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We are at the beginning of a genomic revolution in which all 
known species are planned to be sequenced. Accessing such 
data for comparative analyses is crucial in this new age of 
data-driven biology. Here, we introduce an improved version 
of DIAMOND that greatly exceeds previous search perfor-
mances and harnesses supercomputing to perform tree-of-life 
scale protein alignments in hours, while matching the sensi-
tivity of the gold standard BLASTP.

Within the next decade, The Earth BioGenome Project1,2 aims 
to sequence and assemble the reference genomes for ~1.5 million of 
the 10–15 million known eukaryotic species that inhabit our planet. 
Current sequence search algorithms and software tools would be 
impractical for analyzing data of this magnitude when aiming to 
retain sensitivity similar to the gold standard BLASTP3. In an exper-
imental study we estimated that querying the National Center for 
Biotechnology information (NCBI) non-redundant (nr) database 
(~280 million sequences) against the UniRef50 database (~40 mil-
lion sequences) using BLASTP would require more than 2 months 
even on a supercomputer equipped with 20,800 cores (Methods). 
However, the newly developed version of DIAMOND can now 
accomplish the same task in several hours, with an alignment 
sensitivity that matches BLAST. We overcome this computational 
bottleneck and enable sensitive large-scale protein searches on a 
tree-of-life scale by introducing improved algorithmic procedures 
and a customized high-performance computing framework, which 
incorporate optimized distributed computing, double indexing and 
multiple spaced seeding. This version of DIAMOND is available 
as Open Source Software under the GPL3 license (http://www.dia-
mondsearch.org).

DIAMOND is a fast and sensitive protein aligner that was ini-
tially developed for metagenomics applications to achieve ultra-fast 
alignments at the cost of alignment sensitivity, compared with the 
gold standard, BLAST. Although DIAMOND is proven to be practi-
cal for many metagenomics studies that also often rely on k-mer 
information for annotation and classification4, most functional and 
phylogenomic studies rely heavily on high alignment sensitivity to 
obtain useful insights about the functional conservation of proteins 
and their evolutionary divergence along phylogenetic lineages. For 
data-intensive studies in these fields, BLAST remains the tool of 
choice due to its paramount alignment sensitivity.

Here, we introduce a greatly improved version of DIAMOND 
that provides two sensitivity modes, --very-sensitive and --ultra- 
sensitive, which will enable data-intensive comparative genom-
ics research such as tree-of-life scale tracing of protein evolu-
tion5, gene age inference6,7, and functional annotation of genes 
and gene families8 to be carried out with the same accuracy as 
BLAST, but with an 80–360-fold computational speedup. In --ultra- 
sensitive mode, DIAMOND (v2.0.7) achieves this BLAST-like  

sensitivity milestone while reducing the computational run time of 
BLASTP-heavy studies from months to hours.

This version of DIAMOND is different from other protein align-
ers and its older versions in that it focuses on ultra-fast but sensitive 
protein searches that can scale with sequencing efforts; for example, 
to meet the demands of the large-scale Earth BioGenome Project 
and analogous bulk sequencing projects. Alternative tools such as 
BLASTP (ref. 3), USearch (ref. 9), LAST (ref. 10) or MMSeqs2 (ref. 11) 
are also optimized to run fast protein alignments, but still require 
longer computation times and, with the exception of BLAST, are less 
sensitive than DIAMOND when dealing with very large datasets. 
These tools already experience limitations when they try to han-
dle searches at the scale of the NCBI nr database, which currently 
contains the largest collection of sequences, representing genomic 
information for ~12,000 eukaryotic species. Therefore we sought 
to build a protein search infrastructure that can accommodate 
the demands of sensitive homology searches on this exponentially 
growing dataset of sequenced species.

DIAMOND now achieves this goal by providing four different 
levels of alignment sensitivity and by optimizing two distinct com-
putational paradigms. First, it leverages an ultra-fast integration of 
algorithmic steps optimized for the latest generation of computer 
architectures that are designed to function optimally when deal-
ing with massive query and subject databases. Second, it harnesses 
high-performance computing (HPC) and cloud computing by 
providing a powerful distributed computing implementation cus-
tomized for large-scale protein searches, incorporating our new 
DIAMOND search scheme (Methods). In summary, our method is 
based upon on-the-fly double indexing (in which both the refer-
ence database and the query are indexed for comparison) and hash 
join on the seed space spanned by up to 64 multiple spaced seeds 
(seeds that are extracted from the sequence according to a pattern 
of ‘match’ and ‘don’t care’ positions) to greatly improve the specific-
ity of seeding relative to a baseline strategy. Furthermore, double 
indexing focuses the comparison operations with respect to a seed 
and enables the operations to be streamed through the CPU in an 
efficient, cache-aware manner, avoiding the memory latency bottle-
neck of a classical single-indexed seed lookup approach. A chain of 
heuristic filter stages that makes heavy use of vector instructions 
is designed to gradually eliminate spurious hits, while passing on 
potentially significant alignments to a vectorized Smith–Waterman 
extension.

