
BRIEF COMMUNICATION
https://doi.org/10.1038/s41592-021-01101-x

1Computational Biology Group, Max Planck Institute for Developmental Biology, Tübingen, Germany. 2Max Planck Computing and Data Facility, Garching,
Germany. ✉e-mail: hajk-georg.drost@tuebingen.mpg.de

We are at the beginning of a genomic revolution in which all
known species are planned to be sequenced. Accessing such
data for comparative analyses is crucial in this new age of
data-driven biology. Here, we introduce an improved version
of DIAMOND that greatly exceeds previous search perfor-
mances and harnesses supercomputing to perform tree-of-life
scale protein alignments in hours, while matching the sensi-
tivity of the gold standard BLASTP.

Within the next decade, The Earth BioGenome Project1,2 aims
to sequence and assemble the reference genomes for ~1.5 million of
the 10–15 million known eukaryotic species that inhabit our planet.
Current sequence search algorithms and software tools would be
impractical for analyzing data of this magnitude when aiming to
retain sensitivity similar to the gold standard BLASTP3. In an exper-
imental study we estimated that querying the National Center for
Biotechnology information (NCBI) non-redundant (nr) database
(~280 million sequences) against the UniRef50 database (~40 mil-
lion sequences) using BLASTP would require more than 2 months
even on a supercomputer equipped with 20,800 cores (Methods).
However, the newly developed version of DIAMOND can now
accomplish the same task in several hours, with an alignment
sensitivity that matches BLAST. We overcome this computational
bottleneck and enable sensitive large-scale protein searches on a
tree-of-life scale by introducing improved algorithmic procedures
and a customized high-performance computing framework, which
incorporate optimized distributed computing, double indexing and
multiple spaced seeding. This version of DIAMOND is available
as Open Source Software under the GPL3 license (http://www.dia-
mondsearch.org).

DIAMOND is a fast and sensitive protein aligner that was ini-
tially developed for metagenomics applications to achieve ultra-fast
alignments at the cost of alignment sensitivity, compared with the
gold standard, BLAST. Although DIAMOND is proven to be practi-
cal for many metagenomics studies that also often rely on k-mer
information for annotation and classification4, most functional and
phylogenomic studies rely heavily on high alignment sensitivity to
obtain useful insights about the functional conservation of proteins
and their evolutionary divergence along phylogenetic lineages. For
data-intensive studies in these fields, BLAST remains the tool of
choice due to its paramount alignment sensitivity.

Here, we introduce a greatly improved version of DIAMOND
that provides two sensitivity modes, --very-sensitive and --ultra-
sensitive, which will enable data-intensive comparative genom-
ics research such as tree-of-life scale tracing of protein evolu-
tion5, gene age inference6,7, and functional annotation of genes
and gene families8 to be carried out with the same accuracy as
BLAST, but with an 80–360-fold computational speedup. In --ultra-
sensitive mode, DIAMOND (v2.0.7) achieves this BLAST-like

sensitivity milestone while reducing the computational run time of
BLASTP-heavy studies from months to hours.

This version of DIAMOND is different from other protein align-
ers and its older versions in that it focuses on ultra-fast but sensitive
protein searches that can scale with sequencing efforts; for example,
to meet the demands of the large-scale Earth BioGenome Project
and analogous bulk sequencing projects. Alternative tools such as
BLASTP (ref. 3), USearch (ref. 9), LAST (ref. 10) or MMSeqs2 (ref. 11)
are also optimized to run fast protein alignments, but still require
longer computation times and, with the exception of BLAST, are less
sensitive than DIAMOND when dealing with very large datasets.
These tools already experience limitations when they try to han-
dle searches at the scale of the NCBI nr database, which currently
contains the largest collection of sequences, representing genomic
information for ~12,000 eukaryotic species. Therefore we sought
to build a protein search infrastructure that can accommodate
the demands of sensitive homology searches on this exponentially
growing dataset of sequenced species.

DIAMOND now achieves this goal by providing four different
levels of alignment sensitivity and by optimizing two distinct com-
putational paradigms. First, it leverages an ultra-fast integration of
algorithmic steps optimized for the latest generation of computer
architectures that are designed to function optimally when deal-
ing with massive query and subject databases. Second, it harnesses
high-performance computing (HPC) and cloud computing by
providing a powerful distributed computing implementation cus-
tomized for large-scale protein searches, incorporating our new
DIAMOND search scheme (Methods). In summary, our method is
based upon on-the-fly double indexing (in which both the refer-
ence database and the query are indexed for comparison) and hash
join on the seed space spanned by up to 64 multiple spaced seeds
(seeds that are extracted from the sequence according to a pattern
of ‘match’ and ‘don’t care’ positions) to greatly improve the specific-
ity of seeding relative to a baseline strategy. Furthermore, double
indexing focuses the comparison operations with respect to a seed
and enables the operations to be streamed through the CPU in an
efficient, cache-aware manner, avoiding the memory latency bottle-
neck of a classical single-indexed seed lookup approach. A chain of
heuristic filter stages that makes heavy use of vector instructions
is designed to gradually eliminate spurious hits, while passing on
potentially significant alignments to a vectorized Smith–Waterman
extension.

We demonstrate the search capabilities of DIAMOND (v2.0.7)
by systematically comparing its performance against BLASTP
(v2.10.0) and MMSeqs2 (release 11), and against an older version of
DIAMOND (v0.7.12), all of which are currently the most promising
alternatives for sensitive tree-of-life scale protein searches (Fig. 1). To
create a benchmark dataset covering annotated protein sequences

Sensitive protein alignments at tree-of-life scale
using DIAMOND

Benjamin Buchfink   1, Klaus Reuter   2 and Hajk-Georg Drost   1 ✉

NAtuRe MetHODS | VOL 18 | APrIL 2021 | 366–368 | www.nature.com/naturemethods366

mailto:hajk-georg.drost@tuebingen.mpg.de
http://www.diamondsearch.org
http://www.diamondsearch.org
http://orcid.org/0000-0001-7658-731X
http://orcid.org/0000-0001-6869-7877
http://orcid.org/0000-0002-1567-306X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-021-01101-x&domain=pdf
http://www.nature.com/naturemethods

BRIEF COMMUNICATIONNATURE METHODS

spanning the full diversity of the tree of life, we downloaded the NCBI
nr database (25 October 2019) and annotated each protein sequence
in accordance with their SCOPe (structural classification of pro-
teins–extended) domains12 (http://scop.berkeley.edu/) (Methods).
Establishing a ground truth on the basis of SCOP domains has been
considered the gold standard for benchmarking protein aligners13. As
a result of the annotation, we obtained a query dataset of ~1.7 million
protein sequences covering ~1,000 representative sequences for each
SCOPe superfamily. Furthermore, we annotated the UniRef50 data-
base14 (accessed 14 September 2019) following the same procedure to
serve as a reference database for the benchmark.

It is important to note that some previous performance bench-
marks between older versions of DIAMOND and other aligners15
used small benchmark datasets for the comparison with DIAMOND.
As stated earlier, DIAMOND is optimized for searches using large
query and reference databases. Therefore valuable benchmarking
insights can only be achieved when comparing DIAMOND and
other tools using large benchmark datasets, rather than focusing on
small query or reference examples.

