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Abstract: We have generated Artificial Neural Networks (ANN) capable of

performing sensitive, quantitative predictions of peptide binding to the MHC

class I molecule, HLA-A*0204. We have shown that such quantitative ANN

are superior to conventional classification ANN, that have been trained to

predict binding vs non-binding peptides. Furthermore, quantitative ANN

allowed a straightforward application of a ‘Query by Committee’ (QBC)

principle whereby particularly information-rich peptides could be identified

and subsequently tested experimentally. Iterative training based on

QBC-selected peptides considerably increased the sensitivity without

compromising the efficiency of the prediction. This suggests a general,

rational and unbiased approach to the development of high quality predictions

of epitopes restricted to this and other HLA molecules. Due to their

quantitative nature, such predictions will cover a wide range of MHC-binding

affinities of immunological interest, and they can be readily integrated with

predictions of other events involved in generating immunogenic epitopes.

These predictions have the capacity to perform rapid proteome-wide searches

for epitopes. Finally, it is an example of an iterative feedback loop whereby

advanced, computational bioinformatics optimize experimental strategy, and

vice versa.

Proteomes are extremely diverse and can be used to ascertain the

identity of any organism. This is true even at the level of oligo-

peptides. Indeed, the immune system has chosen peptides as one of

its prime targets. It follows that proteomes can be translated into

immunogens once it is known how the immune system generates and

handles peptides (1). One of the most selective events is that of

peptide binding to MHC. It is therefore important to establish accur-

ate descriptions and predictions of peptide binding to the most

common MHC haplotypes.

The function of MHC class I molecules (MHC-I) is to sample

intracellularly processed peptides, transport them to the cell sur-

face and display them to cytotoxic T cells (CTL) (reviewed in 2, 3).

It has been estimated that MHC-I can bind approximately
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0.5% of the universe of 9-mer peptides (conversely, more than

99% is ignored) making this one of the most selective events of

antigen presentation (3). However, even 0.5% of the universe of

9-mer peptides is still a sizable number of different peptides (the

universe of 9-mer peptides encompasses 5.12 � 1011 members;

0.5% of this is 2.56 � 109). Such broad peptide binding specificity

is achieved through the recognition of so-called ‘motifs’ repres-

enting important requirements needed for binding such as the

presence and proper spacing of certain amino acids within the

peptide sequence (4–9). The most important of these are known

as primary anchor residues. In general, there are two to three

primary anchor positions and together they constitute a ‘simple

motif’ (reviewed in 9). However, other features such as secondary

anchors and disfavored residues, adding up to an ‘extended

motif’, are also important in defining peptide–MHC interaction

(8). The most elaborate extended motifs consist of detailed statis-

tical matrices representing the frequency of every amino acid in

every position (10, 11). Predictions of peptide-MHC binding are

usually performed as motif searches, which are far from perfect

(12, 13). A simple motif search has a modest sensitivity; actually,

it misses 70% of all binders. An extended motif search has a

better sensitivity although it still misses about 30% of all bind-

ers (12); and the improvement comes at the cost of a large

increase in the number of false positives (12). A likely reason

for this lack of efficiency of motif searches is the necessary, but

incorrect, assumption that the effect of each amino acid is inde-

pendent of the sequence context. Although these assumptions

may merit considerable justification as an approximation (10),

further improvements in predictions may require that the entire

peptide is considered including any sequence specific correlated

effects (14). In addition, it is highly desirable that future predic-

tion schemes are quantitative (15). This would allow the identifi-

cation of high, intermediate, and low affinity binders, all of which

are of potential biological interest. Finally, quantitative predic-

tions would facilitate the integration of predictions of MHC

binding with predictions of other events involved in antigen

presentation (1).