We demonstrate the search capabilities of DIAMOND (v2.0.7) 
by systematically comparing its performance against BLASTP 
(v2.10.0) and MMSeqs2 (release 11), and against an older version of 
DIAMOND (v0.7.12), all of which are currently the most promising 
alternatives for sensitive tree-of-life scale protein searches (Fig. 1). To 
create a benchmark dataset covering annotated protein sequences 
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spanning the full diversity of the tree of life, we downloaded the NCBI 
nr database (25 October 2019) and annotated each protein sequence 
in accordance with their SCOPe (structural classification of pro-
teins–extended) domains12 (http://scop.berkeley.edu/) (Methods). 
Establishing a ground truth on the basis of SCOP domains has been 
considered the gold standard for benchmarking protein aligners13. As 
a result of the annotation, we obtained a query dataset of ~1.7 million 
protein sequences covering ~1,000 representative sequences for each 
SCOPe superfamily. Furthermore, we annotated the UniRef50 data-
base14 (accessed 14 September 2019) following the same procedure to 
serve as a reference database for the benchmark.

It is important to note that some previous performance bench-
marks between older versions of DIAMOND and other aligners15 
used small benchmark datasets for the comparison with DIAMOND. 
As stated earlier, DIAMOND is optimized for searches using large 
query and reference databases. Therefore valuable benchmarking 
insights can only be achieved when comparing DIAMOND and 
other tools using large benchmark datasets, rather than focusing on 
small query or reference examples.

We ran DIAMOND (v2.0.7) in all four sensitivity modes using 
our SCOPe-annotated benchmark dataset as a query against the 
UniRef50 database, and compared its computational perfor-
mance and level of sensitivity against analogous runs performed 
with BLASTP (v2.10.0), MMSeqs2 (release 11) and DIAMOND 
(v0.7.12). Figure 1 shows the benchmarking results of these align-
ments against the UniRef50 database. For each tool, we show the 
performance increase of the respective search algorithm over 
BLASTP against the average recall of a query’s protein family until 
the first false positive (Fig. 1a), and the corresponding receiver 
operating characteristic (ROC) curve (Fig. 1b). We found that 
DIAMOND (v2.0.7) computed alignments 12–15-fold faster than 
MMSeqs2 (release 11) while maintaining similar sensitivity levels. 
When the new DIAMOND was compared with older versions of 
DIAMOND16 (v0.7.12) we observed a 6–8-fold speedup, while the 
old DIAMOND was also far behind the other benchmarked tools 
in terms of sensitivity. When comparing DIAMOND (v2.0.7) to 
BLASTP (v2.10.0) we observed an ~8,000-fold speedup when 

using the least sensitive mode, and still an 80-fold speedup when 
running DIAMOND (v2.0.7) with a sensitivity level matching 
that of BLASTP (ultra-sensitive mode). Closer inspection of 
the trade-off between sensitivity and specificity on the basis of 
ROC curves (Fig. 1b) shows that DIAMOND (v2.0.7) in both 
the very-sensitive and ultra-sensitive modes maintained equal 
or marginally better sensitivity than BLAST at low error rates, 
while being only slightly surpassed by BLAST at error rates of 
>1 false positive per query (in which searches at error rates of 
>1 have only rare practical applications). We also conclude that 
the more sophisticated repeat masking used by DIAMOND 
(v2.0.7) (Methods) enables lower true error rates at similar  
sensitivity levels.

In addition, we compared older versions of BLASTP (v2.2.31; 
2015) to the 2019 version of BLASTP (v2.10.0) and found that the 
2019 version of BLASTP was fourfold faster than its 2015 version. 
Although this speedup is impressive, we are not able to envision a 
scenario in which this rate of increase will enable tree-of-life scale 
protein alignments when dealing with sequences from millions of 
eukaryotic species.

To demonstrate the capabilities of our tool when supported by 
an HPC infrastructure, we aligned all 281 million protein sequences 
from the NCBI nr database against the UniRef50 database, which 
consists of 39 million sequences, using DIAMOND (v2.0.7) in 
ultra-sensitive mode on the Cobra supercomputer of the Max 
Planck Society. This comprehensive comparison across all domains 
of life was computed in less than 18 hours using 520 compute nodes 
(Fig. 2 and Extended Data Fig. 1), compared with an estimated 
2 months with BLAST.

For further evaluation, we report the alignment sensitivity 
resolved by sequence identity (Extended Data Fig. 2), the distribu-
tion of homologs across identity bins (Extended Data Fig. 3), and 
the results of two supplementary benchmarks based on short reads 
(Extended Data Figs. 4–7).

