
rt

s
th

e
sp

ec
ifi

ed
ca

p
ab

il
it

y
g
et

In
te

g
er

V
al

u
e(

)
R

et
u
rn

s
th

e
v
al

u
e

o
f

th
e

ev
en

t
as

an
In

te
g
er

h
as

C
o
m

m
an

d
()

D
et

er
m

in
es

if
th

e
d
ev

ic
e

h
as

th
e

sp
ec

ifi
ed

co
m

m
an

d
n
am

e
g
et

Js
o
n
V

al
u
e(

)
G

et
s

th
e

v
al

u
e

o
f

th
e

ev
en

t
as

a
p
ar

se
d

JS
O

N

la
te

st
V

al
u
e(

)
G

et
s

th
e

la
te

st
re

p
o
rt

ed
v
al

u
e

fo
r

th
e

sp
ec

ifi
ed

at
tr

ib
u
te

g
et

L
as

tU
p
d
at

ed
()

G
et

s
th

e
la

st
ti

m
e

th
e

ev
en

t
w

as
u
p
d
at

ed

g
et

F
ir

m
w

ar
eV

er
si

o
n
S

tr
in

g
()

G
et

s
th

e
fi

rm
w

ar
e

v
er

si
o
n

o
f

th
e

H
u
b

d
ev

ic
e

g
et

L
o
n
g
V

al
u
e(

)
G

et
s

th
e

v
al

u
e

o
f

th
e

ev
en

t
as

a
L

o
n
g

g
et

Id
()

T
h
e

u
n
iq

u
e

sy
st

em
id

en
ti

fi
er

fo
r

th
e

d
ev

ic
e

o
r

th
e

H
u
b

g
et

N
am

e(
)

G
et

s
th

e
n
am

e
o
f

th
e

ev
en

t

g
et

L
o
ca

lI
P

()
T

h
e

lo
ca

l
IP

ad
d
re

ss
o
f

th
e

H
u
b

d
ev

ic
e

g
et

N
u
m

b
er

V
al

u
e(

)
G

et
s

th
e

v
al

u
e

o
f

th
e

ev
en

t
as

a
n
u
m

b
er

g
et

L
o
ca

lS
rv

P
o
rt

T
C

P
()

T
h
e

lo
ca

l
se

rv
er

T
C

P
p
o
rt

o
f

th
e

H
u
b

d
ev

ic
e

g
et

N
u
m

er
ic

V
al

u
e(

)
G

et
s

th
e

v
al

u
e

o
f

th
e

ev
en

t
as

a
n
u
m

b
er

g
et

D
at

aT
y
p
e(

)
G

et
s

th
e

d
at

a
ty

p
e

o
f

th
e

d
ev

ic
e

at
tr

ib
u
te

g
et

U
n
it

()
G

et
s

th
e

u
n
it

o
f

m
ea

su
re

fo
r

th
e

ev
en

t

g
et

V
al

u
es

()
G

et
s

th
e

p
o
ss

ib
le

v
al

u
es

fo
r

th
e

d
ev

ic
e

at
tr

ib
u
te

g
et

V
al

u
e(

)
G

et
s

th
e

v
al

u
e

o
f

th
e

ev
en

t
as

a
S

tr
in

g

g
et

T
y
p
e(

)
G

et
s

th
e

ty
p
e

o
f

th
e

H
u
b

d
ev

ic
e

g
et

D
at

a(
)

G
et

s
a

m
ap

o
f

an
y

ad
d
it

io
n
al

d
at

a
o
n

th
e

ev
en

t

g
et

Z
ig

b
ee

Id
()

G
et

s
th

e
Z

ig
B

ee
ID

o
f

th
e

H
u
b

g
et

D
at

e(
)

A
cq

u
is

it
io

n
ti

m
e

o
f

th
e

d
ev

ic
e

st
at

e
re

co
rd

g
et

Z
ig

b
ee

E
u
i(

)
G

et
s

th
e

Z
ig

B
ee

E
x
te

n
d
ed

U
n
iq

u
e

Id
en

ti
fi

er
o
f

th
e

H
u
b

g
et

D
es

cr
ip

ti
o
n
()

T
h
e

ra
w

d
es

cr
ip

ti
o
n

th
at

g
en

er
at

ed
th

e
ev

en
t

ev
en

ts
()

