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Abstract: A sensitivity analysis is a powerful technique for understanding systems. This heuristic paper shows how to 

overcome some of the difficulties of performing sensitivity analyses. It draws examples from a broad range of fields: 

bioengineering, process control, decision making and system design. In particular, it examines sensitivity analyses of 

tradeoff studies. This paper generalizes the important points that can be extracted from the literature covering diverse 

fields and long time spans. Sensitivity analyses are particularly helpful for modeling systems with uncertainty. 
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1. INTRODUCTION 

 You should perform a sensitivity analysis anytime you 

create a model, write a set of requirements, design a system, 

make a decision, do a tradeoff study, originate a risk analysis 

or want to discover cost drivers. In a sensitivity analysis, you 

change values of parameters or inputs (or architectural fea-

tures) and measure changes in outputs or performance indi-

ces. The results of a sensitivity analysis can be used to 

validate a model, warn of unrealistic model behavior, point 

out important assumptions, help formulate model structure, 

simplify a model, suggest new experiments, guide future 

data collection efforts, suggest accuracy for calculating pa-

rameters, adjust numerical values of parameters, choose an 

operating point, allocate resources, detect critical criteria, 

suggest tolerance for manufacturing parts and identify cost 

drivers. 

 A sensitivity analysis tells which parameters are the most 

important and most likely to affect system behavior and/or 

predictions of the model. Following a sensitivity analysis, 

values of critical parameters can be refined while parameters 

that have little effect can be simplified or ignored. In the 

manufacturing environment, they can be used to allocate 

resources to critical parts allowing casual treatment of less 

sensitive parts. If the sensitivity coefficients are calculated as 

functions of time, it can be seen when each parameter has the 

greatest effect on the output function of interest. This can be 

used to adjust numerical values for the parameters. The val-

ues of the parameters should be chosen to match the physical 

data at the times when they have the most effect on the out-

put. 

 The earliest sensitivity analyses that we have found are 

the genetics studies on the pea reported by Gregor Mendel in 

1865 [1] and the statistics studies on the Irish hops crops by 

Gosset writing under the pseudonym Student around 1890 

[2]. Since then sensitivity analyses have been used to analyze 

networks and feedback amplifiers [3], to validate social  
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models [4], engineering models [5] and physiological models 

[6-9], to target disease treatment [10], in numerical computa-

tions [11], expert systems [12-14], discrete event simulations 

[15], where the techniques are called response surface meth-

odology [16, 17], frequency domain experiments [18-20], 

and perturbation analysis [21, 22]. When changes in the pa-

rameters cause discontinuous changes in system properties, 

the sensitivity analysis is called that of singular perturbations 

[23]. Sensitivity functions are used in adaptive control sys-

tems [24, 25]. In linear programming problems sensitivities 

are referred to as marginal values or the shadow price of 

each constraint and are interpreted as the increase in the op-

timal solution obtainable by each additional unit added to the 

constraint [26]. 

 Statistical techniques can be used when the model is so 

complex that computing the performance indices is very dif-

ficult. For such complex models, the inputs are described 

with probability distributions and then the induced uncer-

tainly in the performance indices is analyzed: this approach 

is known as probabilistic sensitivity analysis [27]. 

 There is a large literature on global sensitivity analysis 

and regression/correlation techniques for large computer 

simulation models [17]. We will not deal with such complex 

simulations in this paper. The purpose of this paper is to pre-

sent simple techniques that will increase intuition and under-

standing of systems. 

 There are many common ways to do sensitivity analyses. 

A partial derivative can be a sensitivity function for a system 

described by equations. Otherwise, spreadsheets, like Excel, 

are convenient for doing sensitivity analyses of systems that 

are not described by equations. This paper explores many 

techniques for doing sensitivity analyses. 

 There are two classes of sensitivity functions: analytic 

and empirical. Analytic sensitivity functions are used when 

the system under study is relatively simple, well defined, and 

mathematically well behaved (e.g. continuous derivatives). 

These generally take the form of partial derivatives. They are 

convenient, because once derived they can often be used in a 

broad range of similar systems and are easily adjusted for 

changes in all model parameters. They also have an advan-
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tage in that the sensitivity of a system to a given parameter is 

given as a function of all other parameters, including time or 

frequency (depending on the model of the system), and can 

be plotted as functions of these variables. 

 Empirical sensitivity functions are often just point 

evaluations of a system's sensitivity to a given parameter(s) 

when other parameters are at known, fixed values. Empirical 

sensitivity functions can be estimated from the point sensi-

tivity evaluations over a range of the values of the parame-

ters. They are generally determined by observing the changes 

in output of a computer simulation as model parameters are 

varied from run to run. Their advantage is that they are often 

simpler (or more feasible) than their analytic counterparts or 

can even be determined for an unmodeled physical system. If 

the physical system is all that is available, the system output 

is monitored as the inputs and parameters are changed from 

their normal values. 

2. ANALYTIC SENSITIVITY FUNCTIONS 

 This section will explain three different analytic sensitiv-

ity functions. They are all based on finding the partial de-

rivative of a mathematical system model with respect to 

some parameter. Short examples are then given for each par-

ticular form of a sensitivity function. 

2.1. The Absolute-Sensitivity Function 

 The absolute sensitivity of the function  F  to variations 

in the parameter  is given by 

  

S
F
=

F

NOP

 

where NOP means the partial derivative is evaluated at the 

Normal Operating Point (NOP) where all the parameters 

have their normal values. Of course, the function F must be 

differentiable with respect to . In this paper, the function F 

may also be a function of other parameters such as time, fre-

quency or temperature. Absolute-sensitivity functions are 

useful for calculating output errors due to parameter varia-

tions and for assessing the times at which a parameter has its 

greatest or least effect. Absolute sensitivities are also used in 

adaptive control systems. 

 The following two examples show the use of absolute-

sensitivity functions. The first shows how to tailor the output 

of a process and the second shows how to see when a pa-

rameter has its greatest effect. 

Example 1. A Process Model 

 Assume that the function 

  
f (x, y) = z = Ax2

+ By2
+ Cxy + Dx + Ey + F  

models a process, where x and y are the inputs (raw material) 

and A to F are models of the system parameters. Let the 

normal operating point be 

  
(x

0
, y

0
) = (1,1), A

0
= 1, B

0
= 2,C

0
= 3, D

0
= 5, E

0
= 7, F

0
= 8,

producing 
  
z

0
= 2.  

 Suppose that the output z is a valuable commodity (per-

haps a potion). What is the easiest way (the smallest change 

in one of these eight operating parameters) to increase the 

quantity of z that is being produced? This sounds like a natu-

ral problem for absolute-sensitivity functions. 

  

S
A

z
=

z

A
NOP

= x
0

2
= 1,

S
B

z
=

z

B
NOP

= y
0

2
= 1,

S
C

z
=

z

C
NOP

= x
0
y

0
= 1,

S
D

z
=

z

D
NOP

= x
0
= 1,

S
E

z
=

z

E
NOP

= y
0
= 1,

S
F

z
=

z

F
NOP

= 1,

S
x

z
=

z

x
NOP

= 2A
0
x

0
+C

0
y

0
+ D

0
= 0,

S
y

z
=

z

y
NOP

= 2B
0
y

0
+C

0
x

0
+ E

0
= 0.

 

 Evaluated at 
  
(x

0
, y

0
) = (1, 1) , the six coefficients are 

equally sensitive: increase any coefficient by one unit and 

the output increases by one unit. Since the derivatives with 

respect to x and y are equal to zero, to analyze sensitivity 

with respect to these variables we need to use higher order 

partial derivatives, as will be shown later. 

 What about interactions? Could we do better by changing 

two parameters at the same time? Interaction terms are char-

acterized by, for example, the partial derivative of z with 

respect to x containing y. The interactions can be bigger than 

the first-order partial derivatives. You can see that the above 

partial derivatives with respect to the coefficients contain the 

operating point coordinates and the partial derivatives with 

respect to the operating point coordinates depend on the co-

efficients. Therefore, we should expect the interactions to be 

significant. Of the 64 possible second-partial derivatives, 

only the following are nonzero. 

  

S
x A

z
=

2
z

x A
NOP

= 2x
0
= 2,

S
x C

z
=

2
z

x C
NOP

= y
0
= 1,

S
x D

z
=

2
z

x D
NOP

= 1,

S
y B

z
=

2
z

y B
NOP

= 2y
0
= 2,

 

  

S
y C

z
=

2
z

y C
NOP

= x
0
= 1,  
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S
y E

z
=

2
z

y E
NOP

= 1,

S
x y

z
=

2
z

x y
NOP

= C
0
= 3,

S
x

2

z
=

2
z

x
2

NOP

= 2A
0
= 2,

S
y

2

z
=

2
z

y
2

NOP

= 2B
0
= 4.

 

 By the theory of Young, we know that if the partial de-

rivatives are continuous, then 
  

z
2

x A
=

z
2

A x
 etc. so we do 

not have to calculate any more partial derivatives. Five of 

these mixed second-partial derivatives are bigger than the 

first-partial derivatives. 