Many other methods or refinements have been suggested

including quantitative matrices (11), hidden Markov models (16),

and rule-based models using binding motifs (17), however, it is

generally not possible to incorporate correlated effects with any of

these approaches. These can be incorporated with molecular model-

ing (18), but this is computer and labor intensive, and not amen-

able to high throughput analysis. ANN have gained increasing

popularity as an efficient way to store and extract information

from complex data (19). It combines the analysis of correlated

effects with high throughput, and promising results have been

obtained with ANN-driven predictions of peptide–MHC interact-

ions (20–24). Briefly, ANN are trained to recognize an input (in

casu, a specific peptide sequence) associated with a given output

(the corresponding MHC binding affinity). Once trained, they

recognize the complicated peptide patterns, including the corre-

lated or non-linear effects, compatible with binding. Of utmost

importance for the success of such a data-driven approach is the

generation of representative and information-rich data for train-

ing. Here, we describe an efficient approach for obtaining such

data and demonstrate the ability of ANN to perform quantitative

predictions of peptide binding to MHC. The MHC class I molecule,

HLA-A*0204, is used to exemplify this approach, however, we

expect that it can be generalized to all other peptide-binding HLA-

molecules.

Materials and methods

Peptide-MHC class I binding assay

Human MHC-I molecules, HLA-A*0204, were affinity-purified as

previously described (25, 26). Peptides were purchased from

Schaefer-N, Copenhagen, or synthesized using a standard FMOC-

protection strategy (27). The purity of the peptides was verified by

HPCL (>80%) and the identity by mass spectrometry. MHC-I

molecules were incubated for 48 h at 18�C with increasing concen-

trations of test peptide and a fixed concentration (about 2 nM) of

radiolabeled indicator peptide in the presence of 3 mM human b2m

as previously described. Binding was examined by Sephadex G50

spun column gel filtration under conditions, where the IC50 approxi-

mated the KD (31).

Development of Artificial Neural Networks

The neural networks were of the standard feed-forward type (32).

Details of sequence encoding, error function, etc. may be found else-

where (28). The predictive performance was monitored using the

Pearson correlation coefficient during training and testing of the

networks. Training was terminated using early stopping (32).

Redundant sequence data sets were made non-redundant using

the first version of the Hobohm procedure (30). In a sequential scan

of the data in a database, this method discards sequences where the

similarity in a pair-wise alignment exceeds a given scoring threshold.

The resulting non-redundant data set has therefore no pairs of

sequences with a similarity exceeding that threshold. When creating

a non-redundant version of SWISS-PROT, a threshold of 25%
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sequence identity was used. When computing the similarity between

9-mer peptides, the information content in a sequence logo (29) of

binders was used to weight the positions in the calculation of the

similarity.

Results and discussion

Generating representative sets of quantitative peptide-

MHC binding data (primary data selection)

On average, 0.5% of the universe of 9-mer peptides binds MHC with

high affinity (3). Consequently, using a random selection strategy, one

would have to test 20,000 peptides experimentally to get a mere 100

independent examples of peptide-MHC binding. This is an untenable

proposition and mandates a preselection strategy. To test such a

selection strategy we used a biochemical peptide-HLA-A*0204 binding

assay, which was already available to us (11). Due to cost and time

constraints, all relevant data that were already available were included

(peptides from proteins of particular interest such as p53, HSP70, HIV

proteins). These were combined with data selected by screening the

entire SWISS-PROT database for binders using specificity matrices

developed by a previously described combinatorial peptide library

approach (11). This resulted in the identification of more than

100,000 peptides, which were sequence similarity reduced based on

the Hobohm algorithm (30, see Methods). A number of peptides were

selected, synthesized, verified by HPLC and mass spectrometry, and

only those that contained peptide of the expected mass and purity

were included in the subsequent binding analysis. Thus, the primary

selection and synthesis led to the generation of a panel of about 400 9-

mer peptides. These were tested for binding to HLA-A*0204 using an

in vitro biochemical peptide-MHC class I binding assay (31), which is

capable of measuring the equilibrium dissociation constant, KD, over a

range of almost five decades (from 1 nM to 50,000 nM). The distribu-

tion of peptide binding affinities was: 1% very good binders

(KD< 5 nM), 11% good binders (< 50 nM), 14% intermediate binders

(< 500 nM), 10% low affinity binders (< 5000 nM), 19% very low

affinity binders (< 50,000 nM), and 44% non-binders (> 50,000 nM).