We ran DIAMOND (v2.0.7) in all four sensitivity modes using
our SCOPe-annotated benchmark dataset as a query against the
UniRef50 database, and compared its computational perfor-
mance and level of sensitivity against analogous runs performed
with BLASTP (v2.10.0), MMSeqs2 (release 11) and DIAMOND
(v0.7.12). Figure 1 shows the benchmarking results of these align-
ments against the UniRef50 database. For each tool, we show the
performance increase of the respective search algorithm over
BLASTP against the average recall of a query’s protein family until
the first false positive (Fig. 1a), and the corresponding receiver
operating characteristic (ROC) curve (Fig. 1b). We found that
DIAMOND (v2.0.7) computed alignments 12–15-fold faster than
MMSeqs2 (release 11) while maintaining similar sensitivity levels.
When the new DIAMOND was compared with older versions of
DIAMOND16 (v0.7.12) we observed a 6–8-fold speedup, while the
old DIAMOND was also far behind the other benchmarked tools
in terms of sensitivity. When comparing DIAMOND (v2.0.7) to
BLASTP (v2.10.0) we observed an ~8,000-fold speedup when

using the least sensitive mode, and still an 80-fold speedup when
running DIAMOND (v2.0.7) with a sensitivity level matching
that of BLASTP (ultra-sensitive mode). Closer inspection of
the trade-off between sensitivity and specificity on the basis of
ROC curves (Fig. 1b) shows that DIAMOND (v2.0.7) in both
the very-sensitive and ultra-sensitive modes maintained equal
or marginally better sensitivity than BLAST at low error rates,
while being only slightly surpassed by BLAST at error rates of
>1 false positive per query (in which searches at error rates of
>1 have only rare practical applications). We also conclude that
the more sophisticated repeat masking used by DIAMOND
(v2.0.7) (Methods) enables lower true error rates at similar
sensitivity levels.

In addition, we compared older versions of BLASTP (v2.2.31;
2015) to the 2019 version of BLASTP (v2.10.0) and found that the
2019 version of BLASTP was fourfold faster than its 2015 version.
Although this speedup is impressive, we are not able to envision a
scenario in which this rate of increase will enable tree-of-life scale
protein alignments when dealing with sequences from millions of
eukaryotic species.

To demonstrate the capabilities of our tool when supported by
an HPC infrastructure, we aligned all 281 million protein sequences
from the NCBI nr database against the UniRef50 database, which
consists of 39 million sequences, using DIAMOND (v2.0.7) in
ultra-sensitive mode on the Cobra supercomputer of the Max
Planck Society. This comprehensive comparison across all domains
of life was computed in less than 18 hours using 520 compute nodes
(Fig. 2 and Extended Data Fig. 1), compared with an estimated
2 months with BLAST.

For further evaluation, we report the alignment sensitivity
resolved by sequence identity (Extended Data Fig. 2), the distribu-
tion of homologs across identity bins (Extended Data Fig. 3), and
the results of two supplementary benchmarks based on short reads
(Extended Data Figs. 4–7).

Here, we introduce a comprehensive sequence search framework
based on an extensively improved version of DIAMOND (v2.0.7)
that enables users to handle the accelerating growth of sequence

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0
.0

0
0

0
0

0
1

0
.0

0
0

0
0

1

0
.0

0
0

0
1

0
.0

0
0

1

0
.0

0
1

0
.0

1

0
.1 1

1
0

1
0

0

No. of errors per query

C
o

v
e

ra
g

e
 o

f
p

ro
te

in
 f
a

m
ily

Program

BLAST v2.10.0 (default)
DIAMOND v0.7.12 (fast)
DIAMOND v0.7.12 (sensitive)
DIAMOND v2.0.7 (default)
DIAMOND v2.0.7 (sensitive)

MMSeqs2 release11 (s1.0)
MMSeqs2 release11 (s2.5)
MMSeqs2 release11 (s6.0)
MMSeqs2 release11 (s7.5)
MMSeqs2 release11 (s7.5**)

1

13

27

82

178
241

360

660

983
1,265

7,983

2

3
4
5

10

50

130

450

2,000

3,500

5,000
6,500

12,000

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

0
.4

5

0
.5

0

0
.5

5

0
.6

0

0
.6

5

0
.7

0

0
.7

5

0
.8

0

0
.8

5

0
.9

0

0
.9

5

1
.0

0

Alignment sensitivity (AUC1)

Program

BLASTP v2.10.0
DIAMOND v0.7.12
DIAMOND v2.0.7

MMSeqs2 release 11

QuickBLAST v0.0.0

a b

DIAMOND v2.0.7 (ultra-sensitive)
DIAMOND v2.0.7 (very-sensitive)

Default (fast)

Sensitive

Very-sensitive

Ultra-sensitive

s = 1.0

s = 2.5

s = 6.0

s = 7.5

s = 7.5**

Default (fast)

Sensitive

Default

F
o

ld
 c

h
a

n
g

e
 i
n

 c
o

m
p

u
ta

ti
o

n
 s

p
e

e
d

u
p

 o
v
e

r
B

L
A

S
T

P
 v

2
.1

0
.0

Faster

More sensitive

Fig. 1 | Benchmark of DIAMOND, MMSeqs2 and BLAStP using various sensitivity modes. Computational speedup and alignment sensitivity

comparisons were carried out between the new version of DIAMOND, v2.0.7 (using default, --sensitive, --very-sensitive and --ultra-sensitive modes), the

old version of DIAMOND, v0.7.12 (using default and --sensitive modes), MMSeqs2 release 11 (using modes s = 1.0, s = 2.5, s = 6.0, s = 7.5, s = 7.5** with

--max-seqs 100000), BLASTP v2.10.0 and QuickBLAST v0.0.0. a, Alignment sensitivity (AUC1) measured as the fraction of the query’s protein family

covered until the first false positive, averaged over all queries in the benchmark dataset. Dashed vertical line, alignment sensitivity level of BLASTP v2.10.0

(AUC1 = 0.622). b, rOC curves of the same benchmark showing the true average error rate per query versus the average coverage of the protein family,

depending on the e-value threshold.

NAtuRe MetHODS | VOL 18 | APrIL 2021 | 366–368 | www.nature.com/naturemethods 367

http://scop.berkeley.edu/
http://www.nature.com/naturemethods

BRIEF COMMUNICATION NATURE METHODS

information for data-driven comparative and functional genom-
ics studies. We designed this framework to meet the computational
demands of future high-sensitivity sequence searches, to gain funda-
mental insights into protein evolution and molecular phylogenetics.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of
author contributions and competing interests; and statements of
data and code availability are available at https://doi.org/10.1038/
s41592-021-01101-x.

Received: 23 July 2020; Accepted: 22 February 2021;
Published online: 7 April 2021

References
 1. Lewin, H. A. et al. Earth BioGenome Project: sequencing life for the future of

life. Proc. Natl Acad. Sci. USA 115, 4325–4333 (2018).
 2. Exposito-Alonso, M., Drost, H.-G., Burbano, H. A. & Weigel, D. �e Earth

BioGenome project: opportunities and challenges for plant genomics and
conservation. Plant J. 102, 222–229 (2020).