 At the normal operating point, 
  
z

0
= 2 . If we increase A 

by one unit, then A = 2, this increases z = 3, and   z = 1 . If 

we increase x by one unit (this is too large of a step for a 

sensitivity analysis, but the math is convenient), then x = 2, z 

= 3, and again   z = 1 . However, if we simultaneously in-

crease both x and A by one unit each, A = 2, x = 2, z = 7, and 

  z = 5 . The interaction effect is big. This and two other in-

teraction effects are shown in Table 1. 

 Here we have treated the second partial derivative 

  

2
z

y
2

 

as an interaction term. Karnavas, Sanchez and Bahill [14], 

explain how this could be the result of a quadratic nonlinear-

ity. 

 How about the third-order partial derivatives? e.g. 

  

3
z

x
2

A
= 2 . Let x = 3 and A = 2, z = 15 and   z = 13 . This is 

a bigger output boost than that produced by the sum of 

changes in any three parameters. Three of the third-order 

partial derivatives are greater than zero. One is equal to 1, 

and two are equal to 2. All of the fourth-order partial deriva-

tives are zero. 

Example 2. A Double-Pole System with a Time-Delay 

 Next, we will show an example of using an absolute-

sensitivity function to determine when a parameter has its 

greatest effect. For this example, we will use Stark’s [28] 

transfer function for the crayfish escape behavior, namely 

  

M (s) =
Y (s)

R(s)
=

Ke
s

( s +1)2
 

and find when the parameter K has its greatest effect on the 

step response of the system. If we let the input be a unit step, 

Table 1. Effects of Individual and Combined Parameter Changes 

 

Partial Derivatives Normal Values Values Increased by One Unit New z Values  z  Total Change in z 

 

z

A
 A=1 A=2 3 1 

 

z

x
 x=1 x=2 3 1 

  
z = 2  

  

2
z

x A
 

A=1 

x=1 

A=2 

x=2 
7 5 5 

 

z

x
 x=1 x=2 3 1 

 

z

y
 y=1 y=2 4 2 

  
z = 3  

  

2
z

x y
 

x=1 

y=1 

x=2 

y=2 
8 6 6 

 

z

y
 y=1 y=2 4 2 

 

z

y
 y=1 y=2 4 2 

  
z = 4  

  

2
z

y
2

 y=1 y=3 10 8 8 
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R(s) =

1

s
, then the output step-response of the system is 

  

Y
sr

(s) =
Ke

s

s( s +1)2
 

and the absolute-sensitivity function of the step response 

with respect to K is 

  

S
K

Y
sr (s) =

e 0
s

s(
0
s +1)2

 

which transforms into 

  

S
K

y
sr (t) = 1 e

(t
0

)/
0

t
0

0

e
(t

0
)/

0  for t >
0

 

 In this example, the order of taking the derivative and 

making the transformation can be interchanged. This func-

tion obtains its maximum value when t goes to infinity. This 

tells us that the parameter K has its greatest effect when the 

response reaches steady state, which is what our intuition 

also tells us. 

2.2. The Relative-Sensitivity Function 

 If we want to compare the effects of different parameters, 

we should use relative-sensitivity functions. The relative-

sensitivity of the function F to the parameter  evaluated at 

the normal operating point is given by 

  

S
F
=

F

NOP

0

F
0

% change in F

% change in 
=

F

F  

where NOP and the subscripts 0 mean that all functions and 

parameters assume their normal operating point values [3]. 

Relative-sensitivity functions are formed by multiplying the 

partial derivative (the absolute-sensitivity function) by the 

normal value of the parameter and dividing by the normal 

value of the function. For statistical models, a relative-

sensitivity function can be formed by multiplying the partial 

derivative by the ratio of the variances [29]. Relative-

sensitivity functions are ideal for comparing parameters, 

because they are dimensionless, normalized functions. In the 

field of economics, the lack of dimensions of the relative-

sensitivity function is exploited to allow easy comparison of 

parameters' changes on model outputs even though the pa-

rameters may describe widely varying aspects of the model 

and have different units. Economists refer to the relative-

sensitivity function 
 
S

B

A
 as the elasticity of B with respect to 

A, and denote it as 
  
E

B,A
 [30]. 

Example 1. The Process Model (Continued) 

 Assume that the function 

  
f (x, y) = z = Ax2

+ By2
+ Cxy + Dx + Ey + F  

models the output of a process, where the normal operating 

point is 

  
(x

0
, y

0
) = (1,1), A

0
= 1, B

0
= 2,C

0
= 3, D

0
= 5, E

0
= 7, F

0
= 8,

 producing 
  
z

0
= 2.  

 What is the easiest way (smallest percent change in an 

operating point parameter) to increase the quantity of z that 

is being produced? Now this problem is appropriate for rela-

tive-sensitivity functions. 

  

S
A

z
=

z

A
NOP

A
0

z
0

= x
0

2
A

0

z
0

= 0.5,

S
B

z
=

z

B
NOP

B
0

z
0

= y
0

2
B

0

z
0

= 1,

S
C

z
=

z

C
NOP

C
0

z
0

= x
0
y

0

C
0

z
0

= 1.5,

S
D

z
=

z

D
NOP

D
0

z
0

= x
0

D
0

z
0

= 2.5,

S
E

z
=

z

E
NOP

E
0

z
0

= y
0

E
0

z
0

= 3.5,

 

  

S
F

z
=

z

F
NOP

F
0

z
0

=
F

0

z
0

= 4,  

Table 2. Effects of Individual and Combined Parameter Changes 

 

Partial Derivatives Normal Values Values Increased by One Unit New z Values  z  Total Change in z 

 

z

A
 A=1 A=2 3 1 

 

z

x
 x=1 x=2 3 1 

 

z

x
 x=1 x=2 3 1 

  
z = 3  

  

3
z

x
2

A
= 2  

A=1 

x=1 

A=2 

x=3 
15 13 13 



Sensitivity Analysis, a Powerful System Validation Technique The Open Cybernetics and Systemics Journal, 2008, Volume 2    43 

  

S
x

z
=

z

x
NOP

x
0

z
0

= 2A
0
x

0
+ C

0
y

0
+ D

0( )
x

0

z
0

= 0,

S
y

z
=

z

y
NOP

y
0

z
0

= 2B
0
y

0
+ C

0
x

0
+ E

0( )
y

0

z
0

= 0.

 

Evaluated at 
  
(x

0
, y

0
) = (1, 1) , 

  

S
F

z
=

z

F
NOP

F
0

z
0

=
F

0

z
0

= 4,  is 

the largest. Therefore, we should increase F if we wish to 

increase z. 

 What about interactions? Could we do better by changing 

two parameters at the same time? Only the following sec-

ond-order relative-sensitivity functions are non-zero. 

  

S
x A

z
=

2
z

x A
NOP

x
0
A

0

z
0

2
=

2x
0

2
A

0

z
0

2
= 0.5,

S
x C

z
=

2
z

x C
NOP

x
0
C

0

z
0

2
=

x
0
y

0
C

0

z
0

2
= 0.75,

S
x D

z
=

2
z

x D
NOP

x
0
D

0

z
0

2
=

x
0
D

0

z
0

2
= 1.25,

S
y B

z
=

2
z

y B
NOP

y
0
B

0

z
0

2
=

2y
0

2
B

0

z
0

2
= 1,

S
y C

z
=

2
z

y C
NOP

y
0
C

0

z
0

2
=

x
0
y

0
C

0

z
0

2
= 0.75,

 

  

S
y E

z
=

2
z

y E
NOP

y
0
E

0

z
0

2
=

y
0
E

0

z
0

2
= 1.75,  

  

S
x y

z
=

2
z

x y
NOP

x
0
y

0

z
0

2
=

x
0
y

0
C

0

z
0

2
= 0.75,  

  

S
x

2

z
=

2
z

x
2

NOP

x
0

2

z
0

2
=

2x
0

2
A

0

z
0

2
= 0.5,

S
y

2

z
=

2
z

y
2

NOP

y
0

2

z
0

2
=

2y
0

2
B

0

z
0

2
= 1.

 

 None of these is bigger than 

  

S
F

z
=

z

F
NOP

F
0

z
0

=
F

0

z
0

= 4 . 

 In summary, using absolute-sensitivity functions, the 

second-order and third-order terms were the most important, 

but using relative-sensitivity functions, the coefficient F was 

the most important. The absolute and relative-sensitivity 

functions give different results. The absolute-sensitivity 

functions show which parameters have the greatest affect on 

the output for a fixed size change in the parameters, whereas 

the relative-sensitivity functions show which parameters 

have the greatest affect on the output for a certain percent 

change in the parameters. 

Example 2. A Double-Pole System with a Time-Delay 
(Continued) 

 Let us now show how to use relative-sensitivity functions 

to compare parameters. Consider the transfer function 

 

Fig. (1). Relative-sensitivity functions as a function of frequency for the transfer function 

  

M (s) =
Y (s)

R(s)
=

Ke
s

( s +1)2
. 
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M (s) =
Ke

s

( s +1)2
 

 Which of the parameters is most important? To answer 

this question let us compute the relative-sensitivity functions. 

