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This paper reviews five related types of analysis, namely (i) sensitivity or what-if
analysis, (ii) uncertainty or risk analysis, (i) screening, (iv) validation, and (v) optimiz-
ation. The main questions are: when should which type of analysis be applied; which
statistical techniques may then be used? This paper claims that the proper sequence to
follow in the evaluation of simulation models is as follows. 1) Validation, in which the
availability of data on the real system determines which type of statistical technique to
use for validation. 2) Screening: in the simulation's pilot phase the really important
inputs can be identified through a novel technique, called sequential bifurcation,
which uses aggregation and sequential experimentation. 3} Sensitivity analysis: the
really important inputs should be subjected to a more detailed analysis, which in-
cludes interactions between these inputs; relevant statistical techniques are design of
experiments (DOE) and regression analysis. 4) Uncertainty analysis: the important
environmental inputs may have values that are not precisely known, so the uncertain-
ties of the model outputs that result from the uncertainties in these mode} inputs
should be quantified; relevant techniques are the Monte Carlo method and Latin
hypercube sampling. 5) Optimization: the policy variables should be controlled; a
relevant technique is Response Surface Methodology (RSM), which combines DOE,
regression analysis, and steepest-ascent hill-climbing. The recommended sequence im-
plies that sensitivity analysis procede uncertainty analysis. Several case studies for
each phase are briefly discussed in this paper.

Keywords: Sensitivity analysis; what-if; uncertainty analysis; risk analysis; validation;
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1. INTRODUCTION

The objective of this paper is to review the state of the art in five
related types of analysis, namely (i) sensitivity analysis or SA, (ii)
uncertainty analysis or UA, (iii) screening, (iv) validation, and (v) opti-
mization. The main questions are: when should which type of analysis
be applied; which statistical techniques may then be used? What, how-
ever, is meant by these five terms? Since the vast literature on simula-
tion does not provide standard definitions, this paper will use its own
descriptions of these terms.

The main conclusion will be that the simulation analysts should
distinguish the following five phases in their simulation studies, and
consider the following statistical technigues for use in these phases.

Phase 1: Validation

Validation concerns the question: is the simulation model an adequate
representation of the corresponding system in the real world? Model
validity should be of major interest to both users and analysts. The
analysts may use regression and design of experiments or DOE, es-
pecially if there are no data on the input/output of the simulation
model or its modules. If there are ample data, then the simulation
model may be validated by a special type of regression analysis (see

§4).
Phase 2: Screening

Screening is needed whenever a simulation study is still in its early,
pilot phase and many factors may be conceivably important (domi-
nant). Straightforward numerical experiments with such a simulation
model may require too much computer time. Therefore analysts may
use sequential bifurcation, which is a simple, efficient, and effective
technique (see §2).

Phase 3: Sensitivity Analysis

This paper uses the term SA (or what-if analysis) for the systematic
investigation of the reaction of the simulation response to either ex-
treme values of the model’s quantitative factors (parameters and input
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variables) or to drastic changes in the model’s qualitative factors (mod-
ules). For example, what happens to the mean waiting time in a
supermarket, when the arrival rate doubles; what happens if a ‘fast
lane’ is opened for customers with less than (say) seven articles? So
this paper’s focus is not on marginal changes in inputs (such small
perturbations or local sensitivities are discussed in Helton 1993, Ho
and Cao 1991, Kleijnen and Rubinstein 1996, and Rubinstein and
Shapiro 1993).

If the model’s input/output (I/O) transformation is non-monotonic,
then it may be dangerous to consider extreme input values only: the
output might happen to be approximately the same at the two extremes.
Non-monotonicity may be quantified by quadratic effects. Note that this
paper concentrates on & single response per run; muiltiple responses are
only briefly mentioned in §6 (on RSM); also see McKay (1995).

In SA the analysts may use regression analysis to generalize the
results of the simulation experiment, since regression analysis charac-
terizes the I/O transformation of the simulation model. To obtain
better estimators of the effects in the regression model, these es-
timators should be based on DOE. DOE requires fewer simulation
runs than intuitive designs that change one factor at a time (‘ceteris
paribus’ approach). See §3.

Phase 4: Uncertainty Analysis

In UA (also called risk analysis in some publications) the values of the
model inputs are sampled from prespecified distributions, to quantify
the consequences of the uncertainties in the model inputs on the
model outputs. So in UA the input values range between the extreme
values investigated in SA. The goal of UA is to quantify the probabil-
ity of specific output values, whereas SA does not tell how likely a
specific result is. The differences between SA and UA will be further
explored later on (also see the discussion in Draper 1995).

In UA the analysts use the technique of Monte Carlo sampling,
possibly including variance reduction techniques such as Latin hypercube
sampling or LHS, possibly combined with regression analysis (see §5).

Phase 5: Optimization

From the users’ viewpoint the important model inputs should be split
into two groups, namely inputs that are under the users’ control
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(policy variables) versus environmental inputs, which are not control-
lable. Specifically, users want to ask ‘what if” questions: what happens
if controllable inputs are changed (scenario analysis), what if other
inputs change (UA)? To optimize the controllable inputs, the analysts
may use Response Surfoce Methodology or RSM, which builds on
regression analysis and DOE (see §6). Note that in nuclear engineering
the term RSM refers to SA without optimization; see Olivi (1980) and
Rao and Sarkar (1995).

This list of five phases implies that SA should precede UA. McKay
(1995, pp. 7, 33) also discusses the sequence of steps in modelling, but
he concentrates on UA.

SA is applied in simulation studies of very different real-life sys-
tems, in all kinds of disciplines: chemistry, physics, engineering,
economics, management science, and so on. Moreover, the theoreti-
cal aspects of SA are studied in mathematics and statistics. Unfor-
tunately, the definition of SA (and of related analyses) varies over
and within these many disciplines! Because terminologies differ so
much, communication among different disciplines is difficult. Yet,
cross-fertilization among these disciplines is certainly possible and
fruitful.

Especially the roles of SA and UA seem unclear (see Kleijnen 1994},
It seems wise to consider questions that might be asked by the users of
simulation models (these users are the clients of the simulation
modelers, and ‘the customer is king’). Examples are: (i) What is the
probability of a nuclear accident happening at out site? (ii) How big is
the chance that the financial investment in our project will turn out to
be unprofitable? (iif) What is the probability of customers having to
wait longer than three minutes at our supermarket’s checkout lanes?