Here, we introduce a comprehensive sequence search framework 
based on an extensively improved version of DIAMOND (v2.0.7) 
that enables users to handle the accelerating growth of sequence 
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Fig. 1 | Benchmark of DIAMOND, MMSeqs2 and BLAStP using various sensitivity modes. Computational speedup and alignment sensitivity 

comparisons were carried out between the new version of DIAMOND, v2.0.7 (using default, --sensitive, --very-sensitive and --ultra-sensitive modes), the 

old version of DIAMOND, v0.7.12 (using default and --sensitive modes), MMSeqs2 release 11 (using modes s = 1.0, s = 2.5, s = 6.0, s = 7.5, s = 7.5** with 

--max-seqs 100000), BLASTP v2.10.0 and QuickBLAST v0.0.0. a, Alignment sensitivity (AUC1) measured as the fraction of the query’s protein family 

covered until the first false positive, averaged over all queries in the benchmark dataset. Dashed vertical line, alignment sensitivity level of BLASTP v2.10.0 

(AUC1 = 0.622). b, rOC curves of the same benchmark showing the true average error rate per query versus the average coverage of the protein family, 

depending on the e-value threshold.
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information for data-driven comparative and functional genom-
ics studies. We designed this framework to meet the computational 
demands of future high-sensitivity sequence searches, to gain funda-
mental insights into protein evolution and molecular phylogenetics.
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Fig. 2 | Strong scaling of DIAMOND on up to 520 nodes (20,800 cores) of the Cobra supercomputer of the Max Planck Society. The parallel scalability of 

DIAMOND in a distributed computing environment (supercomputer) is shown. runs are performed in --ultra-sensitive mode, using the NCBI nr database 

(~281 million sequences) as the query database and the Uniref50 database (~39 million sequences) as the reference database. The full alignment was 

performed on 520 nodes (20,800 cores total), finishing in less than 18 hours of wall-clock time. On 1, 14, 28 and 56 nodes, only a subset of the query blocks 

could be processed, and the time for the full alignment was linearly extrapolated for each node count. An almost ideal scaling is observed, with a small 

super-linear effect caused by the caches of the parallel input–output system. To illustrate the massive parallelism, the inset shows a zoomed-in view of the 

sequence of tasks that DIAMOND (v2.0.0) has performed over time on 20 of the 520 nodes, indicated by blue rectangles (alignment process) and orange 

rectangles (join operations). White spaces encode the input–output activity on the supercomputer’s shared parallel file system (Extended Data Fig. 1).
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Methods
Algorithmic overview of DIAMOND. Double indexing. DIAMOND uses the 
double-indexing approach, in conjunction with multiple spaced seeds17, to 
optimize the handling of large query and large reference databases. In the �rst 
step, tables of seed–location pairs are built for query and reference sequences. 
Next, matching seeds are computed using a hash join technique that conducts 
recursive radix clustering of both tables until a hash table for the query data �ts 
into the cache, at which point the rest of the join is computed by hashing18. We 
found this approach to be faster than the sorting method used by older versions of 
DIAMOND16, especially given that a full sorting of the reference table is avoided 
for smaller query datasets.

The double-indexing algorithm is designed to be cache aware, given that the 
data associated with one seed need to be loaded for comparison from memory 
only once, while the classical index-based linear seed lookup suffers from poor 
data locality. Additionally, our on-the-fly indexing method enables efficient use 
of multiple spaced seeds by processing the shapes one at a time and not requiring 
the index tables for all shapes to be present in memory simultaneously, while 
also avoiding expensive seed lookups through our cache-friendly hash join 
implementation.

DIAMOND (v2.0.7) uses two seed shapes of weight 10 for its fast mode, 16 
shapes of weight 8 and 14 shapes of weight 7 for its sensitive and very-sensitive 
modes, respectively, and 64 shapes of weight 7 for its ultra-sensitive mode. The 
seed shapes were computed using SpEED19. Even when operating with 64 shapes, 
the run time generation of the indices, together with the join computation, take 
up less than 1% of the total run time of the program. When processing the NCBI 
nr database, the total size of these indices would be 123 billion letters × 9 bytes 
per entry × 64 shapes, which is ~64 TB if kept in memory or written to disk, 
while DIAMOND (v2.0.7) requires less than 16 GB of RAM when running in 
ultra-sensitive mode. This shows that DIAMOND does not require expensive 
computing infrastructures and can be operated with modest hardware resources 
if needed. Because of the runtime indexing, DIAMOND maintains disk-based 
database files that contain only the reference sequences, and can optionally also use 
BLAST databases (since v2.0.8).

Hamming distance filter. In the first stage of the sequence comparison process, a 
hamming distance computation between a query sequence and a subject sequence 
is performed at all seed hit locations in a 48-letter window encompassing the hit. 
We optimized this procedure using a chain of SSE (streaming single-instruction 
multiple-data (SIMD) extensions) pcmpeqb, pmovmskb and popcnt instructions 
to achieve a tenfold decrease in computation time compared with an ungapped 
alignment incorporating a scoring matrix, while reducing the number of hits by 
1–2 orders of magnitude. A sensitivity-level-dependent cut-off for the hamming 
distance that can also be manually set by the user determines whether a hit is 
passed to the next filter stage.