Thus, all ranges of binding, even intermediate and low affinity bind-

ing, is going to contribute to the predictions presented here. Accurate

quantitative predictions covering a range of binding affinities would

be of immunological interest.

Quantitative artificial neural networks (ANN); a novel

strategy of balanced training in a continuum

When applied to sequence analysis, ANN have typically been used

for classification purposes. Previous attempts to use ANN to pre-

dict peptide binding to MHC have sought to identify binders vs

non-binders as defined by different thresholds (20, 21, 24) (in some

cases, peptides are classified into additional categories including

intermediate and low affinity binding (22, 23)). From an informa-

tion theoretic perspective, a measured binding affinity contains

more information than a binary binding/non-binding resolution.

Thus, a quantitative training approach should extract more infor-

mation from the available experimental data than conventional

classification approaches would do. To better represent the quan-

titative differences of peptide–MHC interactions throughout the

measurable range, the actual binding values were transformed

logarithmically prior to ANN development. This means that a

small error in determining a good binder (e.g., predicted 9 nM vs

observed 12 nM) will be considered as grave as a large error in

determining a poor binder (predicted 9000 nM vs observed

12,000 nM). Thus, our approach will attempt to emphasize differ-

ent binding ranges equally well, i.e., each example of intermediate

binding will contribute as much to the ANN training as each

example of high affinity binding.

The different binding ranges might not be represented at the same

frequency in the available data (e.g., in our case there are few

examples of very good binders and many examples of non-binders).

In a conventional classification ANN approach, variations in the size

of the different categories can be offset by representing each category

at the same frequency during training (32). In the case of MHC

binding, any random selection of peptides will be heavily skewed

towards non-binders; even with our preselection strategy, there is

some skewing towards non-binders. We have therefore devised a

novel ANN approach, which performs a balanced training in a

continuum. The available data set was randomly subdivided into

seven parts of roughly the same size. This allowed for training of

seven different ANN and cross-validation of the predictive perform-

ance. Furthermore, each training set was distributed into two to five

bins according to the observed binding affinity. Each interval of

binding affinity was represented with the same frequency during

training (i.e., in every training cycle, all peptides from the least

represented bin were included, while a similar number were ran-

domly chosen from each over-represented bin). This forced the

ANN to consider the prediction of binders, intermediate binders

and non-binders equally important. The architectures of the ANN

contained 180 input neurons (one for each of the 20 natural amino

acids in each position of a 9-mer peptide), between two and 10 hidden

neurons, and one output neuron.

The seven unique ANN constructed to predict the binding of 9-

mer peptides to HLA-A*0204 were used to cross-validate the

approach (Fig. 1). A highly significant (P < 0.001) correlation

between the logarithms of the predicted and observed binding
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was found by linear regression analysis. The regression line was

close to the expected y ¼ x demonstrating that ANN indeed can

be trained to predict binding quantitatively. For comparison pur-

poses, ANN of the conventional classification type (i.e., such as

those of Gulukota et al. (21)) were generated, and their output was

fitted and calibrated in the best way possible as a work-around to

obtain quantitative predictions (data not shown). As expected,

the quantitatively trained ANN (CPearson ¼ 0.87) were signifi-

cantly (P < 0.01) more accurate (i.e., able to predict the experi-

mental value) and more precise (i.e., reproducible) than the

classification trained ANN (CPearson ¼ 0.73). This supports our

contention that a measured affinity contains more information

than a binary binding/non-binding encoding. To our knowledge

this is the first attempt to use quantitative data to train an ANN

to predict peptide binding to HLA molecules, that is, we train the

actual affinity values. In contrast, others have used a binary

binding/non-binding encoding (20, 21, 24), or a more elaborate

grading of binding (a ‘staircase’ encoding) (22, 23) for training

purposes.

