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ABSTRACT: Experimental design for cellular networks based on sensitivity analysis is studied

in this work. Both optimal and robust experimental design strategies are developed for the IκB-

NF-κB signal transduction model. Based on local sensitivity analysis, the initial IKK intensity is

calculated using an optimal experimental design process, and several scalarization measures of

the Fisher information matrix are compared. Global sensitivity analysis and robust experimental

design techniques are then developed to consider parametric uncertainties in the model.

The modified Morris method is employed in global sensitivity analysis, and a semidefinite

programming method is exploited to implement the robust experimental design for the problem

of measurement set selection. The parametric impacts on the oscillatory behavior of NF-κB in

the nucleus are also discussed. C© 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 730–741, 2008
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INTRODUCTION

Sensitivity analysis is used to understand how a

model’s output depends on variations in parameter val-

ues or initial conditions, and is perhaps best known

in metabolic systems biology via metabolic control

analysis [1–4]. It is particularly useful for complex

biological networks that involve a large number of

variables and parameters in which it is crucial to iden-

tify either the most important or the least relevant

parameters.
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Based on the nominal parameter values, local sen-

sitivity analysis (LSA) measures the effects that small

changes in the parameters have on the output. It is

widely used in modeling and analysis of biological

systems, in which the nominal parameter values are es-

timated using experimental data or computation [4–7].

For continuous dynamic systems, the local sensitivi-

ties are defined as the first-order partial derivatives of

the system output with respect to the input parameters.

Such information reveals the gradient of a mathemati-

cal model’s output in parameter space at a given set of

parameter values, and therefore plays a central role in

many system identification problems.

LSA has a wide spectrum of applications in sys-

tems biology. However, for a complex and/or uncer-

tain model in which some parameter estimates are

most likely far from the true values, or for a signifi-

cantly nonlinear and interactive system, it is more rel-

evant to study global sensitivities. Global sensitivity

analysis (GSA) examines the effects of simultaneous

“arbitrary” variations of multiple parameters on the de-

pendent variables under conditions in which the varia-

tions are not local [8–10]. There are different ways to

perform GSA, such as screening techniques, variance-

based methods, Monte Carlo filtering approaches and

regression methods, and so on. In principle, GSA is

valid in a bounded region around the nominal value

for each parameter, and the effect of each parameter

is either aggregated [11] or some worst case measures

are taken for evaluation. It is not simply the result from

weighted local sensitivities, but a multidimensional av-

eraging over the whole parameter space, since when

one parameter is evaluated over its interval, all the

other parameters are also varying instead of keeping

their nominal values. It, therefore, reveals interactions

between parameters from simultaneous parameter vari-

ations. GSA has been applied in modeling, analysis,

and experimental design for a range of biological sys-

tems [12–16].

Optimal experimental design (OED) is one of the

techniques developed from local sensitivities, whose

purpose is to devise the necessary dynamic exper-

iments in such a way that the parameters are esti-

mated from the resulting experimental data with the

best possible statistical quality. The tasks of experi-

mental design include input signal design, sampling

rate optimization, measurement set selection, and so

on. Under the assumption of uncorrelated measure-

ment noise with zero-mean Gaussian distribution, the

information content of measurements can be quanti-

fied by the Fisher information matrix (FIM) [17,18].

In general, the smaller the joint confidence interval is

for the estimated parameters, the more information is

contained in the measurements. In many recent works

on modeling of biochemical networks, the FIM was

used to design the experiments to optimize the quality

of parameter estimation in a certain statistical sense

[18–23]. Several strategies for solving OED problems

in the context of parameter estimation for biochemical

models are discussed in [24].

The quality of optimal experimental design is de-

pendent on the accuracy of the mathematical models.

The true model parameters are in most cases rarely

known, and nominal or estimated parameter values are

used instead. These nominal parameters may be ob-

tained from preliminary experiments, the literature, or

from previous parameter estimation. When the qual-

ity of nominal parameters is poor, the experimental

design results may be overoptimistic or even mislead-

ing. In inverse modeling of complex biochemical net-

works, the normal way to surmount this problem is

to go through an iterative/sequential process for pa-

rameter estimation and experimental design. In each

iteration, the OED is implemented to provide “rich”

information for a better parameter estimation in the

subsequent iteration [19,25]. Using this approach, the

costs associated with experiments for several iterations

are nontrivial, especially for the expensive and time-

consuming data collection in cellular experiments. An

alternative method is the minimax experimental design,

which makes the OED at the worst case in a region

around the nominal parameter values. However, for a

nonlinear model with a large amount of parameters,

identifying the worst case for optimization of the FIM

can be computationally challenging and impractical.