We further extend our initial approach, introduced in the original version 
of DIAMOND16, and maximize the filtering throughput by using a loop-tiling 
strategy to incorporate the cache hierarchy and address the fact that the 
data associated with a single seed may exceed the cache capacity in the new 
very-sensitive and ultra-sensitive modes of DIAMOND (v2.0.7). We also load the 
48-letter windows at the query and subject locations into linear buffers prior to 
running the all-versus-all hamming distance computation, to make best use of the 
hardware prefetcher and to avoid any random memory access.

Ungapped extension. After the hamming distance stage, the next step in the 
pipeline computes ungapped extensions at the seed hit locations. This procedure 
is vectorized using AVX2 instructions, aligning one query against up to 32 subject 
sequences. After 32 subject sequences are loaded into AVX2 registers, a 32 × 32 byte 
matrix transposition is computed using a series of 160 unpack instructions, such 
that 32 letters of different subjects are interleaved into one SIMD register, and the 
match scores can be loaded along the query. A sensitivity-level-dependent e-value 
threshold determines the hits that will be passed to the next stage.

Leftmost seed filter. Due to its double-indexing algorithm, DIAMOND may find 
the same alignment multiple times independently during the search stage. These 
redundant hits need to be filtered out to avoid an excessive use of temporary 
disk space. DIAMOND accomplishes this task by inspecting the local ungapped 
alignment for seed hits to the left of the hit that is currently being processed, as 
well as seed hits by previously processed shapes. If such a hit is found, DIAMOND 
notices the repetition and the current hit is discarded. Given that this procedure 
entails checking against up to 64 different seed shapes, we further optimized this 
process by incorporating a precomputed lookup table that stores information 
on whether any of the processed shapes will hit a given bit-encoded match or 
mismatch pattern, thus enabling the same check to be performed in one pass over 
the local hit pattern.

Adaptive ranking. Given that the typical application of an aligner will require the 
reporting of a certain number of best alignments (hits) for each query (as set on 
the command line using the --max-target-seqs option), DIAMOND makes use 
of this parameter to control the computational effort spent on seed extension and 

avoid having to compute gapped extensions for all seed hits. To this end, after the 
seed search within target sequences has been concluded, we determine a tentative 
order of target hits with respect to a single query. In the present case, this ranking 
procedure uses the ungapped extension scores at seed hits to assign a linear order to 
the targets. DIAMOND sorts the target list by ungapped extension score (from best 
to worst) for each target, similar to the way in which MMSeqs2 uses its ungapped 
extension-derived prefilter scores. Although MMSeqs2 will then compute Smith–
Waterman extensions for a fixed number of best targets (as set using the --max-seqs 
parameter), DIAMOND uses a dynamic criterion to halt evaluation of further 
targets. We refer to this dynamic approach as adaptive ranking, which improves 
the DIAMOND reporting accuracy compared with the static criterion used by 
MMSeqs2, while providing a less biased and more data-adapted filtering procedure. 
The ranked list is processed in chunks of 400 targets (configurable on the command 
line using ext-chunk-size), for which extensions are computed. If no extension in 
the current chunk yields a significant alignment under the user-specified reporting 
criteria, computation of further extensions for the query is aborted, otherwise the 
next chunk of targets will be processed.

Gapped extension filter. Given that computing full Smith–Waterman20 extensions 
is expensive, we have developed a fast heuristic algorithm designed to estimate 
a gapped alignment score and discard hits that most probably do not meet the 
user-set reporting threshold. We use a query profile data structure in the same 
way as the vectorized Smith–Waterman algorithm introduced by Farrar21, which 
is an array for each of the amino acid letters that stores the scores along the 
query against the given residue. We then use AVX2 instructions to sum up these 
scores along diagonals of the dynamic programming matrix, thus computing 
local ungapped extension scores on diagonals. This approach ignores gaps in the 
alignment and therefore eliminates intra-register data dependencies. With its 
minimal logic, our heuristic achieves a throughput ~fivefold faster than a Smith–
Waterman computation using the vectorized SWIPE method22. Nevertheless, 
ungapped scores on the diagonals can be used to estimate a gapped extension 
score by thresholding and computing a one-dimensional dynamic program 
that disregards the location of the diagonal segments. Although this simplifying 
assumption leads to an overestimation of the true alignment score most of the 
time, the heuristic is still able to reduce the number of spurious hits by one order of 
magnitude in the most sensitive alignment mode. If required by the user, this filter 
step can be disabled using the option gapped-filter-evalue 0.