Next consider examples of questions asked by simulationists {(or
analysts): () What happens if parameter h (with h=1, ...,k) of our
simulation model is changed? (ii) Which are the really important par-
ameters among the hundreds of parameters of our total simulation
model (that consists of several modules or submodels)?

Uncertainty about a simulated system’s response (outcome) may
have two different causes:

(i) The system’s process is well-known, so it is represented by a deter-
ministic model; however, its parameters, are not known exactly.
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Many examples can be found in classical physics. Karplus (1983)
gives an interesting survey of different types of models in different
disciplines, ranging from astronomy through ecology to social
sciences; these disciplines use white box, grey box, and black box
models respectively,

(ii) Some models are intrinsically stochastic: without the randomness
the problem disappears. In the supermarket example the customer
arrival and service times are random, which creates stochastic
customer waiting times. In an ecological model an example may
be the wind’s speed and direction. Helton (1993, 1996) speaks of
‘stochastic or aleatory uncertainty’, Also see Van Asselt and Rot-
mans (1995, pp. 11-13) and Zeigler (1976),

Uncertainty is the central problem in mathematical probability the-
ory. This discipline, however, has two schools (also see Cooke 1995,
pp. 4-6, and Winkler 1996):

(i) The objectivists or frequentists school: for example, when throwing
a dice many times, the probability of throwing a six can be defined
as the limit of the frequency of throwing a six (obviously this limit
is 1/6 for a fair dice).

(i) The subjectivists school: an event may be unique (for example,
tomorrow’s weather at a particular place); yet a ‘probability’ (be-
tween zero and one) may be assigned to a particular outcome {for
example, sunny all day). Many UA studies concern such unique
events; for example, the following questions by the users were
mentioned above: (i) What is the probability of a nuclear accident
happening at our site? (ii) How big is the chance that our financial
investment in this project will turn out to be unprofitable? Note
that Bayesians try to combine prior subjective data with new fac-
tual data; see Draper (1995).

Zeigler wrote a seminal book on the theory of modeling and simu-
lation, in which he distinguishes between input variables and par-
ameters; see Zeigler (1976). By definition, a variable can be directly
observed; an example is the number of check-out lanes in a supermar-
ket. A parameter, however, can not be observed directly, so its value
must be inferred from observations; an example is the arrival rate of
customers. Hence mathematical statistics may be used to quantily the
probability of certain values for a parameter (see §5.1). When applying
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DOE {for example, a fractional factorial design) to simulation models,
this paper will use the term factor for parameters, input variables, and
modules that are changed from (simulation) run to run. (For modules
treated as factors also see Helton er al., 19954, Mckay 1995, pp.
5154, and Van Asselt and Rotmans 1995.)

This paper covers both practical and theoretical aspects. It covers
these aspects at an advanced tutorial level; that is, the readers are
assumed to be experienced professionals in simulation. For technical
details, a bibliography with approximately B0 references is included.
(To reduce the number of references, only the most recent reference for
a certain technique or concept is given; this recent reference may refer
to the original, older publication.) The review synthesizes the latest
research results in a unified treatment ol the various analysis types. It
also briefly discusses selected applications of these analyses. The stat-
istical techniques mentioned above, have already been applied many
times in practical simulation studies, in many domains (also see the
many contributions in this special issue). These techniques make simu-
lation studies give more general results, in less time. Unfortunately,
nobody can be an expert in the many disciplines that discuss the
issues addressed in this paper! This paper is eolored by more than 235
years of experience with simulation, especially its statistical aspects
and its applications to problems in business, economics, environment-
al, agricultural, military, and computer systems, This paper combines,
updates, and revises Kleijnen (1994, 1995b).

For didactic reasons, this paper is not organized in the order of the
five stages given above; for example, validation (phase 1) may use DOE,
but DOE is simpler explained for SA (stage 3). So in §2 screening and
especially sequential bifurcation are discussed. In §3 SA through re-
gression analysis and DOE is explained. In §4 validation is briefly ad-
dressed. In §5 UA is discussed, distinguishing between deterministic and
stochastic simulations. In §6 optimization through RSM is explained. In
§7 conclusions are summarized. A bibliography ends this paper.

2. SCREENING: SEQUENTIAL BIFURCATION

Screening is the search for the few (say) k, really important factors
among the great many (say) k, potentially important factors (k, <« k,).
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In practice, experiments with simulated systems often do involve
many factors. Andres (1996) fives an example with 3300 factors that
affect deep geological waste disposal. Rahni et al. (1996) screen 390
factors in a deterministic simulation of an experimental building, de-
veloped to study energy flows in buildings. Another example is the
case study in this section, which has 281 factors; this study concerns a
complicated deterministic simulation model of the ‘greenhouse’ phe-
nomenon (the increase in temperatures worldwide, caused by increas-
ing quantities of carbon dioxide or CO, and of other gases in the
atmosphere). McKay (1995) discusses case studies with 84 and 36
factors respectively. Other examples would be stochastic simulations
of queueing networks, such as logistic, computer, and telecommunica-
tion networks with nodes that represent individual servers (machines).
These queueing models have many parameters (service and arrival
rates), input variables (number of servers), and behavioral relation-
ships (queuing discipline or priority rule). In summary, simulation
models with several hundred factors are common; also see Morris
(1991).

The problem is that a simulation run may require so much com-
puter time that the number of runs (say) n must be much smaller than
the number of factors (n <« k,). For example, the greenhouse model
with 281 factors takes 15 minutes of computer time per run, so 282
runs would have taken roughly 70 hours of computer time (on the
computer available at that time: PC 386DX, 16 Mhz). In general, the
analysts and their clients may not wish to wait until (roughly) k, runs
will have been generated. (The greenhouse model is part of an even
bigger model, called TMAGE’, Integrated Model to Assess the Green-
house Effect, which was developed at the Dutch institute RIVM, Na-
tional Institute of Public Health and Environmental Protection; see
Rotmans 1990.)

Whenever there are many factors the analysts should assume that
only a few factors are really important (k, < k,). parsimony, Occam's
razor. Moreover, to solve the screening problem (k, « k,, n « k,), one
general scientific principle can be applied: aggregation. Indeed, aggre-
gation has been used in the study of many large systems; for example,
in economic theory and practice the production volumes of the indi-
vidual companies are aggregated into the Gross National Product or
GNP,



118 J.P.C. KLEIJNEN

More specifically, in the experimentation with large systems (real or
simulated), analysts have applied group screening: they combine indivi-
dual factors into groups and experiment with these groups as if they
were individual factors. The theory on group screening goes back a
long time: Jacoby and Harrison (1962), Li (1962), Patel (1962), and
Watson (1961). A more recent publication is Morris (1987).