 3. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res. 25, 3389–3402
(1997).

 4. Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence
classi�cation using exact alignments. Genome Biol. 15, R46 (2014).

 5. Caetano-Anollés, G. & Caetano-Anollés, D. An evolutionarily structured
universe of protein architecture. Genome Res. 13, 1563–1571 (2003).

 6. Capra, J. A., Stolzer, M., Durand, D. & Pollard, K. S. How old is my gene?
Trends Genet. 29, 659–668 (2013).

 7. Dunn, C. W., Luo, X. & Wu, Z. Phylogenetic analysis of gene expression.
Integr. Comp. Biol. 53, 847–856 (2013).

 8. Glover, N. et al. Advances and applications in the quest for orthologs.
Mol. Biol. Evol. 36, 2157–2164 (2019).

 9. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics 26, 2460–2461 (2010).

 10. Kiełbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds
tame genomic sequence comparison. Genome Res. 21, 487–493 (2011).

 11. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence
searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028
(2017).

 12. Fox, N. K., Brenner, S. E. & Chandonia, J.-M. SCOPe: Structural
Classi�cation of Proteins–extended, integrating SCOP and ASTRAL data and
classi�cation of new structures. Nucleic Acids Res. 42, D304–D309 (2014).

 13. Brenner, S. E., Chothia, C. & Hubbard, T. J. Assessing sequence comparison
methods with reliable structurally identi�ed distant evolutionary
relationships. Proc. Natl Acad. Sci. USA 95, 6073–6078 (1998).

 14. Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R. & Wu, C. H. UniRef:
comprehensive and non-redundant UniProt reference clusters. Bioinformatics
23, 1282–1288 (2007).

 15. Hauser, M., Steinegger, M. & Söding, J. MMseqs so�ware suite for fast and
deep clustering and searching of large protein sequence sets. Bioinformatics
32, 1323–1330 (2016).

 16. Buch�nk, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment
using DIAMOND. Nat. Methods 12, 59–60 (2015).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as

you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons license and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
© The Author(s) 2021

1 14 28 56 520

Number of HPC compute nodes used

410.8

28.1

14.5

7.2

0.7

T
o
ta

l
c
o
m

p
u
ta

ti
o
n
 t
im

e
 (

d
)

DIAMOND HPC run: NCBI nr versus UniRef50

Ideal scaling

Extrapolated from sub-alignment

Full alignment on 520 HPC nodes

3,000 4,000 5,000 6,000

Wall-clock time (s)

330

340

350

C
o

m
p

u
te

 n
o

d
e

 i
d

e
n

ti
fi
c
a

ti
o

n
 o

f
D

IA
M

O
N

D
 r

u
n

s

Align block Join block

Fig. 2 | Strong scaling of DIAMOND on up to 520 nodes (20,800 cores) of the Cobra supercomputer of the Max Planck Society. The parallel scalability of

DIAMOND in a distributed computing environment (supercomputer) is shown. runs are performed in --ultra-sensitive mode, using the NCBI nr database

(~281 million sequences) as the query database and the Uniref50 database (~39 million sequences) as the reference database. The full alignment was

performed on 520 nodes (20,800 cores total), finishing in less than 18 hours of wall-clock time. On 1, 14, 28 and 56 nodes, only a subset of the query blocks

could be processed, and the time for the full alignment was linearly extrapolated for each node count. An almost ideal scaling is observed, with a small

super-linear effect caused by the caches of the parallel input–output system. To illustrate the massive parallelism, the inset shows a zoomed-in view of the

sequence of tasks that DIAMOND (v2.0.0) has performed over time on 20 of the 520 nodes, indicated by blue rectangles (alignment process) and orange

rectangles (join operations). White spaces encode the input–output activity on the supercomputer’s shared parallel file system (Extended Data Fig. 1).

NAtuRe MetHODS | VOL 18 | APrIL 2021 | 366–368 | www.nature.com/naturemethods368

https://doi.org/10.1038/s41592-021-01101-x
https://doi.org/10.1038/s41592-021-01101-x
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturemethods

BRIEF COMMUNICATIONNATURE METHODS

Methods
Algorithmic overview of DIAMOND. Double indexing. DIAMOND uses the
double-indexing approach, in conjunction with multiple spaced seeds17, to
optimize the handling of large query and large reference databases. In the �rst
step, tables of seed–location pairs are built for query and reference sequences.
Next, matching seeds are computed using a hash join technique that conducts
recursive radix clustering of both tables until a hash table for the query data �ts
into the cache, at which point the rest of the join is computed by hashing18. We
found this approach to be faster than the sorting method used by older versions of
DIAMOND16, especially given that a full sorting of the reference table is avoided
for smaller query datasets.

The double-indexing algorithm is designed to be cache aware, given that the
data associated with one seed need to be loaded for comparison from memory
only once, while the classical index-based linear seed lookup suffers from poor
data locality. Additionally, our on-the-fly indexing method enables efficient use
of multiple spaced seeds by processing the shapes one at a time and not requiring
the index tables for all shapes to be present in memory simultaneously, while
also avoiding expensive seed lookups through our cache-friendly hash join
implementation.

DIAMOND (v2.0.7) uses two seed shapes of weight 10 for its fast mode, 16
shapes of weight 8 and 14 shapes of weight 7 for its sensitive and very-sensitive
modes, respectively, and 64 shapes of weight 7 for its ultra-sensitive mode. The
seed shapes were computed using SpEED19. Even when operating with 64 shapes,
the run time generation of the indices, together with the join computation, take
up less than 1% of the total run time of the program. When processing the NCBI
nr database, the total size of these indices would be 123 billion letters × 9 bytes
per entry × 64 shapes, which is ~64 TB if kept in memory or written to disk,
while DIAMOND (v2.0.7) requires less than 16 GB of RAM when running in
ultra-sensitive mode. This shows that DIAMOND does not require expensive
computing infrastructures and can be operated with modest hardware resources
if needed. Because of the runtime indexing, DIAMOND maintains disk-based
database files that contain only the reference sequences, and can optionally also use
BLAST databases (since v2.0.8).

Hamming distance filter. In the first stage of the sequence comparison process, a
hamming distance computation between a query sequence and a subject sequence
is performed at all seed hit locations in a 48-letter window encompassing the hit.
We optimized this procedure using a chain of SSE (streaming single-instruction
multiple-data (SIMD) extensions) pcmpeqb, pmovmskb and popcnt instructions
to achieve a tenfold decrease in computation time compared with an ungapped
alignment incorporating a scoring matrix, while reducing the number of hits by
1–2 orders of magnitude. A sensitivity-level-dependent cut-off for the hamming
distance that can also be manually set by the user determines whether a hit is
passed to the next filter stage.

We further extend our initial approach, introduced in the original version
of DIAMOND16, and maximize the filtering throughput by using a loop-tiling
strategy to incorporate the cache hierarchy and address the fact that the
data associated with a single seed may exceed the cache capacity in the new
very-sensitive and ultra-sensitive modes of DIAMOND (v2.0.7). We also load the
48-letter windows at the query and subject locations into linear buffers prior to
running the all-versus-all hamming distance computation, to make best use of the
hardware prefetcher and to avoid any random memory access.