Chaining. Chaining is the computation of a dynamic program at the level of 
diagonal segments instead of at the base or residue level, and has been used 
successfully in DNA alignment tools such as minimap2 (ref. 23). DIAMOND 
(v2.0.7) introduces the use of chaining on protein sequences. The result of the 
chaining computation is used to infer a scaffold for the optimal alignment and to 
determine the band geometry for a banded Smith–Waterman algorithm20.

Chaining can be simplified on DNA sequences by considering only diagonal 
segments of exact matches. However, this is not possible for protein sequences, 
which makes this computation substantially more elaborate. DIAMOND solves 
this problem by sorting the diagonal segments obtained by the ungapped extension 
stage on the starting position in the subject, and constructs a graph in which nodes 
represent diagonal segments and edges denote diagonal shifts (gaps) by computing 
pairwise connections between the diagonal segments in one left-to-right pass. 
Such pairwise connections are then stored as graph edges, incorporating their 
inbound and outbound coordinates to prevent invalid chains and to allow zigzag 
connections in which the optimal path repeatedly shifts between the same two 
diagonal nodes. A red–black tree for the nodes ordered on the diagonal is used 
to quickly access the most proximal nodes and candidates for determining a 
connection. For each node, the best score of a local alignment ending in that node 
is stored, the maximum of which yields the final score estimate and end point for 
backtracing of the approximate optimal alignment.

Banded SWIPE. The final extensions are computed using a modified version of 
the vectorized SWIPE (ref. 22) approach that accommodates banding. Due to their 
design, both the SWIPE and the ‘striped’ SIMD vectorization21 algorithms do not 
easily allow banded alignment, resulting in the need for an O(n²) computation 
in proportion to the length of the query and subject sequences. We vectorize the 
alignment of a query against up to 32 subjects by overlaying the banded dynamic 
programming matrix columns of the subjects based on their query ranges (the 
query coordinate interval [i0,i1] that corresponds to a slice of the given column with 
the subject’s band). Given that the bands of the subjects are different, this cannot be 
fitted perfectly into the register, but reaches a register load efficiency of 80–90% for 
larger databases. All extensions are computed using 8-bit scores and are repeated 
when an overflow is detected, unless an alignment score of >255 is already known 
from previous stages.

Alignments are scored using the BLOSUM62 matrix by default. In addition, 
we also use a method of composition-based score adjustments15 that is designed 
to increase the specificity of the scoring procedure. If required, DIAMOND 
(since v2.0.6) also supports applying the BLAST compositional matrix adjust 
scoring procedure24 to compute BLAST-like alignment scores (options 
--comp-based-stats3,4).
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As an alternative, DIAMOND (v2.0.7) also includes the option to compute 
full-matrix instead of banded Smith–Waterman extensions (command line option 
--ext full), which are also vectorized using the SWIPE algorithm.

Frameshift alignments. Reads produced by MinION technology25 are known 
to be noisy and contain frequent indel errors, a problem that also translates to 
assemblies derived from such long reads. In consequence, genes cannot be detected 
reliably on such DNA sequences. DIAMOND addresses this issue by providing 
frameshift alignments in translated search (blastx) mode. The protein sequences 
corresponding to all three reading frames of a strand are aligned simultaneously 
against the target sequence, allowing shifts in the reading frame at any position 
in the alignment, while incurring a user-defined score penalty (set using -F on 
the command line). The raw MinION reads and contigs up to the length of full 
bacterial chromosomes are supported as input in translated search mode, enabling 
gene discovery and annotation in the absence of known gene boundaries.

Repeat masking. Differentiating between true evolutionary relationships and 
spurious similarities presents a big challenge in remote homology detection, 
particularly given the repetitive nature of sequence regions found in many 
genomes. When dealing with an increasing load of available genomes for 
tree-of-life scale sequence searches, the ability to differentiate between similarity 
relationships based on sequence repetitiveness and homology based on a 
biologically meaningful sequence structure (non-repetitive sequence under 
purifying selection) becomes crucial to reduce the number of false-positive hits 
and increase alignment specificity at scale. Masking of low-complexity regions 
(repeat masking) is the most commonly used strategy to eliminate false-positive 
hits and to retain only hits found in biologically meaningful homologs. It has 
been shown that despite using the SegMasker tool included in BLASTP26, many 
more and stronger spurious similarities will arise than are expected on random 
sequences, as defined by an e-value threshold parameter27. DIAMOND reduces 
this false-positive bias by using more stringent and more sophisticated masking 
paradigms based on tantan. If required, the tantan masking can be replaced by the 
more conservative default BLASTP SEG masking and composition-based statistics 
using the option --comp-based-stats 3 (ref. 24).