Practical applications of group screening, however, are rare. The
reason may be that in experiments with real systems it is impossible to
control hundreds of factors. And in simulation, most analysts seem to
be unaware of group screening. Four simulation applications of classi-
cal group screening are summarized in Kleijnen (1987, pp. 327); other
applications are given in Cochran and Chang (1990) and Rahni et al.
(1996).

This paper focusses on a novel group screening technique, namely
sequential bifurcation or SB. SB uses a special design; it also applies a
different analysis. SB proceeds sequentially (or stagewise) and splits up
{or bifurcates) the aggregated inputs as the experiment proceeds, until
finally the important individual inputs are identified and their effects
are estimated. SB is more efficient than competing group screening
techniques. Moreover, SB has been used in practice, namely in the
greenhouse simulation mentioned above, and in the building thermal
deterministic simulation in De Wit (1995). For the greenhouse simula-
tion, SB found the 15 most important inputs among the 281 factors
after only 144 runs. SB lead to surprising results: the technique identi-
fied some factors as being important that the ecological experts as-
sumed to be unimportant. In De Wit’s building simulation, SB found
the 16 most important inputs among the 82 factors after only 50 runs.
De Wit checked these results by applying a different screening tech-
nique, namely ‘randomized one-factor-at-a time designs’ of Morris
(1991), which took 328 runs.

How general are the results of these SB applications; can SB be
applied with confidence to other simulation models? Scientists must
always make assumptions to make progress; more specifically, any
screening technique must use assumptions, In practice, the simulation
analysts often leave their assumptions implicit. Frequently the ana-
lysts assume that they know which factors are unimportant, and they
investigate only a few intuitively selected factors; also see Bankes and
Lucas (1995). (Often they apply an inefficient or ineffective design: they
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change one factor at a time; see Van Groenendaal (1994). All classical
group screening techniques and also SB assume a low-order poly-
nomial approximation or metamodel for the 1/O transformation of
the simulation model; moreover they assume known signs or direc-
tions for the first-order or main effects. These assumptions will be
discussed next.

Assumption 1: Low-Order Polynomial Approximation

A metamodel implies that the underlying simulation model is treated
as a black box. The advantage of a low-order polynomial is that it is
simple and that it may apply to all types of random and deterministic
simulation. The disadvantage is that the approach cannot exploit the
special structure of the simulation model at hand. Note that other
techniques do use the specific structure of the specific simulation
model; examples are importance sampling or score function (see §5.1)
and differential or perturbation analysis (see Helton 1993 for continu-
ous systems and Ho and Cao 1991 for discrete-event systems). How-
ever, these sophisticated techniques have not yet been applied to dis-
crete-event simulations with hundreds of factors.

Low-order polynomials are often used in DOE with its concomitant
Analysis of Variance (ANOVA), applied to real or simulated systems
with a small number of factors; for a survey see Kleijnen and Van
Groenendaal(1992).

All classic group screening designs assume a first-order polynomial,
In SB a first-order polynomial requires only half the number of runs
that an approximation with two-factor interactions does (foldover
principle; see §3.3.2 and also Andres 1996 and Kleijnen 1987). In
general, however, a more cautious approach is recommended, namely
a metamodel with interactions.

Assumption 2: Known Signs

In group screening the analysts must assume known signs or direc-
tions for the effects, in order to know with certainty that individual
effects do not compensate each other within a group. In practice the
sign of a factor may be known indeed (the magnitude, however, is
unknown, so simulation is used). For example, in the greenhouse
study the ecological experts felt confident when they had fo specify the
signs of the factor effects, for most factors. In queucing networks the
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response may be throughput, so the analysts may assume that higher
speeds of servers have non-negative effects on the response; and so
does an increasing arrival rate of jobs at the source of the network.

If the analysts feel that they do not know the signs of a few factors,
then they may treat these factors separately. Indeed, in the greenhouse
case study there is a very small group of factors with unknown signs.
These factors can be investigated in a traditional design.

A special characteristic of sequential procedures such as SB is that
the analysts do not need to quantify a priori how big a factor effect
should be in order to be called important. As simulation outputs are
generated sequentially, SB computes upper limits for the factor effects,
and the analysts can stop the simulation experiment as soon as they
find these limits sharp enough. Obviously, the analysts may make
these limits depend on the system being simulated. .

The main objective of this section was to inform simulation analysts
about a novel technique for the screening of large simulation models.
Therefore concepts were emphasized; for technical details the readers
are referred to the more than 200 pages of the doctoral dissertation,
Bettonvil (1990) or to the summary paper by Bettonvil and Kleijnen
(1996). Different screening techniques are Andres’s (1996) Iterated
Fractional Factorial Design (IFFD) and McKay’s (1995) replicated
LHS design.

3. SENSITIVITY ANALYSIS: REGRESSION
ANALYSIS AND DOE

Sensitivity analysis was defined (in §1) as the systematic investigation
of the reaction of the simulation response to either extreme values of
the model’s quantitative factors (parameters and input variables) or to
drastic changes in the model’s qualitative factors (modules). This sec-
tion assumes that the number of factors is relatively small, that is, the
screening phase is over. An example with fourteen factors will be
mentioned in §6 (section on optimization). In the sensitivity phase,
regression analysis may be used to approximate the I/O transform-
ation of the simulation model. This regression analysis gives better
results when the simulation experiment is well designed, using classical
statistical designs such as fractional factorials.
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3.1. Introduction: Graphical Methods

Practitioners often make a scatter plot with on the y-axis the simulation
response (say, average waiting time) and on the x-axis the values of one
factor (for example, service rate). This graph indicates the I/O trans-
fn}rrniumnhpf ;he sin;ulmion model, treated as a black box. It shows
whether this factor has a positive or negative effect on the

whether thatl effect remains constant cwerg the domain or exp;:;rizgtszi
arca of the factor, and so on. Also see Helton (1993, pp. 347-349),

The practitioners may further analyze this scatter plot; they may fit
a curve to these (x, ) data, for example, a straight line (y = f, + f,x).
Of course. they may fit other curves (such as a quadratic curve: second
degree polynomial) or they may use paper with one or both scales
logarithmic,

To study interactions between factors, they may combine scatter
plots per factor. For example, they drew one scatter plot for differ-
ent values of the service rate, given a certain number of servers.
They can now superimpose plots for different numbers of servers.
Intuitively. the waiting time curve for a low number of servers
should Tie above the curve for a high number of servers (if not, the
simulation model is probably wrong; see the discussion on valida-
tion in §4). If the response curves are not parallel, there are interac-
tions, by definition.