  

S
K

M
=

M

K
NOP

K
0

M
0

= 1  

  

S
M
=

M

NOP

0

M
0

= s
0
 

  

S
M
=

M

NOP

0

M
0

=
2s

0

0
s +1

 

 The magnitudes of these three relative-sensitivity func-

tions are plotted in Fig. (1) using Stark’s [28] normal values 

of 32, 1 and 2 for 
  
K

0
,

0
 and 

0
, respectively. By looking at 

these plots, we can see that for low frequencies, e.g., 

  
< 0.3, K  has largest magnitude, for mid range frequen-

cies, e.g., 
 

1,  has largest magnitude, and for high fre-

quencies, e.g., 
 

> 2,  has largest magnitude. 

 Now, of course, this was a simple example. And for this 

example, most people would intuitively say that the gain is 

the most important parameter for low frequencies (i.e. steady 

state) and the time-delay is the most important parameter for 

high frequencies. But it was still nice that this sensitivity 

analysis gave us a quantitative justification for our intuition. 

2.3. Limitations of the Relative-Sensitivity Function 

 The relative-sensitivity function is limited in usefulness 

in analytic studies for three reasons [14]. First, the relative-

sensitivity functions are different in the time and in the fre-

quency domains. Second the relative-sensitivity function is 

the product of two functions (the partial derivative and the 

original function), and the Laplace transform of a product is 

not the product of the Laplace transforms, e.g. 

  
L(x(t) y(t)) L(x(t)) L( y(t))  

 Therefore, you cannot use Laplace transforms to get 

time-domain solutions. And finally if the function being ana-

lyzed is a time function, then it may take on very small val-

ues, which would give erroneous results, or it might even 

take on values of zero, and division by zero is frowned upon. 

2.4. The Semirelative-Sensitivity Function 

 We have used the absolute-sensitivity function to see 

when a parameter had its greatest effect on the step response 

of a system, and we have used the relative-sensitivity func-

tion to see which parameter had the greatest effect on the 

transfer function. Now suppose we wish to compare parame-

ters, but we want to look at the step response and not the 

transfer function. What happens if we try to use the relative-

sensitivity function to compare parameter effects on the step 

response? We get into trouble. For a step response, the nor-

mal output value 
  
y

0
 typically varies from 0 to 1 and division 

by zero is undefined. Furthermore, the relative-sensitivity 

function gives undue weight to the beginning of the response 

when 
  
y

0
 is small. Therefore, let us investigate the use of the 

semirelative-sensitivity function, which is defined as 

   

S
F
=

F

NOP

0
 

where NOP and the subscript 0 mean that all functions and 

parameters assume their normal operating point values. 

 As can be seen by the definition, semirelative-sensitivity 

functions will have the same shape as absolute-sensitivity 

functions. They are just multiplied by the constant parameter 

values. But this scaling allows comparisons to be made of 

the effects of the various parameters. Of course, when a pa-

rameter has a value of zero, its semirelative sensitivity func-

tion is also zero. 

Example 1. The Process Model (Continued) 

 Let us now return to the process model, 

  
f (x, y) = z = Ax2

+ By2
+ Cxy + Dx + Ey + F . Would 

semirelative-sensitivity functions be better than relative-

sensitivity functions? There would be little difference, be-

cause z is not a function of time and we can prevent it from 

taking on a zero value. We could get the semirelative-

sensitivity functions by multiplying the relative-sensitivity 

functions by 
  
z

0
, which is 2. Thus, all of the first-order rela-

tive-sensitivity functions would be multiplied by 2, which 

would not change the relative rankings. The second-order 

relative-sensitivity functions would all be multiplied by 4, 

once again, no rankings change. Therefore, for the process 

model we can use either relative or semirelative-sensitivity 

functions: it does not make a difference. 

Example 2. A Double-Pole System with a Time-Delay 

(Continued) 

 The transfer function is 

  

M (s) =
Ke

s

( s +1)2
 

 The step response of the system is 

  

Y
sr

(s) =
Ke

s

s( s +1)2
 

and the semirelative-sensitivity function of the step response 

with respect to K is 

   

S
K

Y
sr (s) =

e 0
s

s(
0
s +1)2

K
0

 

which transforms into 

   

S
K

y
sr (t) = K

0
1 e

(t
0

)/
0

t
0

0

e
(t

0
)/

0  for t >
0
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 The semirelative-sensitivity function of the step response 

with respect to  is 

   

S
Y

sr (s) =
K

0
e 0

s

(
0
s +1)2 0

 

which transforms into 

   

S
y

sr (t) =
K

0 0

0

2
(t

0
)e

(t
0

)/
0( )  for t >

0
 

 The semirelative-sensitivity function of the step response 

with respect to  is 

   

S
Y

sr (s) =
2K

0
e 0

s

(
0
s +1)3 0

 

which transforms into 

   

S
y

sr (t) =
K

0

0

2
(t

0
)2

e
(t

0
)/

0( )  for t >
0

 

 These three semirelative-sensitivity functions are plotted 

in Fig. (2) using the normal values previous used, namely 32, 

1 and 2 for 
  
K

0
,

0
 and 

0
, respectively. This sensitivity 

analysis gives us a wealth of information. 

 It says that if our model does not match the physical re-

sponse early in the rise, then we should adjust the time-delay 

of the model; because in the beginning, the time-delay has its 

greatest effect, while the sensitivity functions of the gain and 

the time constant are still small. If we wish to affect the 

steady state behavior of the model, then we should change 

the gain, because the effects of the time-delay and the time 

constant will have decayed to zero. It also tells us that the 

time constant will have its greatest effect in the middle of the 

movement. Sometimes a sensitivity analysis like this will 

show parameters that have their peaks at the same time; 

these parameters can be treated as a group with trade-offs 

between their individual values. 

 Once again, the results of the sensitivity analysis agree 

with our intuitions: the time-delay has its greatest effect in 

the beginning of the movement, the time constant has its 

greatest effect in the middle of the movement, and the gain 

has its greatest effect at the end of the movement. 

Example 3. A Tradeoff Study 

 In modeling dynamic systems, most sensitivity functions 

are functions of time or frequency, but this is not a prerequi-

site for sensitivity analyses. For example, let us compute the 

semirelative-sensitivity functions for a tradeoff study. 

Tradeoff studies provide a rational method for choosing 

among alternatives when simultaneously considering multi-

ple alternatives with many criteria [31-33]. Tradeoff studies 

are often called trade studies. In the tradeoff study of Tables 

3 and 4, the alternative ratings are computed with linear ad-

 

Fig. (2). Semirelative-sensitivity functions of the step response 

  

Y
sr

(s) =
Ke

s

s( s +1)2
 with respect to 

  
K ,  and . 
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dition of the weighted scores. That is, 

  
Sum

1
= Wt

1
S

11
+Wt

2
S

21
 

and 
  
Sum

2
= Wt

1
S

12
+Wt

2
S

22
. 

 Table 4 gives numerical values for one particular tradeoff 

study, The Umpire’s Assistant (http://www.sie.arizona.edu/ 

sysengr/sie577/UmpiresAssistant.doc). 

 Now we want to perform a sensitivity analysis of this 

tradeoff study. We want to discover which parameters could 

change the recommendations of the tradeoff study. There-

fore, an appropriate performance index is the rating for the 

highest rated alternative (alternative-1) minus the rating for 

second highest rated alternative (alternative-2). 

  

PI
1
= Sum

1
Sum

2
=

Wt
1

S
11
+Wt

2
S

21
Wt

1
S

12
Wt

2
S

22
= 0.420

. 

 We want to compute the semirelative-sensitivity func-

tions for this performance index, with respect to the six pa-

rameters. We want to discover which parameter is the most 

important and plan our future actions. 

   

S
Wt

1

PI
1 = S

11
S

12( )Wt
1
= 0.26

S
Wt

2

PI
1 = S

21
S

22( )Wt
2
= 0.16

S
S

11

PI
1 = Wt

1
S

11
= 0.50

 

   

S
S

21

PI
1 = Wt

2
S

21
= 0.21

S
S

12

PI
1 = Wt

1
S

12
= -0.25

S
S

22

PI
1 = Wt

2
S

22
= -0.04

 

 These sensitivities can be nicely displayed in a table, as 

in Table 5. 

 The most important parameter is S11. Therefore, we 

should gather more experimental data and interview more 

domain experts for this parameter: we should spend extra 

resources on this parameter. The minus signs for S12 and S22 

merely mean that an increase in either of these parameters 

will cause a decrease in the performance index. 

 A problem with this performance index is that if 
  
S

11
=S

12
, 

then the sensitivity with respect to 
  
Wt

1
 becomes equal to 

zero. Numerically this is correct, but intuitively it is wrong. 

So let us consider a performance index that is the rating for 

just the winning alternative (in this case alternative-1). 