G
et

s
a

li
st

o
f

ev
en

ts
fo

r
th

e
D

ev
ic

e
in

re
v
er

se
ch

ro
n
o
lo

g
ic

al
o
rd

er
g
et

D
ev

ic
e(

)
G

et
s

th
e

d
ev

ic
e

as
so

ci
at

ed
w

it
h

th
e

ev
en

t

ev
en

ts
B

et
w

ee
n
()

G
et

s
a

li
st

o
f

ev
en

ts
b
et

w
ee

n
th

e
sp

ec
ifi

ed
st

ar
t

an
d

en
d

d
at

es
g
et

D
is

p
la

y
N

am
e(

)
G

et
s

th
e

u
se

r-
fr

ie
n
d
ly

n
am

e
o
f

th
e

so
u
rc

e
o
f

th
e

ev
en

t

ev
en

ts
S

in
ce

()
G

et
s

a
li

st
o
f

ev
en

ts
si

n
ce

th
e

sp
ec

ifi
ed

d
at

e
g
et

D
ev

ic
eI

d
()

U
n
iq

u
e

id
en

ti
fe

r
o
f

th
e

D
ev

ic
e

as
so

ci
at

ed
w

it
h

th
e

ev
en

t

g
et

C
ap

ab
il

it
ie

s(
)

T
h
e

li
st

o
f

ca
p
ab

il
it

ie
s

p
ro

v
id

ed
b
y

th
is

D
ev

ic
e

g
et

Is
o
D

at
e(

)
A

cq
u
is

it
io

n
ti

m
e

o
f

th
e

ev
en

t
as

an
IS

O
-8

6
0
1

S
tr

in
g

g
et

D
ev

ic
eN

et
w

o
rk

Id
()

G
et

s
th

e
d
ev

ic
e

n
et

w
o
rk

ID
fo

r
th

e
d
ev

ic
e

g
et

S
o
u
rc

e(
)

T
h
e

so
u
rc

e
o
f

th
e

ev
en

t

g
et

D
is

p
la

y
N

am
e(

)
T

h
e

la
b
el

o
f

th
e

d
ev

ic
e

as
si

g
n
ed

b
y

th
e

u
se

r
g
et

X
y
zV

al
u
e(

)
V

al
u
e

o
f

th
e

ev
en

t
as

a
3
-e

n
tr

y
M

ap

g
et

H
u
b
()

T
h
e

H
u
b

as
so

ci
at

ed
w

it
h

th
is

d
ev

ic
e

is
P

h
y
si

ca
l(

)
T

R
U

E
if

th
e

ev
en

t
is

fr
o
m

a
p
h
y
si

ca
l

ac
tu

at
io

n
o
f

th
e

d
ev

ic
e

g
et

L
ab

el
()

T
h
e

n
am

e
o
f

th
e

d
ev

ic
e

in
th

e
m

o
b
il

e
ap

p
li

ca
ti

o
n

o
r

W
eb

ID
E

is
S

ta
te

C
h
an

g
e(

)
T

R
U

E
if

th
e

at
tr

ib
u
te

v
al

u
e

fo
r

th
e

ev
en

t
h
as

ch
an

g
ed

g
et

L
as

tA
ct

iv
it

y
()

T
h
e

d
at

e
o
f

th
e

la
st

ev
en

t
fr

o
m

th
e

d
ev

ic
e

is
D

ig
it

al
()

T
R

U
E

if
th

e
ev

en
t

is
fr

o
m

a
d
ig

it
al

ac
tu

at
io

n
o
f

th
e

d
ev

ic
e

g
et

M
an

u
fa

ct
u
re

rN
am

e(
)

G
et

s
th

e
m

an
u
fa

ct
u
re

r
n
am

e
o
f

th
e

d
ev

ic
e

cu
rr

en
tS

ta
te

()
G

et
s

th
e

la
te

st
S

ta
te

fo
r

th
e

sp
ec

ifi
ed

at
tr

ib
u
te

g
et

M
o
d
el

N
am

e(
)