Making scatter plots is a simple technique that is often effective.
However, superimposing many plots is cumbersome. Moreover, their
interpretation is subjective: are the response curves really parallel
and straight Jines? These shortcomings are removed by regression
analysis.

3.2. Regression Analysis

A regression metamodel was defined as an approximation of the I/O
transformation of the underlying simulation model. Consider the sec-
ond degree polynomial

K koK
Y= ot 3 Bt X2 Bk + B )

hw ) h= i r=h

{i=1,,.,n)
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with

&<

: simulation response of factor combination i (stochastic variables
are shown in capitals);

By : overall mean response or regression intercept;

B, : main or first-order effect of factor A

X;, - value of the standardized factor h in combination i (see

Equation (2) below);

By - interaction effect of the factors h and k' with h<H;

By, - quadratic effect of factor k;

E; : fitting error of the regression model for factor combination i;

n . number of simulated factor combinations.

For didactic reasons, interactions and quadratic effects are ignored
initially. Then the relative importance of a factor is obtained by sorting
the absolute values of the main effects f,, provided the factors are
standardized. So let the original (non-standardized) factor h be de-
noted by z,. In the simulation experiment z, ranges between a lowest
value (say) /, and an upper value u,; that is, either the simulation
model is not valid outside that range (see the discussion on validation
in §4) or in practice that factor can range over that domain only (for
example, the number of servers can vary only between one and five).
(DOE concerns the question whether z, is to be set at the extreme
values only or also at intermediate values; see §3.3.) The variation (or
spread) of factor h is measured by a,=(u,—1,)/2; its location (or
mean) by b, = (u, + 1,)/2. Then the following standardization is appro-
priate:

X, =2y, — by)/a, 2]

Note that other measured besides |f,| have been proposed; see McKay
(1995); also see Helton (1993), Saltelli (1996), and Sobol (1995). More
research and applications are needed.

The classic fitting algorithm, which determines the regression par-
ameters f=(Bo,B;,.... B in Equation (1), uses the ordinary least
squares (OLS) criterion. Software for this algorithm is abundant. If,
however, statistical assumptions about the fitting error are added, then
there are better algorithms. Consider the following assumptions.
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It is realistic to assume that the variance of the stochastic fitting
error E varies with the input combination of the random simulation
model: var(E;)=o}. (So both the mean and the variance of Y, the
response of the stochastic simulation, depend on the input) Then
weighted least squares or WLS (with the standard deviations o; as
weights) yields unbiased estimators of the factor effects, but with
smaller variances than OLS gives. ‘

To improve the SA, common pseudorandom number seeds should
be used when simulating different factor combinations for a random
simulation model. Then, however, generalized least squares or GLS
should be applied to get minimum variance, unbiased estimators. Un-
fortunately, the variances and covariances of the simulation responses
Y, are unknown, so they must be estimated. The following equation
gives the classic covariance estimator, assuming d independent replica-
tions or runs per factor combination (so Y, and Y, are correlated, but
Y, and Y, . are not):

~ %)%, — ToKd ~ 1) ®

d
cov(Y, K= 3 (¥,
g=1
Under mild conditions, the resulting estimated GLS gives unbiased
estimators of the factor effects, but with smaller variances than OLS
gives; see Kleijnen and Van Groenendaal {1992).

To make statistical inferences (for example, about the importance of
the factor effects), a Gaussian distribution is normally assumed. To
satisfy this assumption, the analysts may apply transformations such
as the logarithmic transformation fo the simulation response Y. Alter-
natively, the analysts might hope that the results are not sensitive to
‘mild’ non-normality. Another alternative is to replace both the simu-
lation response Y and the factors x, in Equation (1) by their ranks:
rank regression. Moreover, the analysts may examine the original and
the transformed data, and see whether the various analyses give the
same qualitative results. See Andres (1996), Kleijnen (1987), Kleijnen,
Bettonvil, and Van Groenendaal (1995), and Saltelli (1996).

Of course, it is necessary to check the fitted regression metamodel:
is it an adequate approximation of the underlying simulation model?
Therefore the metamodel may be used to predict the outcome for a
new factor combination of the simulation model. So replace £ in the
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specified metamodel by its estimate f, and substitute a new input
combination (there are n old combinations). Compare the regression
prediction §, ., with the simulation response p, ;.

A refinement is cross-validation: do not add a new combination
(which requires computer time), but eliminate one old combination
(say combination i) and re-estimate the regression model from the
remaining n — 1 combinations. Repeat this elimination for all values of
i (with i=1,...,m; see Equation (1)). Statistical details are discussed in
Kleijnen and Van Groenendaal (1992); also see Helton (1993, pp.
347--356).

Applications of regression metamodeling will be discussed below.
Note that the analysts may use a covariance stationary process (in-
stead of white noise) to model the systematic effects of the inputs; see
Sacks, Welch, Mitchell, and Wynn (1989).

3.3. Design of Experiments

The preceding subsection (§3.2) used regression metamodels to ap-
proximate the I/O transformation of simulation models. Such a meta-
model has (say) g regression parameters in the vector f, which
measure the effects of the k factors; for example, g equals k + 1 if there
are no high-order effects (see §3.3.2).

It is obvious that to get unique, unbiased estimators of these g
effects , it is necessary to simulate at least n > g factor combinations.
Moreover, which n combinations to simulate, can be determined such
that the accuracy of the estimated factor effects is maximized (variance
minimized). This is the goal of the statistical theory on DOE (which
Fisher started in the 1930s, and Taguchi continues today).

3.3.1. Main Effects Only

Consider a first-order polynomial, which is a model with only £ main
effects, besides the overall mean (see the first two terms in the right-
hand side of Equation (1)). By definition, a resolution I1I or R-3 design
permits the unbiased estimation of such a first-order polynomial. The
following types of R-3 designs are of special interest.