Distributed-memory parallelization. As part of DIAMOND, our comprehensive 
sequence search framework supports a distributed-memory parallelization to 
leverage the computing power of state-of-the-art HPC and cloud-computing 
resources for massive-scale protein alignments. To this end, both the query 
database and the reference database are segmented into data packages that we 
refer to as chunks. The Cartesian product of both query and reference sets defines 
a (typically large) set of work packages. In the first instance, files containing 
metadata on these work packages are created centrally before a parallel run is 
started on independent computing nodes and are subsequently processed in 
a distributed manner by multiple worker processes of DIAMOND. Usually, 
only one worker process runs per compute node, efficiently utilizing all of the 
locally available cores via threads. Unlike related work such as mpiBLAST28, our 
implementation does not use any special interprocess communication libraries, 
such as the message passing interface (MPI) specific to HPC environments, instead 
it relies on input–output operations supported by any POSIX-compliant parallel 
file system that is mounted on all of the compute nodes involved. The advantage of 
this approach is that work packages are distributed in a self-organized way at run 
time to all participating worker processes using simple file-based stacks located in 
the parallel file system, with atomic push and pop operations. Once all database 
chunks for a specific query chunk have been processed, the final worker process 
involved in the query chunk takes on the role of performing the join operation 
to ultimately create the output stream. Note that the largest part of the temporary 
files stays local to a compute node, and only the lightweight work-stack files and 
the DIAMOND hits from the protein searches are written into the shared parallel 
file system. This strategy significantly reduces input–output overloads and enables 
massively parallel processing of DIAMOND runs. In addition to the lack of 
complex dependencies, such as on MPI, we highlight the particular advantages of 
our approach. First, there is no designated primary worker to induce a bottleneck 
due to synchronization, or to act as a potential single point of failure. Second, and 
by design, worker processes may join and leave at run time, which is less important 
on classical HPC systems that use batch systems to orchestrate potentially large 
numbers of processes, but is of striking advantage on elastic cloud-computing 
resources and on existing commodity resources such as networked laboratory 
desktop computers. Last, our transactional file-based work-distribution protocol 
enables fault tolerance, which means that if worker processes die unexpectedly, 
other processes in a subsequent run can take on and resume their work packages.

Benchmarks. Main benchmark. To create a benchmark database, we annotated 
the 14 September 2019 release of UniRef50 containing 37.5 million sequences 
with SCOP families. To categorize each protein sequence, we ran SWIPE22 using 
an e-value cut-o� of 10−5 against the SCOPe ASTRAL40 v2.07 dataset12 of domain 
sequences consisting of 4,850 protein families, which resulted in a collection of 
7.74 million annotated protein sequences. We used the hit with the highest bit 
score per SCOPe fold (a grouping of structurally similar superfamilies) to infer the 
protein family annotation while allowing multidomain associations.

Given that DIAMOND requires a large query dataset to reach its maximum 
efficiency, we used an analogous SWIPE approach and annotated the NCBI nr 
database from 25 October 2019 in accordance with SCOPe families. We used 
UPGMA clustering29 on the sets of all protein sequences annotated with the same 
superfamily to cluster and reduce them to a maximum of 1,000 sequences, which 
we selected as representatives of that superfamily, resulting in a benchmark dataset 
of 1.71 million queries.

Both query and reference sequences were locally shuffled in 40-letter windows 
outside the annotated ranges. All benchmark datasets and annotations have been 
published30.

Alignment for all tools was run on an AMD Ryzen Threadripper 2970WX 
24-core workstation clocking at 3.0 GHz with 256 GB of RAM, except for the 
BLASTP (v2.10.0) run, which, due to its run time limitations on a desktop 
computer workstation, was performed on the Max Planck Society’s Draco 
supercomputer at Garching, Germany, using 24 nodes (32 cores on two Intel 
Haswell E5-2698v3 chips per node). On the benchmark machine the performance 
of BLASTP (v2.10.0) was estimated using a random subset of 10,000 queries 
sampled from the initial benchmark dataset.

For each query, we determined the AUC1 value, defined as the number of 
alignments against sequences matching the query’s protein family, divided by 
the total number of database sequences of that family (also called the coverage 
of the protein family). Only hits until the first alignment against a false positive 
were taken into account, which was defined as the alignment of query and subject 
sequences from different SCOPe folds. For multidomain proteins, the AUC1 value 
was averaged over the domains. The AUC1 values of the individual queries were 
again averaged over the query dataset to obtain the final sensitivity value (Fig. 1a). 
To ensure that a false positive is contained in the result list of every query, the tools 
were configured to report all alignments up to an e-value of 1,000 (Supplementary 
Information). Further information about the benchmark design can also be found 
in the Nature Research Reporting Summary.

Detailed assessment of sequence identities in true-positive alignments. We explored 
the sensitivity of all compared tools in more detail by resolving it at the level of 
amino acid sequence identity of true-positive alignments. For this purpose, we 
define the sequence identity of a query–subject association induced by annotation 
with the same SCOPe protein family as that obtained from the Needleman–
Wunsch alignment between the pair of annotated ranges in the query and subject. 
Extended Data Figure 2 shows a breakdown of the AUC1 sensitivity for our main 
benchmark, computed as if the search space of positive cases were restricted to 
associations of the respective sequence identity ranges. Additionally, Extended 
Data Fig. 3 shows how a query sequence’s family associations are distributed across 
the identity bins for our benchmark dataset.