Unfortunately, it is not possible to validate our ANN-driven

server against any of the other reported ANN-driven predictions

of peptide–MHC interactions as none of these have been made

available publicly and none have addressed the specificity of

HLA-A*0204. Strictly speaking, only another HLA-A*0204 predic-

tion can be compared to the present ANN-driven HLA-A*0204

prediction. We have previously used positional scanning combina-

torial peptide libraries (PSCPL) to generate a quantitative HLA-

A*0204-specific peptide binding matrix, and shown that it can be

used to predict peptide binding. Reassuringly, the ANN-driven

prediction (CPearson ¼ 0.87) described here outperformed this

matrix-based HLA-A*0204 prediction (CPearson ¼ 0.85). In an

attempt to perform an independent validation of the present ANN

prediction, we compared it to predictions of the closely related HLA-

A*0201 (a single methionine to arginine substitution at position 97

distinguishes HLA-A*0201 from HLA-A*0204). Two publicly avail-

able HLA-A*0201 predictions are in frequent use: BIMAS at http://

bimas.dcrt.nih.gov/molbio/hla_bind/and SYFPEITHI at http://

www.syfpeithi.de. Best possible fits of the BIMAS and SYFPEITHI

HLA-A*0201 predictions (as in Udaka et al. (33)) were compared to

our ANN-driven HLA-A*0204 prediction. Our ANN-driven predic-

tion outperformed both matrix-driven predictions (BIMAS

CPearson ¼ 0.83 and SYFPEITHI CPearson ¼ 0.81). Thus, the precision

of the ANN-driven prediction is superior to comparable matrix-

driven predictions. We attribute this to the ability of ANN-, but

not matrix-, driven methods to incorporate correlated effects.

Another notable advantage of the ANN-driven prediction is its

ability to predict the exact binding affinity value, whereas the

BIMAS prediction is somewhat arbitrary (some of the values are

even assigned) and the SYFPEITHI prediction is completely arbi-

trary (all values are assigned). Thus, the accuracy of the ANN

prediction is considerably better than that of the two competing

predictions.

Fig. 1. ANN can perform quantitative predictions of

peptide–MHC–I interaction. The binding affinity was

measured in a biochemical assay (31) and expressed as

the logarithm of the equilibrium dissociation constant

(KD (nM)). Subsequently, first generation ANN were

trained to quantitatively predict the logarithm of the

affinity of peptide binding to HLA-A*0204 using a

cross-validation approach. This allowed the affinity of

every peptide to be predicted by an ANN, which had

not been trained on the peptide in question. The

logarithm of the predicted binding vs the logarithm of

the observed binding was plotted and analyzed by

linear regression. The regression line was y¼ 0.99x�0.02

(n¼ 397, CPearson ¼ 0.87, P< 0.001).
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ANN development through successive generations;

an iterative process

Although we attempted to select the primary training sets in

an unbiased and representative way, the selection process was

constrained by the existing data and further shaped by

PSCPL-generated matrix predictions (11), i.e., it only involved an

infinitely small part of the universe of 9-mer peptides. To counter-

act these problems, we devised an iterative approach for ANN

training and development (34). We applied the seven ANN to all

the possible peptides from SWISS-PROT and calculated the stand-

ard deviation of the predicted binding of each peptide. We suggest

that a low SD indicates that the underlying pattern is well repres-

ented in the training set and that the prediction model successfully

generalizes for this particular peptide. Conversely, a high SD

indicates that the underlying pattern is poorly represented and/

or that the model generalizes poorly. In any event, the latter

peptides should be experimentally tested and included in subse-

quent training. Such a selection approach is similar to what has

been named ‘Query by Committee’ (35). We included two addi-

tional requirements in our next generation data selection: (i) the

previous generation of ANN should be in disagreement (i.e., the SD

should be high), and (ii) at least one of the seven ANN should

predict the peptide in question to be a good binder. To assure that

the selected peptides were representative, a large cohort of pep-

tides was selected according to QBC and subsequently similarity

reduced to a more manageable number. Finally, 65 QBC-selected

peptides were synthesized and tested for binding to HLA-A*0204.