In practice, analysts usually first simulate the ‘base’ situation, and
next they change one factor at a time; hence n=1+k. See Helton et al.
(1995a, pp. 290) and Van Groenendaal (1994).
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Statistical theory on DOE, however, concentrates on orthogonal
designs, that is, designs that satisfy

Xx=nl (4)

where bold letters denote matrices; x = (x;;) denotes the so-called de-
sign matrix with i=1,..,n (so i is defined as in Equation (1)) and
7 =0,1,...,k (obviously, n>k; see the beginning of §3.3); the first col-
umn of x has the values x,, = 1 (‘dummy’ factor) and corresponds with
Bo; the remaining columns have the values x;, defined below
Eqguation (1); finally, I denotes the identity matrix (so this capital letter
does not denote a stochastic variable). Orthogonal designs give es-
timators of @ that are unbiased and have smaller variances than the
estimators resulting from designs that change one factor at a time.

Orthogonal designs are tabulated in many publications. The ana-
lysts may also learn how to construct those designs; see Kleijnen
(1987). Recently, software has been developed to help the analysts
specify these designs; see Oren (1993) and Vollebregt (1996).

A well-known class of orthogonal designs are 2¢~? fractional factorials;
for example, a simulation with k=7 factors requires n=27"%=3§ factor
combinations (runs) to estimate the main effects plus overall mean. Actu-
ally, these 27 designs also require 8 runs when 4 <<k < 7. See Kleijnen
(1987).

References to many simulation applications of these designs can be
found in Klieijnen (1987) and Kleijnen and Van Groenendaal (1992).

In practice, however, it is unknown whether only main effects are
important. Therefore orthogonal designs with n = k+1 should be used
only in optimization (see §6). Moreover, these designs are useful as
building blocks if interactions are accounted for; see §3.3.2

3.3.2. Main Effects Biased by Interactions?

It seems prudent to assume that interactions between pairs of factors
{(two-factor interactions) may be important. By definition, a resolution
I'V or R-4 design permits the unbiased estimation of all k main effects,
even if two-factor interactions are present, R-4 designs do not give
unbiased estimators of all k(k-1)/2 individual two-factor interactions.
Compared with R-3 designs, R-4 designs require that the number of
simulated factor combinations be doubled, for example, k=7 now



126 J.P.C. KLEIINEN

requires #=2x 8 = 16 runs (a R-3 design requires only n=2""*=8§;
see §3.3.1). To construct an R-4 design, the design matrix x of the R-3
design is augmented with — x (‘mirror’ image; foldover’ principle; also
see §2). R-4 designs may give an indication of the importance of
(confounded, aliased, biased) interactions (also see §3.3). Obviously,
designs that change one factor at a time (see §3.3.1) do not enable
estimation of interactions!

Details, including simulation applications are presented in Kleijnen
(1987) and Kleijnen and Van Groenendaal (1992). Recent applications
include the simulation of a decision support system (DSS) for the
investment analysis of gas pipes in Indonesia, and a simulation model
for the Amsterdam police; see Van Groenendaal (1994) and Van Meel
(1994) respectively.

3.3.3. Individual Factor Interactions

Suppose the analysts wish to estimate the individual two-factor interac-
tions B, ,, with h<h'; see Equation (1). There are k(k—1)/2 such interac-
tions (see §3.3.2). By definition, a resolution V or R-5 design permits the
unbiased estimation of all k main effects and all k(k—1)/2 two-factor
interactions. Obviously many more simulation runs are now necessary;
for example, k =8 factors implies g = 37 effects (namely, 1+8+8 x7/2);
another example is k = 11, which implies g = 67 (namely, 1+11 + 11 x
10/2). Therefore practitioners study only small values of k; for example,
k<5 requires full factorial two-level designs, denoted as 2*. For higher
values of k, however, fractional factorials are recommended, for example,
28~ 2(n=64) for k = 8 (so g=137), and 2** ~*(n = 128) for k =11 (so g=67).
Kleijnen (1987) gives details, including construction of R-5 designs, and
applications.

If all 2* combinations are simulated, then high-order interactions (not
only two-factor interactions) can be estimated. However, these interac-
tions are hard to interpret: what does f, ,;, mean? Hence, either trans-
formations such as the logarithmic transformation may be applied or the
experimental domain may be restricted. An example of a full factorial
with k = 6 is provided in Rao and Sarkar (1995). Also see Kleijnen (1987).

3.3.4. Quadratic Effects: Curvature

If all k factors are quantitative and their k quadratic effects f,,
(h= 1,...,k) in Equation (1) are to be estimated, then k extra runs
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may be needed. Moreover, each factor must be simulated for more
than two values (taking the extreme values minimizes the variance of
the estimated main effects; see §3.3.1),

Popular in statistics and in simulation are central composite designs.
They consists of a R-5 design (to estimate the intercept f,, the main
effects, and the two-factor interactions; see §3.3.3), 2k axial points
(namely —c and +c along each of the k axis, with ¢%1 in the standar-
dized factors x,), and the central point (the origin in the standardized
factors). Hence, these designs have five values per factor, Consider an
example with k=2 factors. Then there are g=6 effects. But
n=9(=2>+2x2+1) factor combinations are simulated. In general,
these designs require many runs: n> >g. An application in nuclear
engineering is given by Rao and Sarkar (1995). For more details see
Kleijnen (1987) and Kleijnen and Van Groenendaal (1992).

Applications are found in the optimization of simulation models (see
§6). Note that simulating as many as five values per factor resembles
UA, in the sense that the range of factor values is well covered, The
metamodeling methodology of this section(3) is discussed at length in
Kleijnen and Sargent (1996).

4. VALIDATION

This paper confines the discussion of validation to the role of SA(§3)
in validation; other statistical techniques for validation and verifica-
tion are discussed in Kleijnen (1995a), (Validation of knowledge-based
systems is discussed in Cardenosa 1995.) Obviously, validation is one
of the first problems that must be solved in a simulation study (stage
1); for didactic reasons, however, validation is discussed now (§4).

True validation requires that data on the real system be available. In
practice, the amount of data varies greatly: data on failures of nuclear
installations are rare, whereas data on electronically monitored systems
(such as computers and supermarkets) are abundant,

If data are available, then many statistical techniques can be ap-
plied. For example, simulated and real data on the response, can be
compared through the Student statistic for paired observations, as-
suming the simulation is fed with real-life input data: trace driven
simulation. A better test uses well-known regression analysis, but does



128 J.P.C. KLEIJNEN

not test whether real and simulated data lie on a straight line through
the origin! Instead, the difference between simulated and real data is
regressed on their sum; this novel regression test is discussed in Kleij-
nen, Bettonvil, and Van Groenendaal (1996).