Ungapped extension. After the hamming distance stage, the next step in the
pipeline computes ungapped extensions at the seed hit locations. This procedure
is vectorized using AVX2 instructions, aligning one query against up to 32 subject
sequences. After 32 subject sequences are loaded into AVX2 registers, a 32 × 32 byte
matrix transposition is computed using a series of 160 unpack instructions, such
that 32 letters of different subjects are interleaved into one SIMD register, and the
match scores can be loaded along the query. A sensitivity-level-dependent e-value
threshold determines the hits that will be passed to the next stage.

Leftmost seed filter. Due to its double-indexing algorithm, DIAMOND may find
the same alignment multiple times independently during the search stage. These
redundant hits need to be filtered out to avoid an excessive use of temporary
disk space. DIAMOND accomplishes this task by inspecting the local ungapped
alignment for seed hits to the left of the hit that is currently being processed, as
well as seed hits by previously processed shapes. If such a hit is found, DIAMOND
notices the repetition and the current hit is discarded. Given that this procedure
entails checking against up to 64 different seed shapes, we further optimized this
process by incorporating a precomputed lookup table that stores information
on whether any of the processed shapes will hit a given bit-encoded match or
mismatch pattern, thus enabling the same check to be performed in one pass over
the local hit pattern.

Adaptive ranking. Given that the typical application of an aligner will require the
reporting of a certain number of best alignments (hits) for each query (as set on
the command line using the --max-target-seqs option), DIAMOND makes use
of this parameter to control the computational effort spent on seed extension and

avoid having to compute gapped extensions for all seed hits. To this end, after the
seed search within target sequences has been concluded, we determine a tentative
order of target hits with respect to a single query. In the present case, this ranking
procedure uses the ungapped extension scores at seed hits to assign a linear order to
the targets. DIAMOND sorts the target list by ungapped extension score (from best
to worst) for each target, similar to the way in which MMSeqs2 uses its ungapped
extension-derived prefilter scores. Although MMSeqs2 will then compute Smith–
Waterman extensions for a fixed number of best targets (as set using the --max-seqs
parameter), DIAMOND uses a dynamic criterion to halt evaluation of further
targets. We refer to this dynamic approach as adaptive ranking, which improves
the DIAMOND reporting accuracy compared with the static criterion used by
MMSeqs2, while providing a less biased and more data-adapted filtering procedure.
The ranked list is processed in chunks of 400 targets (configurable on the command
line using ext-chunk-size), for which extensions are computed. If no extension in
the current chunk yields a significant alignment under the user-specified reporting
criteria, computation of further extensions for the query is aborted, otherwise the
next chunk of targets will be processed.

Gapped extension filter. Given that computing full Smith–Waterman20 extensions
is expensive, we have developed a fast heuristic algorithm designed to estimate
a gapped alignment score and discard hits that most probably do not meet the
user-set reporting threshold. We use a query profile data structure in the same
way as the vectorized Smith–Waterman algorithm introduced by Farrar21, which
is an array for each of the amino acid letters that stores the scores along the
query against the given residue. We then use AVX2 instructions to sum up these
scores along diagonals of the dynamic programming matrix, thus computing
local ungapped extension scores on diagonals. This approach ignores gaps in the
alignment and therefore eliminates intra-register data dependencies. With its
minimal logic, our heuristic achieves a throughput ~fivefold faster than a Smith–
Waterman computation using the vectorized SWIPE method22. Nevertheless,
ungapped scores on the diagonals can be used to estimate a gapped extension
score by thresholding and computing a one-dimensional dynamic program
that disregards the location of the diagonal segments. Although this simplifying
assumption leads to an overestimation of the true alignment score most of the
time, the heuristic is still able to reduce the number of spurious hits by one order of
magnitude in the most sensitive alignment mode. If required by the user, this filter
step can be disabled using the option gapped-filter-evalue 0.

Chaining. Chaining is the computation of a dynamic program at the level of
diagonal segments instead of at the base or residue level, and has been used
successfully in DNA alignment tools such as minimap2 (ref. 23). DIAMOND
(v2.0.7) introduces the use of chaining on protein sequences. The result of the
chaining computation is used to infer a scaffold for the optimal alignment and to
determine the band geometry for a banded Smith–Waterman algorithm20.

Chaining can be simplified on DNA sequences by considering only diagonal
segments of exact matches. However, this is not possible for protein sequences,
which makes this computation substantially more elaborate. DIAMOND solves
this problem by sorting the diagonal segments obtained by the ungapped extension
stage on the starting position in the subject, and constructs a graph in which nodes
represent diagonal segments and edges denote diagonal shifts (gaps) by computing
pairwise connections between the diagonal segments in one left-to-right pass.
Such pairwise connections are then stored as graph edges, incorporating their
inbound and outbound coordinates to prevent invalid chains and to allow zigzag
connections in which the optimal path repeatedly shifts between the same two
diagonal nodes. A red–black tree for the nodes ordered on the diagonal is used
to quickly access the most proximal nodes and candidates for determining a
connection. For each node, the best score of a local alignment ending in that node
is stored, the maximum of which yields the final score estimate and end point for
backtracing of the approximate optimal alignment.

Banded SWIPE. The final extensions are computed using a modified version of
the vectorized SWIPE (ref. 22) approach that accommodates banding. Due to their
design, both the SWIPE and the ‘striped’ SIMD vectorization21 algorithms do not
easily allow banded alignment, resulting in the need for an O(n²) computation
in proportion to the length of the query and subject sequences. We vectorize the
alignment of a query against up to 32 subjects by overlaying the banded dynamic
programming matrix columns of the subjects based on their query ranges (the
query coordinate interval [i0,i1] that corresponds to a slice of the given column with
the subject’s band). Given that the bands of the subjects are different, this cannot be
fitted perfectly into the register, but reaches a register load efficiency of 80–90% for
larger databases. All extensions are computed using 8-bit scores and are repeated
when an overflow is detected, unless an alignment score of >255 is already known
from previous stages.

Alignments are scored using the BLOSUM62 matrix by default. In addition,
we also use a method of composition-based score adjustments15 that is designed
to increase the specificity of the scoring procedure. If required, DIAMOND
(since v2.0.6) also supports applying the BLAST compositional matrix adjust
scoring procedure24 to compute BLAST-like alignment scores (options
--comp-based-stats3,4).

NAtuRe MetHODS | www.nature.com/naturemethods

http://www.nature.com/naturemethods

BRIEF COMMUNICATION NATURE METHODS

As an alternative, DIAMOND (v2.0.7) also includes the option to compute
full-matrix instead of banded Smith–Waterman extensions (command line option
--ext full), which are also vectorized using the SWIPE algorithm.

Frameshift alignments. Reads produced by MinION technology25 are known
to be noisy and contain frequent indel errors, a problem that also translates to
assemblies derived from such long reads. In consequence, genes cannot be detected
reliably on such DNA sequences. DIAMOND addresses this issue by providing
frameshift alignments in translated search (blastx) mode. The protein sequences
corresponding to all three reading frames of a strand are aligned simultaneously
against the target sequence, allowing shifts in the reading frame at any position
in the alignment, while incurring a user-defined score penalty (set using -F on
the command line). The raw MinION reads and contigs up to the length of full
bacterial chromosomes are supported as input in translated search mode, enabling
gene discovery and annotation in the absence of known gene boundaries.