This new data set was added to each of the original seven training

sets, and the ANN training repeated. In parallel, a similar sized

panel of control peptides, which had not been selected by QBC,

was synthesized, tested and added as described above. This

yielded two different 2nd generation ANN, 2�ANN(QBC) and

2�ANN(non-–QBC), respectively, which were cross-validated on the

same data as for 1�ANN cross-validation. The QBC effect was

most pronounced with respect to the ability to quantitatively

predict very high affinity binders (< 50 nM), where the

2�ANN(QBC) (CPearson ¼ 0.43) was significantly more precise

(P< 0.01) compared to the 2�ANN(non-–QBC) (CPearson ¼ 0.36). Note

that these results were obtained by merely expanding the training

sets from 340 to 405 peptides.

An intriguing effect of the QBC principle was found when a

complete scanning of the more than 3 million 9-mer peptides

extracted from a non-redundant subset of SWISS-PROT was per-

formed. Averaging the predictions of the seven networks in the

ensemble, we found that the 1�ANN and the 2�ANN(non-–QBC) pre-

dicted roughly the same amount �0.25% of all peptides as being

very high affinity binders. In contrast, the 2�ANN(QBC) predicted not

only these �0.25%, but additionally �0.17%, of all peptides as

being very high affinity binders. Thus, the QBC approach was

unique in the sense that it suggested the existence of many more

high affinity binders. Previous methods have been missing at least

one out of three possible binders (12), and it is tempting to speculate

that the QBC approach might account for these missing binders. In

that case, this gain in sensitivity could be achieved at minimal

expense in terms of the number of false positives. Thus, the QBC

principle appears to be an efficient way to improve both the quality

and the coverage of ANN.

While this work was in progress (34), Udaka et al. Reported a

QBC-like approach to predict binding to MHC molecules (33).

Although there are similarities between their and our

approaches, there are also significant differences. They used a

hidden Markov model (HMM) as the predicting algorithm,

whereas we used an ANN approach. Whenever one considers

correlated effect – as for peptide-MHC binding – ANN will have

an advantage over HMM, which can only consider independent

contributions. As the predicting algorithm determines the out-

come of the QBC procedure, one should in this case expect an

ANN-driven QBC procedure to be better than a HMM-driven

procedure. Furthermore, we used an entirely different strategy

for selecting information-rich peptides for expansion of the data

set: (i) when searching for peptides we used SWISS-PROT, as it

is clear that there is no need for improvement of the prediction

method in the part of sequence space not ‘visited by nature’. In

contrast, many of the randomly generated peptides used by

Udaka et al. will not improve a method used for scanning of

real-world pathogens, because such sequences are never found

in real proteins; (ii) we require that at least one committee

member predicts the Swiss-Prot peptide is a strong binder as

there is no point in improving the method for prediction of non-

binders, as epitope scanning will aim for the detection of inter-

mediate to strong binders, and (iii) we used a novel balanced

training strategy that gives much better prediction for all bind-

ing intervals (without using extra peptides).

To illustrate the 2�ANN(QBC), we used the database of MHC

binding peptides maintained by Rammensee and coworkers

(www.syfpeithi.de). HLA-A*0204 is very poorly represented in this

database, but the closely related HLA-A*0201 can be extracted.