Supplementary benchmarks. We report benchmark results for two additional 
datasets, consisting of sequencing reads from Illumina HiSeq 4000 paired end 
sequencing (2 × 150 base pairs) and Illumina HiSeq 2500 paired end sequencing 
(2 × 250 base pairs). The datasets were created based on data from a recent rumen 
metagenome study31 (Supplementary Information, see Supplementary Benchmark 1)  
and an environmental study of the topsoil microbiome32 (Supplementary 
Information, see Supplementary Benchmark 2). SCOPe-annotated datasets of 
1.55 million and 1 million reads, respectively, were obtained as described in the 
Supplementary Information. The benchmark runs for the two query read datasets 
were carried out analogously to the run for our main benchmark, operating all 
tools in translated search mode against the same database of SCOPe-annotated 
UniRef50 sequences. We report performance, AUC1 values and ROC curves for 
both runs (Extended Data Figs. 4–7).

Experimental study. The ultimate ambition of DIAMOND v2.0.7 is to provide a 
comprehensive search framework for sensitive tree-of-life scale protein alignments 
in the Earth BioGenome Project era and beyond. Although BLAST-like sensitivity 
levels are the maximally achievable thresholds for pairwise alignments, the next 
focus of any aligner should be the computational scalability to process millions of 
sequenced species. With the new --ultra-sensitive mode introduced in DIAMOND 
v2.0.0 we achieve this critical BLAST-like sensitivity level while maintaining 
an 80-fold computational speedup, and we achieve an additional near-linear 
parallel speedup when using the custom DIAMOND HPC implementation. 
To simulate all facets of a tree-of-life scale protein search that is able to mimic 
future applications of large-scale comparative genomics projects, we performed 
DIAMOND --very-sensitive and --ultra-sensitive searches on 520 nodes of the 
Cobra supercomputer of the Max Planck Society (40 cores on two Intel Skylake 
6148 chips, and 192 GB RAM per node), totaling 20,800 computing cores (41,600 
threads), using the NCBI nr database (currently storing all sequenced proteins 
for ~12,000 eukaryotic species and all proteins from ~440,000 genomes of 
non-eukaryotic species) as the query database, and UniRef50 as the reference 
dataset. We randomly shuffled the sequences in both FASTA files to avoid a 
load imbalance due to a biased distribution of sequences in the original files. 
As a result, DIAMOND v2.0.0 produced 23.1 billion pairwise alignments in the 
--ultra-sensitive case and 23.0 billion pairwise alignments in the --very-sensitive 
case, starting from an initial query dataset that contained 281 million sequences 
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and a reference dataset that contained 39 million subject sequences. In 
--very-sensitive mode the run terminated in 5.42 hours, while in --ultra-sensitive 
mode it terminated in 17.77 hours. The latter run is shown in Fig. 2 and Extended 
Data Fig. 1, demonstrating the massive parallelism achieved on the HPC 
infrastructure, as shown by the processing of individual tasks over time. Due to 
the parallel nature of the align and join operations, the parallel speedup is virtually 
linear and is limited only by the throughput of the shared parallel file system of 
the supercomputer used. This demonstrates that DIAMOND v2.0.0 can harness 
its algorithmic improvements and its new HPC support to cover all sequenced 
species in the tree of life within hours rather than months, while matching the 
alignment sensitivity levels of BLAST. The uncompressed output generated by this 
run occupies ~1,100 GB of disk space and stores the 100 best protein hits for each 
sequence in the NCBI nr database.

We envision that in the future this type of DIAMOND output will be easily 
accessible to all life scientists via a web application in which users can filter and 
search for their protein homologs of interest within minutes across the tree of life 
on a precomputed dataset, instead of having to perform complex data analytics and 
months’ or years’ worth of BLAST searches to obtain sensitive protein alignments 
at this scale.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The sequence and annotation data that support the findings of this study are 
available in figshare (https://doi.org/10.6084/m9.figshare.c.5053112.v1). The 
SCOPe ASTRAL40 dataset can be downloaded at http://scop.berkeley.edu/
downloads/scopeseq-2.07/astral-scopedom-seqres-gd-sel-gs-bib-40-2.07.
fa. The UniRef50 database can be downloaded from ftp://ftp.uniprot.org/
pub/databases/uniprot/uniref/uniref50/uniref50.fasta.gz and the NCBI nr 
database can be downloaded from ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/
nr.gz. The sequencing reads of the supplementary benchmarks are part of the 
samples with European Nucleotide Archive (ENA) accessions SAMEA5383815, 
SAMEA5383897, SAMEA5383886, SAMEA5383828, SAMEA5383925, 
SAMEA5383848, SAMEA5383824, SAMEA5383873, SAMEA5384011, 
SAMEA5383807, SAMEA103892455, SAMEA103892562, SAMEA103892552, 
SAMEA103892441, SAMEA103892588, SAMEA103892582, SAMEA103892581, 
SAMEA103892571, SAMEA103892491, SAMEA103892619. Source data are 
provided with this paper.