Repeat masking. Differentiating between true evolutionary relationships and
spurious similarities presents a big challenge in remote homology detection,
particularly given the repetitive nature of sequence regions found in many
genomes. When dealing with an increasing load of available genomes for
tree-of-life scale sequence searches, the ability to differentiate between similarity
relationships based on sequence repetitiveness and homology based on a
biologically meaningful sequence structure (non-repetitive sequence under
purifying selection) becomes crucial to reduce the number of false-positive hits
and increase alignment specificity at scale. Masking of low-complexity regions
(repeat masking) is the most commonly used strategy to eliminate false-positive
hits and to retain only hits found in biologically meaningful homologs. It has
been shown that despite using the SegMasker tool included in BLASTP26, many
more and stronger spurious similarities will arise than are expected on random
sequences, as defined by an e-value threshold parameter27. DIAMOND reduces
this false-positive bias by using more stringent and more sophisticated masking
paradigms based on tantan. If required, the tantan masking can be replaced by the
more conservative default BLASTP SEG masking and composition-based statistics
using the option --comp-based-stats 3 (ref. 24).

Distributed-memory parallelization. As part of DIAMOND, our comprehensive
sequence search framework supports a distributed-memory parallelization to
leverage the computing power of state-of-the-art HPC and cloud-computing
resources for massive-scale protein alignments. To this end, both the query
database and the reference database are segmented into data packages that we
refer to as chunks. The Cartesian product of both query and reference sets defines
a (typically large) set of work packages. In the first instance, files containing
metadata on these work packages are created centrally before a parallel run is
started on independent computing nodes and are subsequently processed in
a distributed manner by multiple worker processes of DIAMOND. Usually,
only one worker process runs per compute node, efficiently utilizing all of the
locally available cores via threads. Unlike related work such as mpiBLAST28, our
implementation does not use any special interprocess communication libraries,
such as the message passing interface (MPI) specific to HPC environments, instead
it relies on input–output operations supported by any POSIX-compliant parallel
file system that is mounted on all of the compute nodes involved. The advantage of
this approach is that work packages are distributed in a self-organized way at run
time to all participating worker processes using simple file-based stacks located in
the parallel file system, with atomic push and pop operations. Once all database
chunks for a specific query chunk have been processed, the final worker process
involved in the query chunk takes on the role of performing the join operation
to ultimately create the output stream. Note that the largest part of the temporary
files stays local to a compute node, and only the lightweight work-stack files and
the DIAMOND hits from the protein searches are written into the shared parallel
file system. This strategy significantly reduces input–output overloads and enables
massively parallel processing of DIAMOND runs. In addition to the lack of
complex dependencies, such as on MPI, we highlight the particular advantages of
our approach. First, there is no designated primary worker to induce a bottleneck
due to synchronization, or to act as a potential single point of failure. Second, and
by design, worker processes may join and leave at run time, which is less important
on classical HPC systems that use batch systems to orchestrate potentially large
numbers of processes, but is of striking advantage on elastic cloud-computing
resources and on existing commodity resources such as networked laboratory
desktop computers. Last, our transactional file-based work-distribution protocol
enables fault tolerance, which means that if worker processes die unexpectedly,
other processes in a subsequent run can take on and resume their work packages.

Benchmarks. Main benchmark. To create a benchmark database, we annotated
the 14 September 2019 release of UniRef50 containing 37.5 million sequences
with SCOP families. To categorize each protein sequence, we ran SWIPE22 using
an e-value cut-o� of 10−5 against the SCOPe ASTRAL40 v2.07 dataset12 of domain
sequences consisting of 4,850 protein families, which resulted in a collection of
7.74 million annotated protein sequences. We used the hit with the highest bit
score per SCOPe fold (a grouping of structurally similar superfamilies) to infer the
protein family annotation while allowing multidomain associations.

Given that DIAMOND requires a large query dataset to reach its maximum
efficiency, we used an analogous SWIPE approach and annotated the NCBI nr
database from 25 October 2019 in accordance with SCOPe families. We used
UPGMA clustering29 on the sets of all protein sequences annotated with the same
superfamily to cluster and reduce them to a maximum of 1,000 sequences, which
we selected as representatives of that superfamily, resulting in a benchmark dataset
of 1.71 million queries.

Both query and reference sequences were locally shuffled in 40-letter windows
outside the annotated ranges. All benchmark datasets and annotations have been
published30.

Alignment for all tools was run on an AMD Ryzen Threadripper 2970WX
24-core workstation clocking at 3.0 GHz with 256 GB of RAM, except for the
BLASTP (v2.10.0) run, which, due to its run time limitations on a desktop
computer workstation, was performed on the Max Planck Society’s Draco
supercomputer at Garching, Germany, using 24 nodes (32 cores on two Intel
Haswell E5-2698v3 chips per node). On the benchmark machine the performance
of BLASTP (v2.10.0) was estimated using a random subset of 10,000 queries
sampled from the initial benchmark dataset.

For each query, we determined the AUC1 value, defined as the number of
alignments against sequences matching the query’s protein family, divided by
the total number of database sequences of that family (also called the coverage
of the protein family). Only hits until the first alignment against a false positive
were taken into account, which was defined as the alignment of query and subject
sequences from different SCOPe folds. For multidomain proteins, the AUC1 value
was averaged over the domains. The AUC1 values of the individual queries were
again averaged over the query dataset to obtain the final sensitivity value (Fig. 1a).
To ensure that a false positive is contained in the result list of every query, the tools
were configured to report all alignments up to an e-value of 1,000 (Supplementary
Information). Further information about the benchmark design can also be found
in the Nature Research Reporting Summary.

Detailed assessment of sequence identities in true-positive alignments. We explored
the sensitivity of all compared tools in more detail by resolving it at the level of
amino acid sequence identity of true-positive alignments. For this purpose, we
define the sequence identity of a query–subject association induced by annotation
with the same SCOPe protein family as that obtained from the Needleman–
Wunsch alignment between the pair of annotated ranges in the query and subject.
Extended Data Figure 2 shows a breakdown of the AUC1 sensitivity for our main
benchmark, computed as if the search space of positive cases were restricted to
associations of the respective sequence identity ranges. Additionally, Extended
Data Fig. 3 shows how a query sequence’s family associations are distributed across
the identity bins for our benchmark dataset.

Supplementary benchmarks. We report benchmark results for two additional
datasets, consisting of sequencing reads from Illumina HiSeq 4000 paired end
sequencing (2 × 150 base pairs) and Illumina HiSeq 2500 paired end sequencing
(2 × 250 base pairs). The datasets were created based on data from a recent rumen
metagenome study31 (Supplementary Information, see Supplementary Benchmark 1)
and an environmental study of the topsoil microbiome32 (Supplementary
Information, see Supplementary Benchmark 2). SCOPe-annotated datasets of
1.55 million and 1 million reads, respectively, were obtained as described in the
Supplementary Information. The benchmark runs for the two query read datasets
were carried out analogously to the run for our main benchmark, operating all
tools in translated search mode against the same database of SCOPe-annotated
UniRef50 sequences. We report performance, AUC1 values and ROC curves for
both runs (Extended Data Figs. 4–7).