Using the HLA-A*0204 predicting 2�ANN(QBC), 23% and 68% of

187 HLA-A*0201-restricted 9-mer peptides were predicted to be high

and intermediate affinity binders, respectively. For comparison, only

0.42% and 2.8% of randomly selected peptides are predicted to be

high and intermediate affinity binders to HLA-A*0204, respectively

(Fig. 2) (P< 0.001).
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A proteome-wide quantitative prediction of peptide–MHC

interaction

ANN have the capacity to handle entire proteomes in a reasonably

short period of CPU time. A prospective experiment was performed to

test this on a small scale where we searched for immunogenic epitopes

from HIV (Corbet et al. in press). The 81 full-length HIV genomes,

and the many more full length HIV genes available in public databases

ultimo 1999, were translated into proteins and scanned for the presence

of HLA-A*0204 binding peptides (this corresponded to the scanning of

>750.000 9-mer peptides) by the 1�ANN. The peptides were sorted

according to their degree of conservation (assuming that a conserved

epitope is a better vaccine candidate than an epitope only present in

one HIV isolate), and according to their predicted binding. Of the 56

HIV-specific, HLA-A*02xx-restricted (the different members of the

HLA-A2 supertype have largely similar specificities) epitopes, which

were already known at that time (Los Alamos HIV epitopes database

þ MHCPEP), 46 (or 82%) had a predicted binding affinity below

500 nM. Thus, using 500 nM as a cut-off we would only have missed

18% of the known epitopes. In contrast, we gained more than 100

hitherto unknown epitope candidates, which met both the require-

ments of conservation and predicted MHC binding. Of these new

putative HIV epitopes, 52 were synthesized and tested for binding;

36 (or 69%) were verified as binders, and the majority of these were

recognized in HLA-A2þHIV-1 patients (Corbet et al. in press).

Thus, we can project that already the 1�ANN may have more than

doubled the number of known HIV-derived, HLA-A*02xx binders and

epitopes, and we can expect that further gains will be achieved with

the 2�ANN(QBC).

The human MHC project

Taken together, our results suggest that quantitative ANN-driven

predictions of peptide–MHC interactions can be generated. Such

ANN promise unprecedented high sensitivity (ability to identify

positives) and high specificity (ability to reject negatives) predictions.

Our results also suggest a rational iterative approach to generate

such ANN and demonstrate the utility of a selective sampling method

such as the QBC. It therefore seems reasonable to suggest that this

technology could be used to describe and predict human MHC speci-

ficities systematically. There are several hundred MHC-I alleles in the

human population (36). One should start with the most common

MHC-I; eventually they should all be included. As evolutionary

selected variants, we expect that they will differ with respect to

their peptide binding specificity and that the corresponding predic-

tions can lead to a more detailed functional description of MHC-I

polymorphism.

The long-term goal should be to integrate MHC-I predictions with

those of other steps involved in antigen processing and presentation

including peptide generation by proteasome digestion (37)

(www.cbs.dtu.dk/services/NetChop/), peptide transport by the

TAP complex (38), etc., in effect, simulating the biology of the

immune system (1). These bioinformatics tools should be linked to

genome/proteome databases enabling genome/proteome-wide

searches for epitopes of immunological interest. This would allow

scientists and clinicians to examine any organism or protein of

interest for the presence of potentially immunogenic epitopes and

should provide a rational approach to vaccine development and

immunotherapy.

Finally, it should be noted that the iterative QBC approach is an

example of how a mutual feedback between computational bioinfor-

matics and experiments (wet biochemistry) can guide each other to

achieve optimal performance with the least amount of time and

resources invested. A successful integration of computation and

experiment might enable the evaluation of every single member of

an otherwise unmanageably large sequence space.

The ANN generated in this paper are publicly available at

www.cbs.dtu.dk/services/NetMHC/

Fig. 2. Prediction of binding of natural peptides vs random peptides. Second

generation ANN prediction of the binding affinity of (A) 187 natural HLA-

A*0201-eluted 9-mer peptides extracted from the Rammensee database

(www.syfpeithi.de) or (B) 230 randomly chosen 9-mer peptides extracted from

SWISS-PROT.
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