  
PI

2
= Sum

1
= Wt

1
S

11
+Wt

2
S

21
 

 This performance index is more convenient when there 

are many alternatives and their relative rankings change fre-

quently. However, a problem with both 
  
PI

1
and PI

2
 is that 

the sensitivity with respect to 
  
Wt

1
 does not depend on scores 

Table 3. A Generic Tradeoff Study 

 

Criteria Weight of Importance Alternative-1 Alternative-2 

Criterion-1 Wt1 S11 S12 

Criterion-2 Wt2 S21 S22 

Alternative Rating  
  
Sum

1
= Wt

1
S

11
+Wt

2
S

21
 

  
Sum

2
= Wt

1
S

12
+Wt

2
S

22
 

 

Table 4. Tradeoff Study Numerical Example 

 

Alternatives 
Criteria Weight of Importance 

Umpire’s Assistant Seeing Eye Dog 

Accuracy of the call 0.75 0.67 0.33 

Silence of Signaling 0.25 0.83 0.17 

Sum of weight times score  0.71 (The winner) 0.29 

Table 5. Analytic Semirelative-Sensitivity Function Values for PI1, the Difference of the Alternative Ratings 

 

Alternatives 
Criteria Weight of Importance 

Umpire’s Assistant Seeing Eye Dog 

Accuracy of the call 
   
S

Wt
1

PI
1 = 0.26   

   
S

S
11

PI
1 = 0.50  

   
S

S
12

PI
1 = 0.25  

Silence of Signaling 
   
S

Wt
2

PI
1 = 0.16  

   
S

S
21

PI
1 = 0.21  

   
S

S
22

PI
1 = 0.04  
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for the nonwinning alternatives and we do want the sensitivi-

ties to depend on the other parameters. The following per-

formance index solves both of these problems. 

  

PI
3
=

1

m
Wt

i
S

ij
j=1

m

i=1

n

 

where n is the number of criteria and m is the number of al-

ternatives. This performance index is the sum of all the 

weight times scores in the whole matrix. With this perform-

ance index the semirelative-sensitivity functions are 

   

S
Wt

i

PI
3 =

PI
3

Wt
i NOP

Wt
i
=

1

m
Wt

i
S

ij
j=1

m

 and 
   
S

S
ij

PI
3 =

Wt
i
S

ij

m
. 

 They can be calculated and displayed directly with a 

spreadsheet as shown in Table 6. 

 Each cell states the sensitivity of the whole matrix with 

respect to that element. Here are all of the sensitivity func-

tions. 
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m
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i
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S
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2
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S
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=
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m
 

   
S
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S
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2
PI

3

Wt
i

2
= 0  

   

S
Wt

i

2

PI
3 = 0  

  

2
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Wt
i

Wt
k

= 0  

   
S

Wt
i

Wt
k

PI
3 = 0  

  

2
PI

3

S
ij

2
= 0  This means any combination of Sij’s. 

   
S

S
ij
2

PI
3 = 0  

   
S

S
ij

PI
3 = S

Wt
i

S
ij

PI
3  

 Although these equations may look formidable, they are 

easy to compute with a spreadsheet. For example 

  

Wt
k
S

kj
k=1

n

 

is merely the sum of the weight times scores in column k 

(
 
Sum

k
) and this is already in the spreadsheet. Furthermore, 

because 
   
S

S
ij

PI
3 = S

Wt
i

S
ij

PI
3  and the rest of the second order sensi-

tivities are zero, Table 6 is complete: it has all of the sensi-

tivities in it. Additional examples are available at 

http://www.sie.arizona.edu/sysengr/sie554/ with the Spin 

Coach documents. 

Table 6. Analytic Semirelative-Sensitivity Function Values for PI3, the Sum of All Weight Times Scores 

 

Alternatives 
Criteria Weight of Importance 

Umpire’s Assistant Seeing Eye Dog 

Accuracy of the call 
   
S

Wt
1

PI
3 = 0.38   

   
S

S
11

PI
3 = 0.25  

   
S

S
12

PI
3 = 0.12  

Silence of Signaling 
   
S

Wt
2

PI
3 = 0.13  

   
S

S
21

PI
3 = 0.10  

   
S

S
22

PI
3 = 0.02  

Table 7. Analytic Semirelative-Sensitivity Function Values for the Interactions of PI3 

 

Alternatives 

Criteria Weight of Importance 

Umpire’s Assistant Seeing Eye Dog 

Accuracy of the call  

   

S
Wt

1
S

11

PI
3 = 0.25  

   

S
Wt

1
S

12

PI
3 = 0.12  

Silence of Signaling  

   

S
Wt

2
S

21

PI
3 = 0.10  

   

S
Wt

2
S

22

PI
3 = 0.02  

These cells contain the same numerical values as Table 6. 
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 A tradeoff study can be hierarchical. There can be any 

number of criteria and each of them can have any number of 

subcriteria. Appendix A discusses the sensitivity analysis of 

a hierarchical tradeoff study. 

 What about interactions? The non-zero semirelative-

sensitivity functions for interactions are 

   
S

Wt
i

S
ij

PI
3 =

Wt
i
0

S
ij

0

m
 

 Specifically, the semirelative-sensitivity function for the 

interaction of Wt1 and S11 is 

   

S
Wt

1
S

11

PI
3 =

2
PI

3

Wt
1

S
11 NOP

Wt
1

0

S
11

0

=
Wt

1
S

11

m
= 0.25  

 This is large enough that we should investigate its effect. 

If we increase 
  
Wt

1
 by 10%, 

  
PI

3
= 0.538 , giving 

  
PI

3
= 0.038 . If we increase S11 by 10%, 

  
PI

3
= 0.525 , giv-

ing 
  

PI
3
= 0.025 . Now, however, if we increase both 

  
Wt

11
 

and S11 by 10% at the same time, 
  
PI

3
= 0.565 , giving 

  
PI

3
= 0.065 , which clearly is larger than the sum of 0.038 

and 0.025. 

Example 4. Sensitivity Analysis of a Risk Analysis 

 Let 
  
P

j
, S

j
 and R

j
 be respectively the probability of oc-

currence, the severity and the risk, for the j
th

 failure mode. 

The risk of failure is typically measured as the probability 

(or frequency) of occurrence times the severity (or conse-

quences),
 
R

j
= P

j
S

j
. For the performance index, we can 

use the sum of the risks, 

  

PI = R
j

j=1

n

. (We would get the 

same basic result if we let the performance index be the dif-

ference between the top two risks.) The semirelative-

sensitivity of the performance index with respect the prob-

ability of the j
th

 failure mode occurring is 

   
S

P
j

PI
= S

j
P

j
0

= R
j
 and the semirelative-sensitivity function 

of the performance index with respect the severity of the j
th

 

failure mode is 
   
S

S
j

PI
= R

j
S

j
0

= R
j
. The largest sensitivities 

are always those for the largest risk. This means that we 

should spend extra time and effort estimating the probability 

and severity of the highest ranked risk, which seems emi-

nently sensible [34, 35]. 

3. EMPIRICAL SENSITIVITY FUNCTIONS 

 When analytic equations are not available for systems, 

sensitivity analyses can be performed on the real-world sys-

tems. However, when this would take too much time or too 

many resources, then the sensitivity analyses can be per-

formed on models of the real-world systems. For many mod-

els, deriving sensitivity functions is difficult or impossible, 

so the sensitivity functions are estimated using computer 

simulations of the models. Numerical Estimation is a tech-

nique that can be used to find system sensitivities. Numerical 

Estimation can be used on physical systems, models of these 

systems or computer simulations of these models. Numerical 

Estimation can be used to estimate any of the previously 

defined sensitivity functions by properly choosing the pa-

rameters to be varied. The estimations are performed by run-

ning the system, model or simulation at the normal operating 

point and then at other operating points. Sometimes the 

changes in parameter values are small and sometimes they 

are large, which creates unnatural operating points. One 

problem with using Numerical Estimation is that the number 

of runs increases geometrically with the number of factors 

being studied [36]. Kleijnen [17] reviews the literature on 

how the simulation community handles this complexity. 

3.1. Numerical Estimation 

 The Numerical Estimation method is easy to use and 

evaluate. For many systems, it is the only alternative, if ana-

lytic sensitivity functions cannot be derived. In non-

deterministic applications where the model is small, it is 

probably the best empirical method of evaluating sensitivity 

of a system to parameter changes. 

 The primary objective of Numerical Estimation is to es-

timate the sensitivities numerically. In the technique, a func-

tion is evaluated at its normal operating point. Then a 

parameter is increased or decreased and the function is 

evaluated at this new point. If we take 
  

f f (x
0
) x , with 

x = x – x0, and if 
 
f  changes slowly, then 

  
f ( ) f (x

0
) , 

with  being a point between 
  
x and x

0
, and 

 
f  being the 

derivative at that point. The difference between these two 

function values is given by 

  
f (x) f (x

0
) = f ( )(x x

0
)  

Table 8. Numerical Example of Interactions for PI3, the Sum of the Alternative Ratings 

 

Sensitivity Function Normal Values Values Increased by 10% New PI3 Values 
  

PI
3

 Total Change in PI3 

   
S

Wt
1

PI
3  

  
Wt

1
=0.75 

  
Wt

1
=0.82 0.538 0.038 
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S
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3  
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=0.67 
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=0.74 0.525 0.025 
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= 0.063  
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11

PI
3  

  
Wt

1
=0.75 

  
S

11
=0.67 

  
Wt

1
=0.82 

  
S

11
=0.74 0.565 0.065 0.065 
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 If we want to be more precise, then we should say that 

  
f (x) f (x

0
) = f (x

0
)(x x

0
) +

f ( )

2!
(x x

0
)2 . 