G
et

s
th

e
m

o
d
el

n
am

e
o
f

th
e

d
ev

ic
e

cu
rr

en
tV

al
u
e(

)
G

et
s

th
e

la
te

st
re

p
o
rt

ed
v
al

u
es

o
f

th
e

sp
ec

ifi
ed

at
tr

ib
u
te

d
ev

ic
eN

am
e.

ca
p
ab

il
it

ie
s

G
et

s
th

e
d
ev

ic
e

ca
p
ab

il
it

ie
s

g
et

S
ta

tu
s(

)
G

et
s

th
e

cu
rr

en
t

st
at

u
s

o
f

th
e

d
ev

ic
e

g
et

T
y
p
eN

am
e(

)
T

h
e

ty
p
e

o
f

th
e

d
ev

ic
e

L
o
ca

ti
o
n

U
se

r
In

p
u

ts

g
et

C
o
n
ta

ct
B

o
o
k
E

n
ab

le
d
()

D
et

er
m

in
e

if
th

e
L

o
ca

ti
o
n

h
as

C
o
n
ta

ct
B

o
o
k

en
ab

le
d

in
p
u
t

“s
o
m

eS
w

it
ch

”,
“c

ap
ab

il
it

y.
sw

it
ch

”
U

se
r

p
re

fe
re

n
ce

s
fo

r
th

e
d
ev

ic
es

(a
cc

es
se

d
as

$
so

m
eS

w
it

ch
)

g
et

C
u
rr

en
tM

o
d
e(

)
G

et
s

th
e

cu
rr

en
t

m
o
d
e

fo
r

th
e

lo
ca

ti
o
n

in
p
u
t

“s
o
m

eM
es

sa
g
”,

“t
ex

t”
U

se
r

p
re

fe
re

n
ce

s
fo

r
m

es
sa

g
e

(a
cc

es
se

d
as

$
so

m
eM

es
sa

g
e)

g
et

Id
()

G
et

s
th

e
u
n
iq

u
e

in
te

rn
al

sy
st

em
id

en
ti

fi
er

fo
r

th
e

lo
ca

ti
o
n

in
p
u
t

“s
o
m

eT
im

e”
,

“t
im

e”
U

se
r

p
re

fe
re

n
ce

s
fo

r
th

e
ti

m
e

(a
cc

es
se

d
as

$
so

m
eT

im
e)

g
et

H
u
b
s(

)
G

et
s

th
e

li
st

o
f

H
u
b
s

fo
r

th
e

lo
ca

ti
o
n

in
p
u
t

“s
o
m

eT
im

e”
,

“t
im

e”
U

se
r

p
re

fe
re

n
ce

s
fo

r
th

e
ti

m
e

(a
cc

es
se

d
as

$
so

m
eT

im
e)

g
et

L
at

it
u
d
e(

)
G

et
s

th
e

g
eo

g
ra

p
h
ic

al
la

ti
tu

d
e

o
f

th
e

lo
ca

ti
o
n

in
p
u
t

“m
in

u
te

s”
,
“t

im
e”

U
se

r
p
re

fe
re

n
ce

s
fo

r
ti

m
e

sp
an

(a
cc

es
se

d
as

$
m

in
u
te

s)

g
et

L
o
n
g
it

u
d
e(

)
G

et
s

th
e

g
eo

g
ra

p
h
ic

al
lo

n
g
it

u
d
e

o
f

th
e

lo
ca

ti
o
n

S
ta

te
V

a
ri

a
b

le
s

g
et

M
o
d
e(

)
G

et
s

th
e

cu
rr

en
t

m
o
d
e

n
am

e
fo

r
th

e
lo

ca
ti

o
n

st
at

e
D

efi
n
es

th
e

st
at

e
v
ar

ia
b
le

st
at

e

se
tM

o
d
e(

)
S

et
s

th
e

m
o
d
e

fo
r

th
e

lo
ca

ti
o
n

at
o
m

ic
S

ta
te

D
efi

n
es

th
e

st
at

e
v
ar

ia
b
le

at
o
m

ic
S

ta
te

g
et

T
im

eZ
o
n
e(

)
G

et
s

th
e

ti
m

e
zo

n
e

fo
r

th
e

lo
ca

ti
o
n

g
et

Z
ip

C
o
d
e(

)
G

et
s

th
e

Z
IP

co
d
e

fo
r

th
e

lo
ca

ti
o
n

g
et

L
o
ca

ti
o
n
Id

()
T

h
e

u
n
iq

u
e

id
en

ti
fi

er
fo

r
th

e
lo

ca
ti

o
n

as
so

ci
at

ed
w

it
h

th
e

ev
en

t

g
et

L
o
ca

ti
o
n
()

T
h
e

L
o
ca

ti
o
n

as
so

ci
at

ed
w

it
h

th
e

ev
en

t

T
ab

le
2

:
S

m
ar

tT
h

in
g

s
ta

in
t-

so
u

rc
e

A
P

Is
.