Experimental study. The ultimate ambition of DIAMOND v2.0.7 is to provide a
comprehensive search framework for sensitive tree-of-life scale protein alignments
in the Earth BioGenome Project era and beyond. Although BLAST-like sensitivity
levels are the maximally achievable thresholds for pairwise alignments, the next
focus of any aligner should be the computational scalability to process millions of
sequenced species. With the new --ultra-sensitive mode introduced in DIAMOND
v2.0.0 we achieve this critical BLAST-like sensitivity level while maintaining
an 80-fold computational speedup, and we achieve an additional near-linear
parallel speedup when using the custom DIAMOND HPC implementation.
To simulate all facets of a tree-of-life scale protein search that is able to mimic
future applications of large-scale comparative genomics projects, we performed
DIAMOND --very-sensitive and --ultra-sensitive searches on 520 nodes of the
Cobra supercomputer of the Max Planck Society (40 cores on two Intel Skylake
6148 chips, and 192 GB RAM per node), totaling 20,800 computing cores (41,600
threads), using the NCBI nr database (currently storing all sequenced proteins
for ~12,000 eukaryotic species and all proteins from ~440,000 genomes of
non-eukaryotic species) as the query database, and UniRef50 as the reference
dataset. We randomly shuffled the sequences in both FASTA files to avoid a
load imbalance due to a biased distribution of sequences in the original files.
As a result, DIAMOND v2.0.0 produced 23.1 billion pairwise alignments in the
--ultra-sensitive case and 23.0 billion pairwise alignments in the --very-sensitive
case, starting from an initial query dataset that contained 281 million sequences

NAtuRe MetHODS | www.nature.com/naturemethods

http://www.nature.com/naturemethods

BRIEF COMMUNICATIONNATURE METHODS

and a reference dataset that contained 39 million subject sequences. In
--very-sensitive mode the run terminated in 5.42 hours, while in --ultra-sensitive
mode it terminated in 17.77 hours. The latter run is shown in Fig. 2 and Extended
Data Fig. 1, demonstrating the massive parallelism achieved on the HPC
infrastructure, as shown by the processing of individual tasks over time. Due to
the parallel nature of the align and join operations, the parallel speedup is virtually
linear and is limited only by the throughput of the shared parallel file system of
the supercomputer used. This demonstrates that DIAMOND v2.0.0 can harness
its algorithmic improvements and its new HPC support to cover all sequenced
species in the tree of life within hours rather than months, while matching the
alignment sensitivity levels of BLAST. The uncompressed output generated by this
run occupies ~1,100 GB of disk space and stores the 100 best protein hits for each
sequence in the NCBI nr database.

We envision that in the future this type of DIAMOND output will be easily
accessible to all life scientists via a web application in which users can filter and
search for their protein homologs of interest within minutes across the tree of life
on a precomputed dataset, instead of having to perform complex data analytics and
months’ or years’ worth of BLAST searches to obtain sensitive protein alignments
at this scale.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
The sequence and annotation data that support the findings of this study are
available in figshare (https://doi.org/10.6084/m9.figshare.c.5053112.v1). The
SCOPe ASTRAL40 dataset can be downloaded at http://scop.berkeley.edu/
downloads/scopeseq-2.07/astral-scopedom-seqres-gd-sel-gs-bib-40-2.07.
fa. The UniRef50 database can be downloaded from ftp://ftp.uniprot.org/
pub/databases/uniprot/uniref/uniref50/uniref50.fasta.gz and the NCBI nr
database can be downloaded from ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/
nr.gz. The sequencing reads of the supplementary benchmarks are part of the
samples with European Nucleotide Archive (ENA) accessions SAMEA5383815,
SAMEA5383897, SAMEA5383886, SAMEA5383828, SAMEA5383925,
SAMEA5383848, SAMEA5383824, SAMEA5383873, SAMEA5384011,
SAMEA5383807, SAMEA103892455, SAMEA103892562, SAMEA103892552,
SAMEA103892441, SAMEA103892588, SAMEA103892582, SAMEA103892581,
SAMEA103892571, SAMEA103892491, SAMEA103892619. Source data are
provided with this paper.

Code availability
The source code of DIAMOND v2.0.7 is available at https://github.com/bbuchfink/
diamond and in figshare (https://doi.org/10.6084/m9.figshare.14071334.v1).

References
 17. Ma, B., Tromp, J. & Li, M. PatternHunter: faster and more sensitive homology

search. Bioinformatics 18, 440–445 (2002).
 18. Kim, C. et al. Sort vs. Hash revisited: fast join implementation on modern

multi-core CPUs. Proc. VLDB Endow. 2, 1378–1389 (2009).
 19. Ilie, L., Ilie, S. & Bigvand, A. M. SpEED: fast computation of sensitive spaced

seeds. Bioinformatics 27, 2433–2434 (2011).
 20. Smith, T. F. & Waterman, M. S. Identi�cation of common molecular

subsequences. J. Mol. Biol. 147, 195–197 (1981).
 21. Farrar, M. Striped Smith-Waterman speeds database searches six times over

other SIMD implementations. Bioinformatics 23, 156–161 (2007).
 22. Rognes, T. Faster Smith-Waterman database searches with inter-sequence

SIMD parallelisation. BMC Bioinformatics 12, 221 (2011).

 23. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics
34, 3094–3100 (2018).

 24. Altschul, S. F. et al. Protein database searches using compositionally adjusted
substitution matrices. FEBS J. 272, 5101–5109 (2005).

 25. Jain, M., Olsen, H. E., Paten, B. & Akeson, M. �e Oxford Nanopore
MinION: delivery of nanopore sequencing to the genomics community.
Genome Biol. 17, 239 (2016).

 26. Wootton, J. C. & Federhen, S. Statistics of local complexity in
amino acid sequences and sequence databases. Comput. Chem. 17,
149–163 (1993).

 27. Frith, M. C. A new repeat-masking method enables speci�c detection of
homologous sequences. Nucleic Acids Res. 39, e23 (2011).

 28. Darling, A. E., Carey, L. & Feng, W. C. �e design, implementation, and
evaluation of mpiBLAST. In ClusterWorld Conference & Expo and the 4th
International Conference on Linux Clusters: �e HPC Revolution 2003
https://public.lanl.gov/radiant/pubs/bio/cwce03.pdf (2003).

 29. Sokal, R. R. & Michener, C. D. A Statistical Method for Evaluating Systematic
Relationships (University of Kansas, 1958).

 30. Buch�nk, B. DIAMOND v2.0.7 benchmark. �gshare https://doi.org/10.6084/
m9.�gshare.c.5053112.v1 (2021).

 31. Stewart, R. D. et al. Compendium of 4,941 rumen metagenome-assembled
genomes for rumen microbiome biology and enzyme discovery. Nat.
Biotechnol. 37, 953–961 (2019).