 If 
  
(x x

0
)  and 

 
f  are small, then the second term on 

the right is much smaller than the first one. Therefore, usu-

ally the difference in function values divided by the differ-

ence in the variable estimates the first derivative, 

  

f ( ) =
f (x) f (x

0
)

(x x
0
)

. Otherwise 
 
f  has to be taken into 

account. In practical applications, the third derivative is sel-

dom a concern. 

 Assume next that f has two variables, x and y, and is 

twice differentiable. Then 

  

f (x, y) f (x
0
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where  is between 
  
x and x

0
 and  is between y and y

0
. If 

either (1) both 
  
(x x

0
) and ( y y

0
)  are small and the sec-

ond-order derivatives are not large, or (2) the second-order 

derivatives are small, then the first two terms dominate. Oth-

erwise, the second-order terms should be taken into consid-

eration when estimating derivatives empirically and then 

computing sensitivities. 

Example 3. A Tradeoff Study (Continued) 

 Tradeoff studies are often implemented with spreadsheet 

tools, such as Excel. It is important to do sensitivity analyses 

of such systems. Sometimes partial derivatives can be com-

puted for such systems, but more often than not, the sensitiv-

ity analyses are estimated empirically. Excel ‘what-if 

scenarios’ and Add-Ins such as Palisade’s TopRank can help 

determine the sensitivities. Typically, the analyst changes a 

parameter (input value, weight, scoring function parameter, 

etc.) by a fixed percentage, such as 10%, and then looks at 

the change in the metric of interest. Often this is the rating 

for the top alternative or the difference between the top two 

recommended alternatives. Then the sensitivity values are 

computed. Typically, the relative or the semirelative-

sensitivity functions are used. The semirelative functions are 

more robust and they are easier to compute. For example, for 

a +10% parameter change the semirelative-sensitivity func-

tion approximation is 

   

S
F F

0
=

F

0.1
0

0
= 10 F  

 Table 9 shows the tradeoff study example with S11 in-

creased from 0.67 to 0.74. After such changes are made in 

each of the other five parameters, the empirically derived 

semirelative sensitivities can be computed and displayed as 

in Table 10. 

 It is not surprising that these are the same results that 

were obtained in the analytic semirelative sensitivity section 

of this paper. 

 But what about the second-order term in the above “defi-

nition” of the single-variable derivative? Namely 

  

f ( )

2!
(x x

0
)2 . If the system in question uses the sum of 

weighted scores combining function (e.g. 

  
Sum

1
= Wt

1
S

11
+Wt

2
S

21
 and 

  
Sum

2
= Wt

1
S

12
+Wt

2
S

22
), 

then the second derivatives of a single variable are all zero. 

So an estimation of the first derivatives that ignores second 

derivatives will be all right. But this is not true for the prod-

uct combining function (e. g. 

  
F

1
= S

11

Wt
1 S

21

Wt
2  and F

2
= S

12

Wt
1 S

22

Wt
2 ) or most other common 

combining functions. See Daniels, Werner and Bahill [31] 

for explanations of other combining functions. 

 Next, let us take another look at the derivatives of a func-

tion of two variables. 
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 As an example, for the case of this tradeoff study, let us 

examine the second-order terms, those inside the {}, for two 

reasons. First, we want to know if they are large and should 

be included in determining empirical estimates for the de-

rivatives and sensitivities. Second, for this particular case, 

we want to estimate the effects of sensitivity interactions. 

 The analytic second-order semirelative-sensitivity func-

tion for the interaction of 
  
Wt

1
 and S

11
 is 

   

S
Wt

1
S

11

PI
3 =

2
PI

3

Wt
1

S
11 NOP

Wt
1

0

S
11

0

=

Wt
1

0

S
11

0

m
= 0.25  

this is about as large as the largest first-order semirelative-

sensitivity function. 

 To estimate values for the second order sensitivities, we 

might be tempted to use the following simple-minded ap-

proximation, here shown for 10% changes in parameter val-

ues. 

Table 9. Tradeoff Study with S11 Increased by 10% 

 

Criteria Weight of Importance Umpire’s Assistant Seeing Eye Dog 

Accuracy of the call 0.75 0.74 0.33 

Silence of Signaling 0.25 0.83 0.17 

Sum of weight times score  0.76 0.29 
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S
F F F

0 0
=

F( )
2

0.1
0
0.1

0

0 0
= 10 F( )

2

 

 Letting 
  

= Wt
1
 and = S

11
 and using the tradeoff study 

values in Tables 3 and 4, incremented by 10% where it is 

appropriate, we get 

   
S

Wt
1

S
11

PI
3 10 F( )

2

= 0.424  

 However, this does not match the analytic value of 0.25. 

The lesson here is that perturbation step size 
  
(x x

0
)  should 

be small. Five and ten percent step sizes are probably too big 

for some systems. We might be able resolve this conundrum 

by using a smaller perturbation size. What if we reduce the 

perturbation step size to 0.1%? 

   

S
F F F
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2

0.001
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S
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S
11

PI
3 1000 F( )

2

= 0.393  

 This is closer but still not equal to 0.25, the number we 

computed as the analytic semirelative sensitivity. Therefore, 

we need to improve the mathematical formulation of the 

estimate of the second-order sensitivity interactions. 

 In the above simple-minded approximation, we changed 

both parameters at the same time and then compared the 

value of the function to the value of the function at its nor-

mal operating point. However, this is not the correct estima-

tion for the mixed second-partial derivative. To estimate the 

second-partial derivatives we should start with 

  

2 f (
0
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0
)

2
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0
) f (
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0
)

 with =
0
+ .  

and by way of approximation for the first-order derivative 

we have 
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 Simplifying this a little bit we get 
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 The mixed second-partial derivatives can be obtained 

similarly. 
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)
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 Now we can estimate the two first-order derivatives and 

obtain 
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 Simplifying this we get 
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 Now we apply this to the tradeoff study of Tables 3 and 4 

with PI3 as shown in Table 11. 

 Using the values in Table 11, we get 

  

2
PI

3

Wt
1

S
11

0.50063 0.50038 0.50025+ 0.50000

m *0.00075*0.00067
= 0.5  

where m is defined in PI3 as being the number of alterna-

tives, 2 in this case. Now to get the semirelative-sensitivity 

function we multiply this second-partial derivative by the 

normal values 
  
Wt

1
0

 and S
11

0
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S
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= 0.25  

 Now, this is the same result that we derived in the ana-

lytic semirelative sensitivity section of this paper. 

 Although we do not use it in this paper, for completeness, 

we now give the formula for estimating the second-order 

derivative for a function of only one variable: 

  
f ( )

f ( ) 2 f ( ) + f ( + )
2

 

 There are two important lessons to be learned from this 

study. First, for a tradeoff study using the sum combining 

Table 10. Numerical Estimates for Semirelative-Sensitivity Function for PI3, the Sum of the Alternative Ratings Squared, for a Plus 

10% Parameter Perturbation 

 

Alternatives 

Criteria Weight of Importance 

Umpire’s Assistant Seeing Eye Dog 

Accuracy of the call 

   
S

Wt
1

PI
3 = 0.38

 

   
S

S
11

PI
3 = 0.25

 

   
S

S
12

PI
3 = 0.12

 

Silence of Signaling 

   
S

Wt
2

PI
3 = 0.13  

   
S

S
21

PI
3 = 0.10

 

   
S

S
22

PI
3 = 0.02  
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function and looking only at first derivatives, anything 

works. However, for most other sensitivity analyses the per-

turbation step size should be small: 5% and 10% perturbations 

are not acceptable. Second, it is incorrect to estimate the 

mixed second partial derivative by changing two parameters at 

the same time and then comparing the resulting value of the 

function to the value of the function at its normal operating 

point: estimating mixed second partial derivatives requires 

evaluation of four not two numerator terms. 

4. DISCUSSION 

 Validation. A sensitivity analysis is powerful technique 

for validating systems. Validation means ensuring that the 

system suits the customer’s actual needs [37]. If a system (and 

its model) is very sensitive to parameters over which the cus-

tomer has no control, then it may be the wrong system for that 

customer. If the sensitivity analysis reveals the most important 

parameter and that result is a surprise, then it may be the 

wrong system. If a system is more sensitive to its parameters 

than to its inputs, then it may be the wrong system or the 

wrong operating point. If the sensitivities of the model are 

different from the sensitivities of the physical system, then it 

may be the wrong model. 