T
h

e
co

m
p

le
te

li
st

ca
n

b
e

ac
ce

ss
ed

in
o

u
r

p
ro

je
ct

p
ag

e
[2

0
].

USENIX Association 27th USENIX Security Symposium 1703

App Category ID/App Name App Description‡ Results†

Lifecycle
1- Multiple Entry Points 1 The app stores different sensitive data under the same vari-

able name in different functions and only one of them is

leaked.

"

2- Multiple Entry Points 2 The app stores different sensitive data under the same vari-

able name in different functions and more than one piece

of data is leaked.

"

Field Sensitivity 3- State Variable 1 A state variable in the state object’s field stores sensitive

data. It is used in different functions and leaked through

various sinks.

"

Closure 4- Leaking via Closure A variable is tainted with the use of closures. The sensitive

data is then leaked via different sinks.

"

Reflection

5- Call by Reflection 1 A string is requested via Http Get interface and the string

is used to invoke a method. One of the app methods leaks

device information.

O

6- Call by Reflection 2 A string is used to invoke a method via call by reflection.

A method leaks the state of a door.

X

7- Call by Reflection 3 A string is used to invoke a method via call by reflection.

A method leaks the mode of a user.

X

Device Objects

8- Multiple Devices 1 Various sensitive data is obtained from different devices

and leaked via different sinks.

"

9- Multiple Devices 2 Sensitive data from various devices is tainted and leaked

via different sinks.

"

10- Multiple Devices 3 A taint source is obtained from device state and device

information and they are leaked via messaging services.

"

Permissions

11- Implicit 1 A malicious URL is hard-coded, and device states (implicit

permission) are leaked to the hard-coded URL.

"

12- Implicit 2 A hard-coded phone number leaks the user inputs (implicit

permission).

"

13- Explicit The hub ID (explicit permission) and state variables are

leaked to a hard-coded phone number.

"

14- Explicit-Implicit A phone number is hard-coded to leak device information

(implicit permission) and hub id (explicit permission).

"

Multiple Leaks

15- Multiple Leaks 1 Various sensitive data obtained from the state of the devices

and user inputs are leaked via same sink interface.

"

16- Multiple Leaks 2 Various sensitive data is obtained from device states and

user inputs, and they are leaked via the Internet and mes-

saging sinks.

"

17- Multiple Leaks 3 Various sensitive data is obtained from state variables and

devices, and they are leaked via more than one hard-coded

contact information.

"

Side Channel
18- Side Channel 1 A device is misused to leak information (e.g., turning on/-

turning off a light to signal adversary).

!

19- Side Channel 2 A device operating in a specific pattern causes other con-

nected devices to trigger malicious activities.

!

Table 3: Description of IOTBENCH test suite apps and SAINT’s results.

‡ 19 apps leak 27 sensitive data. We provide a comment block in the source code of each app that gives a detailed description

of the leaks including the line number of the leaks and the ground truths.
†"= True Positive, X = False Positive, O = Dynamic analysis required, ! = Not considered in attacker model

1704 27th USENIX Security Symposium USENIX Association

	Introduction
	Problem Scope and Attacker Model
	Background of IoT Platforms
	Overview of IoT Platforms
	Information Tracking in IoT Apps
	IoT Application Structure

	SainT
	From Source Code to IR
	Static Taint Tracking
	Backward Taint Tracking
	SmartThings Idiosyncrasies
	Implicit Flows

	Implementation

	Application Study
	Data Flow Analysis
	Implicit Flows
	IoTBench

	Limitations and Discussion
	Related Work
	Conclusions
	Acknowledgments
	Source Code of the Example App
	IoTBench Apps
	Taint Source and Taint Sink APIs