However, if no data are available, then the following type of SA can
be used. The analysts and their clients do have qualitative knowledge
of certain parts of the real system; that is, they do know in which
direction certain factors affect the response of the corresponding mod-
ule in the simulation model (also see the discussion on sequential
bifurcation in §2). If the regression metamodel (see §3) gives an es-
timated factor effect with the wrong sign, this is a strong indication of
a wrong simulation model or a wrong computer program.,

Applications are given in Kleijnen, Van Ham, and Rotmans
(1992), who discuss the greenhouse model IMAGE, and Kleijnen
(1995c), who discusses a military model, namely the hunt for mines
on the bottom of the sea. These applications further show that the
validity of a simulation model is restricted to a certain domain of
factor combinations. This domain corresponds with the experimen-
tal frame in Ziegler (1976), defined as the limited set of circumstan-
ces under which the real system is to be observed or experimented
with.

Moreover, the regression metamodel shows which factors are most
important. For the important environmental inputs the analysts should
try to collect data on the values that occur in practice. If they do not
succeed in getting accurate information, then they may use the UA of
the next section.

5. UNCERTAINTY ANALYSIS: MONTE CARLO
AND LATIN HYPERCUBE SAMPLING

As the preceding section mentioned, the analysts may be unable to
collect reliable data on important environmental inputs; that is, the
values that may occur in practice are uncertain. Then the analysts
may apply UA. The goal of UA is to quantify the probability of
specific output values, whereas SA (as defined in §1) does not tell how
likely a specific result is. The differences between SA and UA are
further explored below.
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5.2. The Basics of Uncertainty Analysis

First the analysts derive a probability function for the input values. This
distribution may be estimated from sample data, if those data are avail-
able; otherwise this distribution must be based on subjective expert opin-
ions (also see Draper 1995, pp. 92, Helton 1993, pp. 337-341, Helton
et al., 1992, chapter 2, pp. 4, Helton et al, 1995, pp. 283, Kraan and
Cooke 1995, Moors et al. 1995). Popular distribution types are uniform,
loguniform, triangular, beta, normal, and lognormal distributions.
Usually the inputs are assumed to be statistically independent. Neverthe-
less, correlated inputs are discussed in Bedford and Meeuwissen (1996),
Helton (1993, pp. 343-345), Cooke (1995), Helton et al. (1992, chapter 3,
pp. 7), Reilly, Edmonds, Gardner, and Brenkert (1987), and Reilly (1996).

Next the analysts use pseudorandom numbers to sample input
values from those distributions: Monte Carlo or distribution sampling.
UA often uses Latin hypercube sampling (LHS), which forces the
sample of size (say) n to cover the whole experimental area; for
example, in case of a single input, this input’s domain is partitioned
into (say) s equally likely subintervals and each subinterval is sampled
s/n times. See Helton (1993, pp. 341-343).

This paper’s message (which is certainly bound to be contended) is
that LHS is recommended as a variance reduction technigue or VRT,
not as a screening technique. For screening technique purposes the
inputs should be changed to their extreme values, whereupon their
effects should be computed; see the discussion on screening in §2. Of
course, the larger sample in LHS gives more insight than the small
sample in screening does; however, for a large number of factors such
a large sample is assumed to be impossible. Also see Banks (1989)
versus Downing et al. (1986) and McKay (1992).

The sampled input values are fed into the simulation model. This
subsection focuses on deterministic simulation models (the next subsec-
tion covers stochastic models). Hence, during a simulation run all its
inputs are deterministic; for example, the input is constant or shows
exponential growth. From run to run, however, the (sampled) inputs
vary; for example, constants or growth percentages change. These
sampled inputs yield an estimated distribution of ouput or response
values. That distribution may be characterized by its location (measu-
red by the mean, modus, or median) and its dispersion (guantified by
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the standard deviation or various percentiles and guantiles, such as
the 90% quantile). For a basic introduction to UA see Helton (1993)
and Kleijnen and Van Groenendaal (1992, pp. 75 78),

Which quantities sufficiently summarize a distribution function, de-
pends on the users' risk attitude: risk neutral (in that case the mean is a
statistic that characterizes the whole distribution sufficiently, risk aver-
sion, or risk seeking; see Balson, Welsh, and Wilson (1992) and Bankes
(1993, pp. 444). The former authors further distinguish between risk
assessment (defined as UA in this paper) and risk management (risk
attitude, possible countermeasures); also see Brehmer, Erksson, and
Wulff (1994), Hora (1996), and Van Asselt and Rotmans (1993},

Combining UA with regression analysis gives estimates of the effects
of the various inputs; that is, regression analysis shows which inputs
contribute most to the uncertainty in the output. {Mathematically, this
means that in Equation (1) the deterministic independent vanables v,
are replaced by random variables X, ). Because more values are sam-
pled per factor, more complicated metamodels might now be used.
Indeed, for prediction purposes these metamodels may be made really
complicated; for example, splines may be used. For explanatory pur-
poses and SA, however, simple metamodels may be preferred; also see
Kleijnen {1979}, and Kleijnen and Sargent (1996). Note that Helton
et al. (1991, 1992) call this combination of uncertainty and regression
analysis ‘sensitivity analysis”.

UA is applied in business and vconomics. Hertz {19643 tniroduced
this analysis into investment analysis: what is the probability of a
negative Net Present Value? Krumm and Rolle (1992) give recent
applications in the Du Pont company. Birge and Rosa (1995 and Van
Groenendaal and Kleijnen (1996) also discuss investment analysis
issues. UA in business applications may be implemented through add-
ons (such as @RISK and Crystal Ball) that extend spreadsheet sof.
tware (such as Lotus 1-2- 3 and Excel). Moreover, these add-ons are
augemented with distribution-fitting software {such as ExpertFit) and
optimization software (such as What's Best).

In the natural sciences, UA is also popular. For example, in the
USA the Sandia National Laboratories have performed many uncer-
tainty analyses for nuclear waste disposal and reactor safety (Breeding
et al,, 1992, Helton and Breeding 1993, Helton et al., 1991, 1992, Hora
1996). Oak Ridge National Laboratory has investigated radioactive
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doses absorbed by humans (Downing etal,, 1985). Nuclear reactor

safety ha§ ‘been 1.n\./estigated for the Commission of the European
Communities (Olivi 1980, Saltelli and Homma 1992). UA has also
been perfo‘rrned at the Dutch RIVM (Harbers 1993, Janssen et al,, 1992).
Three 'env1ronmental studies for the electric utility industry were pres-
ented in Balson et al. (1992). UA in the natural sciences has been imple-
mented through software such as LISA (see Saltelli and Homma 1992
pp- 79), PRISM (Reilly et al,, 1987), and UNCSAM (Janssen et al, 1992)?