 In a set of requirements [38], if you delete a requirement, 

then your completeness measure (perhaps a traceability ma-

trix) should show a vacuity. When you make a decision [33], 

you should do a sensitivity analysis and then see if changing 

the most important decision parameters would change your 

decision. In a tradeoff study [31, 33], the domain experts 

should agree that the most important criteria identified by the 

sensitivity analysis are indeed the most important criteria. In a 

risk analysis [34, 35], the experts should agree that the risks 

identified by the sensitivity analysis as being the greatest are 

indeed the greatest risks. After you prioritize a set of items 

[39], you should do a sensitivity analysis and discover the 

most important criteria. Then the values for those criteria 

should be changed to see if it changes the prioritization. These 

are all validation issues. 

 Verification. Sensitivity analyses can also be used to help 

verify systems. Verification means ensuring that the system 

complies with its requirements and conforms to its design 

[37]. In a manmade system or a simulation, unexpected exces-

sive sensitivity to any parameter is a verification mistake. Sen-

sitivity to interactions should definitely be flagged and 

studied: such interactions may be unexpected and undesirable. 

 The types and methods of sensitivity analysis presented 

in this paper have ranged from precise mathematical defini-

tions yielding exact sensitivities, to empirical methods for 

estimating sensitivities. Each has its purpose, advantages and 

shortcomings. 

 The precise mathematically defined sensitivity functions 

yield the maximum information about the sensitivity of a sys-

tem to its inputs and parameters at the expense of requiring a 

differentiable set of system equations. In the crayfish model 

(Example 2), the equations were written in terms of time or 

frequency. The resulting sensitivities were functions of all 

other inputs and parameters as well as time or frequency. 

Relative-sensitivity functions, which involve a transform, are 

difficult to compute correctly, because multiplication in the 

time domain requires convolution in the frequency domain. 

Consequently, of the analytical sensitivity functions, the semi-

relative-sensitivity functions are the most useful. 

 In this paper, we have shown the importance of using 

small parameter perturbations in order to get accurate esti-

mates of the derivatives. However, large step sizes are often 

used to estimate the robustness using broad range sensitivity 

analyses [40]. For example, for small step sizes, in our process 

control model, 
  
f (x, y) = z = Ax2

+ By2
+ Cxy + Dx + Ey + F , the 

output z is most sensitive (in a relative sense) to changes in F. 

But for a step size of 10 (or more), the output z is much more 

sensitive (relatively) to changes in y. 

 The sensitivities also depend on the operating point. If the 

normal operating point is changed from 
  
(x

0
, y

0
) = (1, 1)  to 

  
(x

0
, y

0
) = (10, 10) , then the output z becomes most sensitive 

(relatively) to the input y. 

 Usually it is desirable for a model to be more sensitive to 

its inputs than to its system parameters. However, this is not 

true if the system parameters can be changed easily, for exam-

ple by just turning a knob: in contrast, it is very true if the sys-

tem parameters are hard to change, for example if they model 

the temperature or pressure in a large boiler. At the operating 

point 
  
(x

0
, y

0
) = (1, 1) , our process control example is not sen-

Table 10. Values to be Used in Estimating the Second Derivative 

 

Terms Parameter Values with a 0.1% Step Size, that is 
  

Wt
1

=0.00075 and 
  

S
11

=0.00067 Function Values 

  
f ( , )  

  
Wt

1
=0.75075 

  
S

11
=0.67067 

0.50063 

  
f (

0
, )  

  
S

11
=0.67067 0.50025 

  
f ( ,

0
)  

  
Wt

1
=0.75075 0.50038 

  
f (

0
,

0
)  

  
Wt

1
=0.75000 

  
S

11
=0.67000 

0.50000 
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sitive the inputs, which means we could twiddle with the inputs 

forever and not be able to control the output. Therefore, this is 

not a desirable operating point, if the inputs were clean and 

easily controlled: however, if the inputs were noisy and hard to 

control, then this would be an excellent operating point. You 

would not want your car to be insensitive to changes in the 

position of your steering wheel. However, you do want your 

car to be insensitive to the gasoline flow rate when you are 

filing up your gas tank. 

 Our process control example  

  
f (x, y) = z = Ax2

+ By2
+ Cxy + Dx + Ey + F  is insensitive 

to its inputs near the operating point (1, 1). That is the 

  
z / x and z / y  are equal to zero at the (1, 1) operating 

point and higher order derivatives must be used to evaluate the 

sensitivities. Moreover, these partial derivatives are near zero 

only near this operating point. Therefore, we should use this 

operating point only if the inputs are hard to control. Other-

wise, we should use a different operating point. 

 Once the sensitivities of a system to its inputs and parame-

ters are determined, they can be used to guide future research 

and design. If the sensitivities of a model are quantitatively 

similar to the sensitivities of the physical system, then the va-

lidity of the model is enhanced. Discrepancies can be used to 

direct improvements of the model or further testing of the 

physical system. 

 The examples in this paper were carefully chosen to be 

simple, but to succinctly illustrate particular points about sensi-

tivity analyses. At one time, they were models of real-world 

systems. Then the details and domain knowledge were ab-

stracted out, to leave a polished mathematical epitome. This 

technique was perfected by Wymore [41]. 

 The sensitivity (a linear function) to a parameter of a linear 

system is not necessarily linear [14]. This can take the form of 

interactions with other parameters or non-linear direct effects. 

In the crayfish model of Example 2, the time-delay had no ef-

fect on the amplitude of the step response. So doubling or 

quadrupling its value had no effect. However, the settling time 

of the step response did depend on the value of the time-delay, 

but not in a linear manner. The principle of superposition in 

linear systems applies to inputs and not parameters. In most 

cases, the effects of changing two parameters independently are 

different than changing those same two parameters simultane-

ously. 

 In general, we do not say that a model is most sensitive to a 

certain parameter. Rather we must say that a particular facet of 

a model is most sensitive to a particular parameter at a particu-

lar frequency, point in time and operating point. For example, 

the crayfish transfer function of Example 2 was most sensitive 

to the gain K at low frequencies, while the step responses were 

most sensitive to the time delay, , at the beginning of the 

movement. The chosen facet most likely will be related to the 

question that the model was formulated to answer. Choosing 

the facet is the key to the sensitivity analysis. 

 Now, on a different topic, when doing a Taguchi 3-level 

Design of Experiments (DoE) [42, 43], you pick a normal 

value, a high value and a low value. If the high and low are 

some percentage change, then you are doing a relative sensitiv-

ity analysis. If the high and low are plus and minus a unit, then 

you are doing an absolute sensitivity analysis. Alternatively, 

the high and low could be realistic design options, in which 

case it does not correspond to any of our sensitivity functions. 

 Many commercial tradeoff study tools such as Expert 

Choice, Logical Decisions, Hiview and Top Rank perform 

sensitivity analyses: we believe they implement relative-

sensitivity functions. Palisade’s @Risk uses a sophisticated 

LHS (Latin Hypercube Sampling) technique [17]. However, it 

is sometimes difficult to determine what type of sensitivity 

functions they are computing and therefore it is difficult to un-

derstand how to use their results. 

 Sensitivity analyses are helpful when modeling systems 

with uncertainty. The sensitivity analysis shows which parame-

ters are important and which parameters are not. This allows 

the allocation of resources to experiments that will reveal more 

accurate values for the most important parameters. Sensitivity 

analyses help us to understand how uncertainties in the inputs 

and model parameters affect the model and its predictions. Al-

though we have not discussed it in this paper, sensitivity analy-

ses can also be used to study uncertainty in model architecture, 

assumptions and specifications. Sensitivity analyses are used to 

increase the confidence in the model and its predictions, by 

providing an understanding of how the model responds to 

changes in its inputs, the data used to calibrate it, its architec-

ture or its independent variables. 

 To show which parameters have the greatest affect on the 

metric of interest, either relative or semirelative-sensitivity 

functions may be used. However, if the metric of interest is a 

function of time, then only semirelative-sensitivity functions 

should be used. 

5. RESUME 

 To help validate a model, compute sensitivities for all pa-

rameters and inputs. Most systems should be more sensitive to 

their inputs than to any of their parameters. To help verify a 

system, compute the sensitivities. Excessive sensitivity to any 

parameter is a verification mistake. After you build a model, 

write a set of requirements or design a system, you should 

study it to see if it makes sense: one of the best ways to study a 

model is with a sensitivity analysis. 

 When estimating first derivatives, the step size should be 

small and the second derivatives must be computed to ensure 

valid results. When estimating mixed second-partial deriva-

tives, four numerator terms, not two, must be used. Mixed sec-

ond-partial derivatives are used to determine if the interaction 

of parameters is important. 

 This paper has shown many techniques for performing a 

sensitivity analysis. They have different purposes and give 

different results. Therefore, when presenting the results of sen-

sitivity analysis, it is very important to state what type of sensi-

tivity analysis was performed. For many sensitivity analyses, 

this would simply be a statement that the absolute, relative or 

semirelative-sensitivity functions were computed either ana-

lytically or empirically; and the normal operating point and the 

step size of the parameter perturbations would be given. 
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APPENDIX A. HIERARCHICAL TRADEOFF STUDIES 

 A tradeoff study can be hierarchical. There can be any number of criteria and each of them can have any number of subcri-

teria. Table A suggests the structure. 