Code availability
The source code of DIAMOND v2.0.7 is available at https://github.com/bbuchfink/
diamond and in figshare (https://doi.org/10.6084/m9.figshare.14071334.v1).
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Extended Data Fig. 1 | Detailed visual trace of a massively parallel DIAMOND run on 520 nodes (41,600 threads) of the Cobra supercomputer of the 

Max Planck Society. To illustrate the scalability of DIAMOND (v2.0.0) in a distributed computing environment (supercomputer), line-by-line worker 

tasks are shown individually for each worker node (the detailed version of Fig. 2). The sequence of tasks DIAMOND (v2.0.0) has performed over time 

is indicated by blue rectangles and orange rectangles, in which blue rectangles denote the alignment process and orange rectangles represent join 

operations. The numbers within the rectangle indicate the indices of the individual query chunks and of their respective reference chunks. White spaces 

encode the IO activity on the supercomputer’s shared parallel file system. The run shown here was performed in–ultra-sensitive mode and used the full 

NCBI non-redundant database as the query database, and the Uniref50 database as the reference database, finishing in below 18 hours of wallclock time. 

The result demonstrates DIAMOND’s efficient distribution of massively parallel work packages at scale, showing that all workers finish around the same 

time without creating a significant load imbalance (Experimental Study).

NAtuRe MetHODS | www.nature.com/naturemethods

http://www.nature.com/naturemethods


BRIEF COMMUNICATIONNATURE METHODS

0.00

0.25

0.50

0.75

1.00

[0;10[ [10;20[ [20;30[ [30;40[ [40;50[ [50;60[ [60;70[ [70;80[ [80;90[ [90;100]

Sequence identity interval in %

A
U

C
1

Program

BLAST

DIAMOND ultra−sensitive

DIAMOND very−sensitive

DIAMOND sensitive

DIAMOND default

MMSeqs2 s7.5
MMSeqs2 s6.0
MMSeqs2 s2.5

MMSeqs2 s1.0

Extended Data Fig. 2 | Assessment of true positive alignments. AUC1 sensitivity as reported for our main benchmark, resolved by sequence identity 

of the query-subject association under our SCOPe annotation (middle = median, hinges=25%/75% quantiles, lower/upper whisker = smallest/largest 

observation greater/less than or equal to lower/upper hinge -/+ 1.5 * IQr).

NAtuRe MetHODS | www.nature.com/naturemethods

http://www.nature.com/naturemethods


BRIEF COMMUNICATION NATURE METHODS

0.0

0.1

0.2

0.3

0.4

0.5

[0
;5

[

[5
;1

0
[

[1
0
;1

5
[

[1
5
;2

0
[

[2
0
;2

5
[

[2
5
;3

0
[

[3
0
;3

5
[

[3
5
;4

0
[

[4
0
;4

5
[

[4
5
;5

0
[

[5
0
;5

5
[

[5
5
;6

0
[

[6
0
;6

5
[

[6
5
;7

0
[

[7
0
;7

5
[

[7
5
;8

0
[

[8
0
;8

5
[

[8
5
;9

0
[

[9
0
;9

5
[

[9
5
;1

0
0
]

Sequence identity interval in %

F
ra

c
ti
o

n
 o

f 
p

ro
te

in
 f
a

m
ily
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Extended Data Fig. 5 | Metagenomic benchmark results using Illumina HiSeq 2500 paired end sequencing (2x250 bp) reads from Bahram et al., 2018. 

Computational speedup and alignment sensitivity comparisons for translated searches of 250bp Illumina short reads from topsoil metagenome samples 

(Supplementary Benchmark 2). Alignment sensitivity (AUC1) is measured as the fraction of the query’s protein family covered until the first false positive, 

averaged over all queries in the benchmark dataset. The y-axis denotes the x-fold computational speedup achieved over BLASTX v2.10.0.
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Extended Data Fig. 6 | ROC curves for metagenomic benchmark using Illumina HiSeq 4000 paired end sequencing (2x150bp) reads from Stewart et al., 

2019. We show the true average error rate per query (x-axis) against the average coverage of the protein family (y-axis) depending on the e-value threshold 

for Supplementary Benchmark 1.
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Extended Data Fig. 7 | ROC curves for metagenomic benchmark using Illumina HiSeq 2500 paired end sequencing (2x250bp) reads from Bahram et al., 

2018. We show the true average error rate per query (x-axis) against the average coverage of the protein family (y-axis) depending on the e-value threshold 

for Supplementary Benchmark 2.
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