Note that UA is also used in the analysis of computer security; see
Engemann and Miller (1992) and FIPS (1979).

The beginning of this section (§5) mentioned that a basic charac-
teristic of UA is that information about the inputs of the simulation
mode] is not reliable; therefore the analysts do not consider a single
‘base value’ per input variable, but a distribution of possible values,
Unfortunately, the form of that distribution must be specified (by the
analysts together with their clients). There is the danger of software
driven specification; that is, the analysts concentrate on the develop-
ment of software that implements a variety of statistical distribu-
tions, but their clients are not familiar at all with the implications of
these distributions; also see Easterling (1986). Bridging this gap req-
uires intensive collaboration between model users, model builders,
and software developers. Consequently, it may be necessary to study
the effects of the specification of the input distributions (and of other
types of inputs such as scenarios). This type of SA may be called
robustness analysis. Examples are given by Helton et al. (1992, sec-
tion 4.6) and Helton et al. (1995b); also see Helton et al. (1995a),
Janssen et al. (1992), Kleijnen (1987, pp. 144-145), and McKay
(1995, pp. 31).

Robustness analysis may also use more sophisticated, faster samp-
ling techniques that are based on importance sampling or likelihood
ratios, which changes the original input distribution. Technical details
can be found in Beckman and McKay (1987), Kleijnen and Rubinstein
(1996), and Rubinstein and Shapiro (1993).

Note that importance sampling is also very useful (if not indispen-
sable) whenever rare events must be simulated, such as nuclear acci-
dents and buffer overflows in reliable telecommunication networks.
See Helton et al. (1995a, pp. 290), Kleijnen and Rubinstein (1995),
Rubinstein and Shapiro (1993), and Sarkar and Rief (1995).
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5.2. Uncertainty Analysis of Stochastic Models

The type of question answered by UA is ‘what is the chance of |7
So the model must contain some random element. In 5.1 that
randomness was limited to the inputs of the muodel, whereas the
mode] itself was deterministic. However, as the Introduction (§1) men-
tioned, some models are intrinsically stochastic: without the random-
ness the problem disappears. Examples are queueing models, where
the customer interarrival times may be independemt drawings from an
exponential distribution with parameter 4 (so it mean is 1,4). This
parameter is an input of the simulation queueing model. That model
generales a stochastic time series of customer waiting times. The ques-
tion may be: what is the probability of customers having to wail
longer than 15 minutes? For simple queueing models this question can
be answered analytically or numerically, but for more realistic models
the analysts use simulation. Mathematical statistics 1s needed to deter-
mine how many customers must be simulated in order to estimate
the response with prespecified accuracy, see Kleignen and Van
Groenendaal (1992, pp. 187-197). (Helton e1 al., 19954, p. 287 state:
‘Stochastic uncertainty is a property of the system being studied,
while subjective uncertainty is a property of the analysts performing
the study’)

How to apply UA to such a queueing simulation? Suppose the
interarrival parameter 4 is estimated from a sample of r independent
interarrival times. Then the central limit theorem wnplics that the dis-
tribution of the estimated interarrival parameter A approximates a
normal distribution. Hence the parameter value £ can be sampled
from this distribution, and be used as input to the queueing simula-
tion. That simulation is run for ‘enough’ customers. Next the pro-
cedure is repeated: sample £, and so on. For details see Kleijnen
(1983).

Instead of relying on the central limit theorem, Cheng and Holland
(1996) apply bootstrapping. However, the question remains which re-
sponse to report to the users: the unconditional, ex post variance as
do Cheng and Holland (1996) and also Brady and Hillestad (1995,
p. 30); the ex post variance, mean, and various quantiles, as Haverkort
and Meeuwissen (1995) do; or the conditional moments (conditioned
on the values of the estimated parameters)? The discussion in Draper
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(1995, pp. 78. 83) clearly demonstrates how controversial this issue is
Also see Kleijnem (1983), '

In summary, UA has hardly been applied to stochastic models
such as queueing models {SA has been employed in many simula-
tion studies; see §3). Helton (1993, pp. 356--358) and Helton et al.
(1991, 1992, 1995a) discuss UA of stochastic models in the natural
sciences (nuclear power plants, the spreading of nuclides). So UA of
stochastic simulation models is an interesting area for further re-
search.

6. OPTIMIZATION: RESPONSE SURFACE METHODOLOGY

The decision makers should control the policy variables. For
example. in the greenhouse case the government should restrict
emissions of the gases concerned; in queueing problems, manage-
ment may add more servers (such as check-out lanes at a supermar-
ket). Strictly speaking, optimization means maximization under re-
strictions; the best-known example is linear programming. In this
paper the term optimization is also used when restricitons are ab-
sent or ignored. There are many mathematical techniques for find-
ing uptimal values for the decision variables of nonlinear implicit
functions (such functions may indeed be formulated by simulation
models), possibly with stochastic noise; examples of such techniques
are genetic algorithms, simulated annealing, and tabu search. How-
ever, this paper is limited to Response Surface Methodology (RSM).
This methodology combines regression analysis and DOE (see §3)
with a hill-climbing technique called steepest ascent. A good overview
of RSM including references is Vollebregt (1996).

First four general characteristics of RSM are considered; then some
details.

(i1 RSM relies on first-order and sccond-order polynomial regression
metamodels, now called response surfuces (see Equation 1 in §3.2).
(i) It uses the statistical designs of DOE (see §3.3).
tiii) It is augmented with the mathematical (not statistical) technique
of steepest ascent, Lo determine in which direction the decision
variables should be changed.
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(iv) It uses the mathematical technique of canonical analysis to ana-
lyze the shape of the optimal region: does that region have a
unique maximum, a saddle point or a ridge?

Next consider some details. RSM begins by selecting a starting point.
Because RSM is a heuristic (no success guaranteed!), several starting
points may be tried later on, if time permits.

RSM explores the neighborhood of that starting point. Locally the
response surface is approximated by a first-order polynomial in the
decision variables (Taylor series expansion).

The main effects f§, (see Equation 1) are estimated, using a design
with na k+1 (see §3.3.1). Suppose f, > > f, > 0. Then obviously the
increase of decision variable 1 (say) z; should be larger than that of z,.
The steepest ascent path means Az,/Az, = f,/B, (no standardization;
also see next paragraph).