Table A. The Structure of a Hierarchical Tradeoff Study 

 

Criteria 
Normalized  

Criteria Weights 
Subcriteria 

Normalized Subcriteria  

Weights 

Scores for  

Alternative-1 

Scores for  

Alternative-2 

Subcriteria-1 
  
Wt

1

(1)
 

  
S

11

(1)
 

  
S

12

(1)
 

Subcriteria-2 
  
Wt

2

(1)
 

  
S

21

(1)
 

  
S

22

(1)
 

Subcriteria-3 
  
Wt

3

(1)
 

  
S

31

(1)
 

  
S

32

(1)
 

Performance   CW
(1)

 

Subcriteria-4 
  
Wt

4

(1)
 

  
S

41

(1)
 

  
S

42

(1)
 

Subcriteria-1 
  
Wt

1

(2)
 

  
S

11

(2)
 

  
S

12

(2)
 

Cost   CW
(2)

 

Subcriteria-2 
  
Wt

2

(1)
 

  
S

21

(2)
 

  
S

22

(2)
 

Subcriteria-1 
  
Wt

1

(1)
 

  
S

11

(3)
 

  
S

12

(3)
 

Schedule   CW
(3)

 

Subcriteria-2 
  
Wt

2

(3)
 

  
S

21

(3)
 

  
S

22

(3)
 

Subcriteria-1 
  
Wt

1

(4)
 

  
S

11

(4)
 

  
S

12

(4)
 

Subcriteria-2 
  
Wt

2

(4)
 

  
S

21

(4)
 

  
S

22

(4)
 Risk   CW

(4)
 

Subcriteria-3 
  
Wt

3

(4)
 

  
S

31

(4)
 

  
S

32

(4)
 

Alternative Ratings    
  
Sum

1
 

  
Sum

2
 

 

 Of course, not all tradeoff studies would use the criteria of performance, cost schedule and risk, and many other criteria 

could also be used. In the following formulae there are k criteria and we index them with  l . The first criterion will have n(1) 

subcriteria. The second criterion will have n(2) sub criteria and the k
th

 criterion will have n(k) subcriteria. Within each criterion 

  
l = 1, 2, ..., k( ) , we index the subcriteria with i; i will run from 

  
1 to n(l) . There are m alternatives and we index them with j. 

For the criteria weights we use   CW
( l )

, the subcriteria weights are 
  
Wt

i

( l )
 and the scores are 

  
S

ij

( l )
. In this example we combine 

the data with simple linear addition, 

  

Sum
j
= CW ( l )

l=1

k

Wt
i

( l )S
ij

( l )

i=1

n( l )

. 

 If the tradeoff study is hierarchical, you could create a new sensitivity weights column as follows: remove the hierarchy 

from the normalized weights column by multiplying each subcriterion by the normalized weight of its super criterion. The re-

sulting sensitivity weights column will then be used in place of the normalized weights column throughout the matrix. But this 

fails to give the sensitivities for the criteria weights. Therefore, we recommend using this new performance index, PI5. 

  

PI
5
=

1

m
CW ( l )

l=1

k

Wt
i

( l )S
ij

( l )

j=1

m

i=1

n( l )

 

 The first-order partial derivatives and the semirelative sensitivity functions are 

  

PI
5

CW ( l )
=

1

m
Wt

i

( l )S
ij

( l )

j=1

m

i=1

n( l )

 

   

S
CW ( l )

PI
5 =

PI
5

CW ( l )

NOP

CW ( l )
=

1

m
CW ( l ) Wt

i

( l )S
ij

( l )

j=1

m

i=1

n( l )

 

contd….. 
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(Appendix A. Hierarchical tradeoff studies) contd….. 

  

PI
5

Wt
i

( l )
=

1

m
CW ( l ) S

ij

( l )

j=1

m

 

   

S
Wt

i
( l )

PI
5 =

1

m
CW ( l ) Wt

i

( l )S
ij

( l )

j=1

m

 

  

PI
5

S
ij

( l )
=

1

m
CW ( l )Wt

i

( l )  

   
S

S
ij

PI
5 =

1

m
CW ( l )Wt

i

( l )S
ij

( l )  

 The second-order partial derivatives are 

  

2
PI

5

CW
( l )( )

2
= 0  

  

2
PI

5

Wt
i

( l )( )
2
= 0  

  

2 PI
5

S
ij

( l )( )
2
= 0  

 The mixed second-order partial derivatives and the semirelative sensitivity functions are 

  

2 PI
5

CW ( l ) Wt
i

( l )
=

1

m
S

ij

( l )

j=1

m

 

   

S
CW ( l ) Wt

i
( l )

PI
5 =

1

m
CW ( l ) Wt

i

( l )S
ij

( l )

j=1

m

 

  

2
PI

5

CW
( l

* )
Wt

i

( l )
= 0 for l*

l  

  

2 PI
5

CW ( l ) S
ij

( l )
=

Wt
i

( l )

m
 

   
S

CW ( l ) S
ij
( l )

PI
5 =

1

m
CW ( l )Wt

i

( l )S
ij

( l )  

  

2
PI

5

Wt
i

( l )
Wt

i
*

( l
* )
= 0 for all i*and l*  

  

2 PI
5

Wt
i

( l ) S
ij

( l )
=

CW ( l )

m
 

   
S

Wt
i
( l ) S

ij
( l )

PI
5 =

1

m
CW ( l )Wt

i

( l )S
ij

( l )  

  

2 PI
5

Wt
i

( l ) S
i* j

( l* )
= 0 for i* i or l* l  

 Note 

   
S

Wt
i
( l ) S

ij
( l )

PI
5 = S

CW ( l ) S
ij
( l )

PI
5 = S

S
ij

PI
5  

   
S

CW
( l )

Wt
i

( l )

PI
5 = S

Wt
i

( l )

PI
5  

 In general the criteria weights are the most important parameters with the subcriteria weights being the next most impor-

tant. The interaction terms come next and the individual input scores are the least important. Of course, the most important 

subcriterion weight is usually more important than the least important criterion weight, etc. These generalizations are in con-

cert with our collective intuition about tradeoff studies. 



Sensitivity Analysis, a Powerful System Validation Technique The Open Cybernetics and Systemics Journal, 2008, Volume 2    55 

BIOGRAPHIES 

 Eric Smith earned a B.S. in Physics in 1994, an M.S. in 

Systems Engineering in 2003 and his Ph.D. in Systems and 

Industrial Engineering in 2006 from the University of Ari-

zona, Tucson. He is currently a Visiting Assistant Professor 

in the Department of Engineering Management and Systems 

Engineering, at the Missouri Institute of Science and Tech-

nology at Rolla, 65409. 

 Ferenc Szidarovszky is a professor of Systems and In-

dustrial Engineering at the University of Arizona in Tucson. 

He was born in Budapest, Hungary and received his B.S., 

M.S. and Ph.D. in numerical techniques from the Eötvös 

University of Sciences in Budapest. He received a second 

Ph.D. in economics from the Budapest University of Eco-

nomic Sciences in 1977. He was an assistant and an associ-

ate professor in the Department of Numerical Analysis and 

Computer Sciences of the Eötvös University of Sciences. He 

served as the Acting Head of the Department of Mathematics 

and Computer Sciences of the University of Horticulture and 

Food Industry. He was a professor with the Institute of 

Mathematics and Computer Sciences of the Budapest Uni-

versity of Economic Sciences. 

 William J. Karnavas was born in Pittsburgh, PA. He 

earned his B.S. from Carnegie Mellon University in 1984 

and his M.S. from the University of Pittsburgh in 1986, both 

in electrical engineering. He then went to the University of 

Arizona and received his Ph.D. in Systems and Industrial 

Engineering in 1992. He currently works for IBM BPTS 

WebSphere Competency Center, IBM Application & Inte-

gration Middleware Division, Pittsburgh PA. 

lBill@us.ibm.com 

 A. Terry Bahill is a Professor of Systems Engineering at 

the University of Arizona in Tucson. He received his Ph.D. 

in electrical engineering and computer science from the Uni-

versity of California, Berkeley, in 1975. His research inter-

ests are in the fields of system design, systems engineering, 

modeling physiological systems, eye-hand-head coordina-

tion, human decision making and systems engineering the-

ory. He has tried to make the public appreciate engineering 

research by applying his scientific findings to the sport of 

baseball. Bahill has worked with BAE Systems in San Di-

ego, Hughes Missile Systems in Tucson, Sandia Laboratories 

in Albuquerque, Lockheed Martin in Eagan MN, Boeing in 

Kent WA, Idaho National Engineering and Environmental 

Laboratory in Idaho Falls and Raytheon Missile Systems in 

Tucson. For these companies he presented seminars on Sys-

tems Engineering, worked on system development teams and 

helped them describe their Systems Engineering Process. He 

holds a U.S. patent for the Bat Chooser, a system that com-

putes the Ideal Bat Weight for individual baseball and soft-

ball batters. He received the Sandia National Laboratories 

Gold President's Quality Award. He is a Fellow of the Insti-

tute of Electrical and Electronics Engineers (IEEE), of Ray-

theon and of the International Council on Systems 

Engineering (INCOSE). He is the Founding Chair Emeritus 

of the INCOSE Fellows Selection Committee. His picture is 

in the Baseball Hall of Fame's exhibition "Baseball as Amer-

ica." You can view this picture at http://www.sie.arizona. 

edu/sysengr/ 

ACKNOWLEDGEMENT 

 We thank the three anonymous referees for their helpful 

comments. This work was supported by the Air Force Office 

of Scientific Research under AFOSR/MURI F49620-03-1-

0377. 