 32. Bahram, M. et al. Structure and function of the global topsoil microbiome.
Nature 560, 233–237 (2018).

Acknowledgements
We thank D. Weigel for careful reading of the manuscript and for valuable feedback and
support, the Max Planck Computing and Data Facility, especially R. Dohmen and
M. Rampp, for access to and support of the HPC infrastructure, and A. Tomescu for
sharing insights regarding the bit pattern matching algorithm used in the leftmost seed
filter. This work was supported by the Max Planck Society.

Author contributions
H.-G.D. and B.B. designed this study, B.B. designed and implemented the algorithms,
K.R. implemented the distributed-memory parallelization, B.B. and H.-G.D.
analyzed and interpreted the results, and B.B. and H.-G.D. wrote the manuscript with
contributions from K.R. All authors have read and approved the final version of the
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Extended data are available for this paper at https://doi.org/10.1038/
s41592-021-01101-x.

Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41592-021-01101-x.

Correspondence and requests for materials should be addressed to H.-G.D.

Reprints and permissions information is available at www.nature.com/reprints.

Peer reviewer information Nature Methods thanks Weizhong Li, Istvan Albert and
Curtis Huttenhower for their contributions to the peer review of this work. Arunima
Singh was the primary editor on this article, and managed its editorial process and peer
review in collaboration with the rest of the editorial team.

NAtuRe MetHODS | www.nature.com/naturemethods

https://doi.org/10.6084/m9.figshare.c.5053112.v1
http://scop.berkeley.edu/downloads/scopeseq-2.07/astral-scopedom-seqres-gd-sel-gs-bib-40-2.07.fa
http://scop.berkeley.edu/downloads/scopeseq-2.07/astral-scopedom-seqres-gd-sel-gs-bib-40-2.07.fa
http://scop.berkeley.edu/downloads/scopeseq-2.07/astral-scopedom-seqres-gd-sel-gs-bib-40-2.07.fa
ftp://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref50/uniref50.fasta.gz
ftp://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref50/uniref50.fasta.gz
ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz
ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz
http://www.ebi.ac.uk/ena/data/view/SAMEA5383815
http://www.ebi.ac.uk/ena/data/view/SAMEA5383897
http://www.ebi.ac.uk/ena/data/view/SAMEA5383886
http://www.ebi.ac.uk/ena/data/view/SAMEA5383828
http://www.ebi.ac.uk/ena/data/view/SAMEA5383925
http://www.ebi.ac.uk/ena/data/view/SAMEA5383848
http://www.ebi.ac.uk/ena/data/view/SAMEA5383824
http://www.ebi.ac.uk/ena/data/view/SAMEA5383873
http://www.ebi.ac.uk/ena/data/view/SAMEA5384011
http://www.ebi.ac.uk/ena/data/view/SAMEA5383807
http://www.ebi.ac.uk/ena/data/view/SAMEA103892455
http://www.ebi.ac.uk/ena/data/view/SAMEA103892562
http://www.ebi.ac.uk/ena/data/view/SAMEA103892552
http://www.ebi.ac.uk/ena/data/view/SAMEA103892441
http://www.ebi.ac.uk/ena/data/view/SAMEA103892588
http://www.ebi.ac.uk/ena/data/view/SAMEA103892582
http://www.ebi.ac.uk/ena/data/view/SAMEA103892581
http://www.ebi.ac.uk/ena/data/view/SAMEA103892571
http://www.ebi.ac.uk/ena/data/view/SAMEA103892491
http://www.ebi.ac.uk/ena/data/view/SAMEA103892619
https://github.com/bbuchfink/diamond
https://github.com/bbuchfink/diamond
https://doi.org/10.6084/m9.figshare.14071334.v1
https://public.lanl.gov/radiant/pubs/bio/cwce03.pdf
https://doi.org/10.6084/m9.figshare.c.5053112.v1
https://doi.org/10.6084/m9.figshare.c.5053112.v1
https://doi.org/10.1038/s41592-021-01101-x
https://doi.org/10.1038/s41592-021-01101-x
https://doi.org/10.1038/s41592-021-01101-x
http://www.nature.com/reprints
http://www.nature.com/naturemethods

BRIEF COMMUNICATION NATURE METHODS

Extended Data Fig. 1 | Detailed visual trace of a massively parallel DIAMOND run on 520 nodes (41,600 threads) of the Cobra supercomputer of the

Max Planck Society. To illustrate the scalability of DIAMOND (v2.0.0) in a distributed computing environment (supercomputer), line-by-line worker

tasks are shown individually for each worker node (the detailed version of Fig. 2). The sequence of tasks DIAMOND (v2.0.0) has performed over time

is indicated by blue rectangles and orange rectangles, in which blue rectangles denote the alignment process and orange rectangles represent join

operations. The numbers within the rectangle indicate the indices of the individual query chunks and of their respective reference chunks. White spaces

encode the IO activity on the supercomputer’s shared parallel file system. The run shown here was performed in–ultra-sensitive mode and used the full

NCBI non-redundant database as the query database, and the Uniref50 database as the reference database, finishing in below 18 hours of wallclock time.

The result demonstrates DIAMOND’s efficient distribution of massively parallel work packages at scale, showing that all workers finish around the same

time without creating a significant load imbalance (Experimental Study).

NAtuRe MetHODS | www.nature.com/naturemethods

http://www.nature.com/naturemethods

BRIEF COMMUNICATIONNATURE METHODS

0.00

0.25

0.50

0.75

1.00

[0;10[[10;20[[20;30[[30;40[[40;50[[50;60[[60;70[[70;80[[80;90[[90;100]

Sequence identity interval in %

A
U

C
1

Program

BLAST

DIAMOND ultra−sensitive

DIAMOND very−sensitive

DIAMOND sensitive

DIAMOND default

MMSeqs2 s7.5
MMSeqs2 s6.0
MMSeqs2 s2.5

MMSeqs2 s1.0

Extended Data Fig. 2 | Assessment of true positive alignments. AUC1 sensitivity as reported for our main benchmark, resolved by sequence identity

of the query-subject association under our SCOPe annotation (middle = median, hinges=25%/75% quantiles, lower/upper whisker = smallest/largest

observation greater/less than or equal to lower/upper hinge -/+ 1.5 * IQr).

NAtuRe MetHODS | www.nature.com/naturemethods

http://www.nature.com/naturemethods

BRIEF COMMUNICATION NATURE METHODS

0.0

0.1

0.2

0.3

0.4

0.5

[0
;5

[

[5
;1

0
[

[1
0
;1

5
[

[1
5
;2

0
[

[2
0
;2

5
[

[2
5
;3

0
[

[3
0
;3

5
[

[3
5
;4

0
[

[4
0
;4

5
[

[4
5
;5

0
[

[5
0
;5

5
[

[5
5
;6

0
[

[6
0
;6

5
[

[6
5
;7

0
[

[7
0
;7

5
[

[7
5
;8

0
[

[8
0
;8

5
[

[8
5
;9

0
[

[9
0
;9

5
[

[9
5
;1

0
0
]

Sequence identity interval in %

F
ra

c
ti
o

n
 o

f
p

ro
te

in
 f
a

m
ily

Extended Data Fig. 3 | Assessment of protein family associations. The distribution (shown in 5% bins) of a query’s protein family member associations

with respect to the sequence identity of the corresponding Needleman Wunsch alignments between the annotated ranges (middle = median,

hinges=25%/75% quantiles, lower/upper whisker = smallest/largest observation greater/less than or equal to lower/upper hinge −/+ 1.5 * IQr).