Unfortunately, the steepest ascent technique does not quantify the
step size along this path. Therefore the analysts may try a specific
value for the step size. If that value yields a lower response, then this
value should be reduced. Otherwise, one more step is taken. Ultimate-
ly, the response must decrease, since the first-order polynomial is only
an approximation. Then the procedure is repeated: around the best
point so far, a new first-order polynomial is estimated, after simulating
n=sk+1 combinations of z, through z,. And so on.

In the neighborhood of the top, a hyperplane can not be an ad-
equate representation. To detect this lack of fit, the analysts may use
cross-validation (see §3.2). Other diagnostic measures are the well-
* known measure R? and modern measures such as PRESS, discussed
in Kleijnen (1987). So when a hyperplane no longer approximates the
local I/O transformation well enough, then a second-order polynomial
is fitted (see §3.3.4).

Finally, the optimal values of z, are found by straightforward differ-
entiation of the fitted quadratic polynomial. A more sophisticated
evaluation is canonical analysis.

Consider the following case study. A decision support system (DSS) for
production planning in a steel tube factory is simulated and is to be
optimized. There are fourteen decision variables, and two response vari-
ables (namely, a production and a commercial criterion);, one response
variable is maximized, whereas the other one forms a side-restriction.
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Simulation of one combination takes six hours of computer time, so
searching for the optimal combination can not be performed u;ing
only common sense. Details can be found in Kleijnen (1993),

More applications can be found in Hood and Welch (1993), Kleij-
nen( 1987, 1995d), and Kleijnen and Van Groenendaal (1992).

7. CONCLUSIONS

The problem addressed in this paper (see especially §1) is that there
are five reluted analyses: (i) sensitivity analysis (SA) or what-if analysis,
(i} uncertainty analysis (UA) or risk analysis, (iif) screening, (iv) valida-
tion, and {v) optimization. And interesting questions are; when should
which type of analysis be applied; which statistical techniques should
then be used”

This paper gave o sureey of these issues, emphasizing statistical pro-
cedures. Such procedures yield reproducible, objective, quantitative results.

Briclly. sensitivity analysis determines which model inputs are really
important. From the users’ perspective, the important inputs are either
controllable or not. The controllable inputs may be optimized. The
vafues of the uncontrollable inputs may be well-known, in which case
these values can be used for validation of the model. If the values of the
uncontrallable inputs are not well-known, then the likelihood of their
values cun be quantified objectively or subjectively, and the probability
of specific output values can be quantified by uncertainty analysis.

More specifically, SA means that the mode is subjected to extreme
value testing. A model is valid only within its experimental frame
twhich was defined as the limited set of circumstances under which the
real system is to be observed or experimented with). Mathematically
that frame might be defined as the hypercube formed by the k stand-
ardized inputs x,, of the model (more complicated definitions allow
for restrictions such as linear conditions on the input combinations
(say) 3% _,x,, = 1). Experimental designs such as 277 fractional fac-
torials specify which combinations are actually observed or simulated;
for example, @ 27 fraction of the 2% corner points of that hypercube
(although he did not discuss DOE, Draper 1995, p. 55 does speak of
‘staking out the corners in model space’). The n observed input combi-

nations and their corresponding responses are analyzed through a
¥
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regression (meta)model, which is an approximation of the simulation
model's IO transformation. That regression model quantifies the im-
portance of the simulation inputs.

This paper proposed the following five srages in the analysis of a
simulation model.

Stage 1.

Stage 2.

Stage 3.

Stage 4.

Obviously, validation is one of the first problems that must be
solved in a simulation study. The availability of data on the
real system determines the type of statistical technique to be
used for validation. Regression analysis, however, may be
applied, whether data are available or not, albeit through
different regression models. See §4.

When the simulation study is still in its pilor phase, then very
many inputs may be conceivably important. The really import.
ant inputs can be identificd through Bettonvil and Klieijnen
(1995)'s sequential bifurcation, which is a screening technique that
is based on aggregation and sequential experimentation. See §2,

The important inputs found in stage 2 are investigated in a
more detailed sensitivity analysis, including interactions and
possibly quadratic effects (curvature). This investigation may
use design of experiments (DOE), which includes classical de-
signs such as 2% 7 fractional factorial designs and possibly
central composite designs. Such designs give estimators of the
effects in the regression metamedel that are better: minimum
variance, unbiased linear estimators. See §3.

The important inputs should be split into two groups: inputs
that are under the decision makers' control versus environ-
mental inputs. Though the important environmental inputs
cannot be controlled, information on the values they are like-
ly to assume might be gathered. If the value of such an input
is not precisely known, then the chances of various values
can be quantified through a probability fucntion. If a sample
of data is available, then this function can be estimated objec-
tively, applying mathematical statistics; otherwise subjective
expert opinions are used, UA quantifies the uncertainties of
the model outputs that result from the uncertaintics in the
model inputs. Qutpul uncertainty is quantified through a
statistical distribution. This analysis uses the Monte Carlo
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technique. This Monte Carlo experiment has smaller vari-
ance when applying Latin hypercube sampling (LHS). This
paper claims (controversially?) that LHS is a variance reduc-
tion technique (VRT), not a screening technique,

SA does not tell how likely a particular combination of
inputs (specified by a statistical design) is, whereas UA does
account for the probabilities of input values.

Note that Bayesians average the outcomes, using the prob-
abilities of the various input scenarios; see Draper (1995). 1t
might be argued, however, that in general it is the job of
‘managers’ (including governments) to use their ‘intuition’ to
make decisions; it is the job of scientists to prepare a basis for
such decisions.

Combining UA with regression analysis shows which non-
controllable inputs contribute most to the uncertainty in the
output.

UA of stochastic simulation models is an interesting area
for further research. See §5.

Stage 5. The policy variables should be controlled. Response Surface
Methodology (RSM) is a heuristic technique that combines
DOE, regression analysis, and steepest ascent, in order to
find the model inputs that give better model responses, poss-
ibly the best response. See §6.

Applications of the recommended techniques for these five stages are
quite plentiful (see references).

An important conclusion is that SA should precede UA. Each type
of analysis may apply its own set of statistical techniques, for
example, 27 fractional designs in SA, and LHS in UA. Some tech-
niques may be applied in both analyses, for example, regression
modeling. Hopefully, this paper succeeded in explaining when to use
which technique! Yet, sensitivity and risk analyses remain controver-
sial topics; communication within and among scientific disciplines is
certainly needed.
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