REFERENCES 

[1] C. Stern and E. R. Sherwoods, The origins of genetics: A Mendel 

source book, Freeman, San Francisco, CA, pp. 308-312, 1966. 
[2] J. F. Box, "Gosset, Fisher, and the t distribution," Am. Stat., vol. 35, 

no. 2, pp. 61-66, summer 1981. 
[3] H. W. Bode, Network analysis and feedback amplifier design, Van 

Nostrand, New York, 1945. 
[4] A. Ford and P. C. Gardiner, "A new measure of sensitivity for 

social system simulation models," IEEE Trans. Syst. Man Cybern., 
SMC vol. 9, no. 3, pp. 105-114, March 1979. 

[5] P. M. Frank, Introduction to system sensitivity theory, Academic, 
New York, 1978. 

[6] F. K. Hsu, A. T. Bahill and L. Stark, "Parametric sensitivity of a 
homeomorphic model for saccadic and vergence eye movements," 

Comput. Programs Biomed., vol. 6, no. 2, pp. 108-116, 1976. 
[7] A. T. Bahill, J. R. Latimer and B. T. Troost, "Sensitivity analysis of 

linear homeomorphic model for human movement," IEEE Trans. 
Syst. Man Cybern., SMC vol. 10, no. 12, pp. 924-929, December 

1980. 
[8] S. Lehman and L. Stark, "Simulation of linear and nonlinear eye 

movement models: Sensitivity analyses and enumeration studies of 
time optimal control," J. Cybern. Inform. Sci., 4, pp. 21-43, 1979. 

[9] A. T. Bahill, “Physiological models, Development,” in Wiley Ency-
clopedia of Electrical and Electronics Engineering, J. Webster, Ed. 

John Wiley & Sons, vol. 16, pp.427-446, 1999, Second edition, 
2007 [Online] Available: http://www.mrw.interscience.wiley.com/ 

emrw/9780471346081/eeee/article/W1422/current/html#W1422-
sec1-0003 [Accessed January 20, 2008]. 

[10] S. N. Ghadiali, J. Banks and J. D. Swarts, "Finite element analysis 
of active Eustachian tube function," J. Appl. Physiol., vol. 97, no. 

2, pp. 648-654, 2004. 
[11] S. J. Yakowitz and F. Szidarovszky, An introduction to numerical 

computations, Macmillan, New York, 1989. 
[12] B. G. Buchanan and E. H. Shortliffe, Rule-based expert systems, 

Addison-Wesley, Reading, MA, 1984. 
[13] A. T. Bahill, Verifying and validating personal computer-based 

expert systems, Prentice-Hall, Englewood Cliffs, NJ, 1991. 
[14] W. J. Karnavas, P. J. Sanchez and A. T. Bahill, "Sensitivity analy-

ses of continuous and discrete systems in the time and frequency 
domains," IEEE Trans. Syst. Man Cybern., SMC vol. 23, no. 2, pp. 

488-501, March-April 1993. 
[15] A. Law and D. Kelton, Simulation, modeling and analysis, 

McGraw Hill, 2000. 
[16] J. P. C. Kleijnen, Statistical techniques in simulation, Dekker, New 

York, 1975. 
[17] J. P. C. Kleijnen, "An overview of the design and analysis of simu-

lation experiments for sensitivity analysis," Eur. J. Oper. Res., vol. 
164, no. 2, pp. 287-300, July 2005. 

[18] P. J. Sanchez and L. W. Schruben, "Simulation factor screening 
using frequency domain methods: An illustrative example," 18th 

Winter Simulation Conference, 1986, pp. 366-369. 
[19] L. W. Schruben and V. J. Cogliano, "An experimental procedure 

for simulation response surface model identification," Communica-
tions ACM, vol. 30, no. 8, pp. 716-730, August 1987. 

[20] D. J. Morrice and L. W. Schruben, "Simulation sensitivity analysis 
using frequency domain experiments," Proceedings 1989 Winter 

Simulation Conference, 367-373, 1989. 
[21] R. Y. Rubinstein and F. Szidarovszky, "Convergence of perturba-

tion analysis estimates for discontinuous sample functions: A gen-
eral approach," Advances in Applied Probability, vol. 20, no. 1, pp. 

59-78, January 1988. 
[22] Y. C. Ho and S. Li, "Extensions of infinitesimal perturbation analy-

sis," IEEE Trans. Auto. Cont., vol. 33, no. 5, pp. 427-438, May 
1988. 



56    The Open Cybernetics and Systemics Journal, 2008, Volume 2 Smith et al. 

[23] P. V. Kokotovic and H. K. Khalil, Singular perturbations in sys-

tems and control, IEEE Press, New York, 1986. 
[24] A. T. Bahill, “A simple adaptive Smith-predictor for controlling 

time-delay systems,” IEEE Cont. Sys. Mag., pp. 16-22, May 1983. 
[25] I. D. Landau, Adaptive control: The model reference approach, 

Dekker, New York, 1979. 
[26] V. Chatal, Linear programming, Freeman, New York, 1983. 

[27] J. E. Oakley and A. O'Hagan, "Probabilistic sensitivity analysis of 
complex models: a Bayesian approach," J. Royal Stat. Society B, 

vol. 66, no. 3, pp. 751-769, 2004. 
[28] L. Stark, Neurological Control Systems, Studies in Bioengineering, 

Plenum Press, New York, pp. 308-312, 1968. 
[29] A. Saltelli, S. Tarantola, F. Campolongo and M. Ratto, Sensitivity 

analysis in practice: A guide to assessing scientific models, Wiley, 
Hoboken, NJ, 2004. 

[30] W. Nicholson, Microeconomic theory: Basic principles and exten-
sions, The Dryden Press, Hinsdale, IL, 1978. 

[31] J. Daniels, P. W. Werner and A. T. Bahill, "Quantitative methods 
for tradeoff analyses," Syst. Eng., vol. 4, no. 3, pp. 190-212, fall 

2001. 
[32] E. D. Smith, M. Piattelli-Palmarini and A. T. Bahill, "Cognitive 

biases affect the acceptance of tradeoff studies," in Decision Mod-
eling and Behavior in Uncertain and Complex Environments, T. 

Kugler, J. C. Smith, T. Connolly and Y. J. Son., Eds. Springer, Sci-
ence + Business Media, Cambridge, MA, in press 2008. 

[33] E. D. Smith, Y. J. Son, M. Piattelli-Palmarini and A. T. Bahill, 
"Ameliorating the effects of cognitive biases on tradeoff studies," 

Syst. Eng., vol. 10, no. 3, pp. 222-240, fall 2007 

[34] E. D. Smith and A. T. Bahill, "Risk Analysis," Proceedings of 17th
 

Annual International Symposium of INCOSE, San Diego, CA, June 
24-28, 2007. 

[35] A. T. Bahill and E. D. Smith, "An industry standard risk analysis 
technique," Eng. Manag. J., 2008. 

[36] D. G. Cacuci, Sensitivity and uncertainty analysis, Chapman & 
Hall / CRC Press, Boca Raton, FL, 2005. 

[37] A. T. Bahill 
and S. J. Henderson, “Requirements development, 

verification and validation exhibited in famous failures,” Syst. Eng., 

vol. 8, no. 1, pp. 1-14, spring 2005. 
[38] A. T. Bahill, and F. F. Dean, “Discovering system requirements,” 

in Handbook of Systems Engineering and Management, A. P. Sage, 
and W. B. Rouse, Eds. John Wiley & Sons, pp. 175-220, 1999, 

second edition in press 2008. 
[39] R. Botta and A. T. Bahill, "A prioritization process," Eng. Manag. 

J., vol. 19, no. 4, pp. 20-27, December 2007. 
[40] W. W. Wakeland, R. H. Martin and D. Raffo, "Using design of 

experiments, sensitivity analysis, and hybrid simulation to evaluate 
changes to a software development process: a case study," Software 

Process: Improvement and Practice, vol. 9, no. 2, pp. 107-119, 
2004. 

[41] A. W. Wymore, Model-based systems engineering, CRC Press Inc., 
Boca Raton, FL, 1993. 

[42] J. J. Pignatiello and J. S. Ramberg, "Off-Line Quality Control, 
Parameter Design, and the Taguchi Method, a Discussion." J. Qual. 

Tech., vol. 17, no. 4, pp. 198-206, October 1985. 
[43] J. S. Hunter, "Statistical design applied to product design," J. Qual. 

Tech., vol. 17, no. 4, pp. 210-221, October 1985. 

 

 

Received: December 31, 2007 Revised: January 23, 2008 Accepted: January 30, 2008 

 

 

 