NAtuRe MetHODS | www.nature.com/naturemethods

http://www.nature.com/naturemethods

BRIEF COMMUNICATIONNATURE METHODS

default (fast)

sensitive

very sensitive

ultra−sensitive

s=1.0

s=2.5

s=6.0

s=7.5

default (fast)

sensitive

1

35

111

181

565

1218

2553

6577

10342

1

2

3

4
5

8
10

20

50

80

250

350

900

2000

3500

5000

8000

13000

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

Alignment Sensitivity (AUC1)

X
 f

o
ld

 c
o

m
p

u
ta

ti
o

n
a

l
s

p
e

e
d
−

u
p

 o
v

e
r

B
L

A
S

T
X

Program

aa
aa
aa
aa

BLASTX v2.10.0
DIAMOND v0.4.7
DIAMOND v2.0.7
MMSeqs2 release 11

Extended Data Fig. 4 | Metagenomic benchmark results using Illumina HiSeq 4000 paired end sequencing (2x150 bp) reads from Stewart et al., 2019.

Computational speedup and alignment sensitivity comparisons for translated searches of 150bp Illumina short reads from rumen metagenome samples

(Supplementary Benchmark 1). Alignment sensitivity (AUC1) is measured as the fraction of the query’s protein family covered until the first false positive,

averaged over all queries in the benchmark dataset. The y-axis denotes the x-fold computational speedup achieved over BLASTX v2.10.0.

NAtuRe MetHODS | www.nature.com/naturemethods

http://www.nature.com/naturemethods

BRIEF COMMUNICATION NATURE METHODS

default (fast)

sensitive

very−sensitive

ultra−sensitive

s=1.0

s=2.5

s=6.0

s=7.5

default (fast)

sensitive

1

19

99

133

285

990

1879

5699

10240

1

2

3

4
5

8
10

15

30

50

200

350

600

1500

2300
3000

4500

8000

13000

0
.0

2

0
.0

3

0
.0

4

0
.0

5

0
.0

6

0
.0

7

0
.0

8

0
.0

9

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

Alignment Sensitivity (AUC1)

X
 f

o
ld

 c
o

m
p

u
ta

ti
o

n
a

l
s

p
e

e
d
−

u
p

 o
v

e
r

B
L

A
S

T
X

Program

aa
aa
aa
aa

BLASTX v2.10.0
DIAMOND v0.4.7
DIAMOND v2.0.7
MMSeqs2 release 11

Extended Data Fig. 5 | Metagenomic benchmark results using Illumina HiSeq 2500 paired end sequencing (2x250 bp) reads from Bahram et al., 2018.

Computational speedup and alignment sensitivity comparisons for translated searches of 250bp Illumina short reads from topsoil metagenome samples

(Supplementary Benchmark 2). Alignment sensitivity (AUC1) is measured as the fraction of the query’s protein family covered until the first false positive,

averaged over all queries in the benchmark dataset. The y-axis denotes the x-fold computational speedup achieved over BLASTX v2.10.0.

NAtuRe MetHODS | www.nature.com/naturemethods

http://www.nature.com/naturemethods

BRIEF COMMUNICATIONNATURE METHODS

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0
.0

0
0

0
0

0
1

0

.0
0

0
0

0
1

0
.0

0
0

0
1

0

.0
0

0
1

0
.0

0
1

0

.0
1

0
.1

 1

 1

0

 1

0
0

Errors/Query

C
o

v
e

ra
g

e
 o

f
P

ro
te

in
 F

a
m

il
y

Program

BLAST v2.10.0
DIAMOND v2.0.7 default
DIAMOND v2.0.7 sensitive
DIAMOND v2.0.7 very−sensitive
DIAMOND v2.0.7 ultra−sensitive
MMSeqs2 release11 s1.0
MMSeqs2 release11 s2.5
MMSeqs2 release11 s6.0
MMSeqs2 release11 s7.5

Extended Data Fig. 6 | ROC curves for metagenomic benchmark using Illumina HiSeq 4000 paired end sequencing (2x150bp) reads from Stewart et al.,

2019. We show the true average error rate per query (x-axis) against the average coverage of the protein family (y-axis) depending on the e-value threshold

for Supplementary Benchmark 1.

NAtuRe MetHODS | www.nature.com/naturemethods

http://www.nature.com/naturemethods

BRIEF COMMUNICATION NATURE METHODS

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0
.0

0
0

0
0

0
1

0

.0
0

0
0

0
1

0
.0

0
0

0
1

0

.0
0

0
1

0
.0

0
1

0

.0
1

0
.1

 1

 1

0

 1

0
0

Errors/Query

C
o

v
e

ra
g

e
 o

f
P

ro
te

in
 F

a
m

il
y

Program

BLAST v2.10.0
DIAMOND v2.0.7 default
DIAMOND v2.0.7 sensitive
DIAMOND v2.0.7 very−sensitive
DIAMOND v2.0.7 ultra−sensitive
MMSeqs2 release11 s1.0
MMSeqs2 release11 s2.5
MMSeqs2 release11 s6.0
MMSeqs2 release11 s7.5

Extended Data Fig. 7 | ROC curves for metagenomic benchmark using Illumina HiSeq 2500 paired end sequencing (2x250bp) reads from Bahram et al.,

2018. We show the true average error rate per query (x-axis) against the average coverage of the protein family (y-axis) depending on the e-value threshold

for Supplementary Benchmark 2.

NAtuRe MetHODS | www.nature.com/naturemethods

http://www.nature.com/naturemethods

	Sensitive protein alignments at tree-of-life scale using DIAMOND
	Online content
	Fig. 1 Benchmark of DIAMOND, MMSeqs2 and BLASTP using various sensitivity modes.
	Fig. 2 Strong scaling of DIAMOND on up to 520 nodes (20,800 cores) of the Cobra supercomputer of the Max Planck Society.
	Extended Data Fig. 1 Detailed visual trace of a massively parallel DIAMOND run on 520 nodes (41,600 threads) of the Cobra supercomputer of the Max Planck Society.
	Extended Data Fig. 2 Assessment of true positive alignments.
	Extended Data Fig. 3 Assessment of protein family associations.
	Extended Data Fig. 4 Metagenomic benchmark results using Illumina HiSeq 4000 paired end sequencing (2x150 bp) reads from Stewart et al.
	Extended Data Fig. 5 Metagenomic benchmark results using Illumina HiSeq 2500 paired end sequencing (2x250 bp) reads from Bahram et al.
	Extended Data Fig. 6 ROC curves for metagenomic benchmark using Illumina HiSeq 4000 paired end sequencing (2x150bp) reads from Stewart et al.
	Extended Data Fig. 7 ROC curves for metagenomic benchmark using Illumina HiSeq 2500 paired end sequencing (2x250bp) reads from Bahram et al.