In this work, the problem of experimental design

based on local sensitivities is addressed for biochem-

ical systems with particular interest in models with

parametric uncertainties. An optimal design on the in-

put activation intensity is studied first using the FIM,

so as to illustrate the principle of optimal experimental

design. The endeavors are then focused on the robust

experimental design and global sensitivity analysis, so

as to take into account model uncertainties. With the re-

sults given by local and global sensitivity analyses, the

influence of some important parameters on the oscilla-

tory behavior of NF-κB in the nucleus is investigated.

LOCAL SENSITIVITIES AND OPTIMAL
EXPERIMENTAL DESIGN

System Model: An Example of 1κB-NF-κB
Signal Pathway

For a biochemical model with n reaction species and

m parameters, denote X = [x1 x2 · · · xn]T as the

state vector, θ = [k1 k2 · · · km]T as the vector of

International Journal of Chemical Kinetics DOI 10.1002/kin
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parameters. The system model can be represented by

ordinary differential equations (ODEs) as

Ẋ = f (X, θ, t), X(t0) = X0

Y = g(X, θ, t) + ω (1)

where f (·) is the nonlinear state transition function,

X0 is the initial states vector at t0, g(·) is the mea-

surement function, Y ∈ �
q is the measurement output

vector, and ω is assumed to be a zero-mean, Gaussian

noise vector. There are two important assumptions for

using ODEs to represent a cellular system. First, the

system is assumed to be a homogeneous “well-stirred”

reaction system and thus spatial distributions within

each compartment are not considered, otherwise par-

tial differential equations should be used [26]. Second,

the reaction variables (molecular concentrations) are

continuous functions of time. This is valid only if the

number of molecules of each species in the reaction

volume is sufficiently large, otherwise the discrete na-

ture of molecules cannot be neglected and stochastic

differential equations or discrete stochastic models are

more appropriate [27].

The system under investigation is the NF-κB signal-

ing pathway. The NF-κB proteins regulate numerous

genes that play important roles in inter- and intracel-

lular signaling, cellular stress responses, cell growth,

survival, and apoptosis. As such, its specificity and its

role in the temporal control of gene expression are of

crucial physiological interest.

Models of the mainly downstream elements of an

IκB-NF-κB signal pathway have been described by

Hoffmann et al. [28], Nelson et al. [29], and Lipniacki

et al. [30]. While Hoffmann’s model measures the be-

havior of cell populations [28], Nelson’s work analy-

ses experimental data obtained from individual cells

[29], and Lipniacki’s model focuses on the role of

A20, which is regulated by NF-κB and acts as an

inhibitor of IKK [30]. The model used in this work

is the Hoffmann’s model, as described in [28,31–33].

It includes 26 reaction species participating in 64 re-

actions, out of which the concentrations of 24 species

are time varying and are defined as state variables in

the model. See Table I for the states definition. The

reactions and the parameter values can be found in our

previous paper [33].

Local Sensitivity Analysis and Optimal
Experimental Design

Under standard assumptions, parameter estimation

is obtained by solving the following optimization

Table I IκB-NF-κB Reaction Species and States

Species, States Species, States

IκBα, x1 IKKIκBε-NF-κB, x14

NF-κB, x2 NF-κBn, x15

IκBα-NF-κB, x3 IκBαn, x16

IκBβ, x4 IκBαn-NF-κBn, X17

IκBβ-NF-κB, x5 IκBβn, x18

IκBε, x6 IκBβn-NF-κBn, x19

IκBε-NF-κB, x7 IκBεn, x20

IKKIκBα, x8 IκBεn-NF-κBn, x21

IKKIκBα-NF-κB, x9 Source (S = 1)

IKK, x10 IκBα−t, x22

IKKIκBβ, x11 Sink (sink = 0)

IKKIκBβ-NF-κB, x12 IκBβ−t, x23

IKKIκBε, x13 IκBε−t, x24

problem:

θ̂ = arg min
θ

q
∑

i=1

N
∑

l=1

(yi(θ, tl) − ỹi(tl))
T

×Wl(yi(θ, tl) − ỹi(tl)) (2)

where yi(θ, tl) and ỹi(tl) are model predictions and

measured values of the ith measurable state at time

t, (l = 1, . . . , N ). Wl is a square matrix with specified

weighting coefficients, which is often chosen as the

inverse of the measurement error covariance matrix Q,

that is, Wl = Q−1. Here, measurement errors with con-

stant variances are considered and under the assump-

tions that the errors are additive, zero-mean Gaussian

processes, θ̂ is the optimal, unbiased estimator.

At time t , the local sensitivity coefficient si,j is de-

fined as the partial derivative of the ith state to the j th

parameter:

si,j (t) =
∂xi(t)

∂θj

=
xi(θj + �θj , t) − xi(θj , t)

�θj

(3)

The sensitivity matrix S = ∂X/∂θ is composed of el-

ements of si,j for i = 1, . . . , n and j = 1, . . . , m. The

sensitivity matrix is calculated using the direct differ-

ential method (DDM) where the column sensitivity

vector Sj = ∂X/∂θj with respect to the j th parameter

(θj ) and the system states are obtained simultaneously

by solving the joint state and sensitivity profiles:

{

Ẋ = f (X, θ, t), X(t0) = X0

Ṡj = J · Sj + Fj , Sj (t0) = 0
(4)

where J = ∂f/∂X is the Jacobian matrix and Fj =
∂f/∂θj is the parametric Jacobian matrix.

International Journal of Chemical Kinetics DOI 10.1002/kin
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The FIM is a function of the local sensitivity matrix:

FIM =
N

∑

l=1

S(tl)
T Q−1S(tl) (5)

It is an approximation of the inverse of the parameter

estimation error covariance matrix (�), that is, � =
FIM−1. The lower bound of the variance for the ith

identifiable parameter is given by σ 2
i ≥ (FIM−1)ii . The

95% confidence interval (CI) for the ith parameter is

represented as CI = θ̂i ± 1.96σi .

The covariance matrix � is a measure of attain-

able parameter estimation errors for a given set of

data/experimental conditions and therefore is used as

a basis for optimal experimental design. The perfor-

mance index in optimal experimental design is nor-

mally a scalar function of FIM, or equivalently, a

function of the error covariance matrix �, and it

should be noted that the design depends on the es-

timated/nominal parameter values. Some commonly

used optimal, scalarization criteria for experimental

design are as follows:

A-optimal : max {trace(FIM)} or min {trace (�)}

D-optimal : max {det(FIM)} or min {det (�)}

E-optimal : max {λmin(FIM(θ ))} or min {λmax (�)}

Modified E-optimal : min

{

λmax(FIM)

λmin(FIM)

}

where λmin and λmax are the minimum and the maxi-

mum eigenvalues and det indicates the determinant of

a matrix. The A-optimal design minimizes the trace of

the covariance matrix (sum of eigenvalues). However,

this criterion is rarely used since it can lead to nonin-

formative experiments when � is not positive definite

[34]. The D-optimal design minimizes the determinant

of the covariance matrix (product of eigenvalues) and

can thus be interpreted as minimizing the geometric

mean of the errors in the parameters. The largest error

is minimized by the E-optimal design, which corre-

sponds to a minimization of the largest eigenvalue of

�. The modified E-optimal design minimizes the ra-

tio of the largest to the smallest eigenvector and thus

optimizes the functional shape of the confidence in-

tervals. The relationship between these various criteria

has been well studied [35]. Note that all these scalar-

ization criteria result in a convex optimization problem

when the FIM is a linear function of the experimental

design parameters.

Optimal Experimental Design
of IKK Activation Level

To illustrate the principle of optimal experimental de-

sign for the IκB-NF-κB signal pathway, the problem of

selecting the IKK activation intensity using dynamic

(local) sensitivity analysis will be addressed. The FIM

is used along with the Cramer–Rao theorem to deter-

mine the optimal step input signal so that the estimated

parameters have a minimum variance. Taking IKK as

the step input and nuclear NF-κB (x15) as the system

output, the previously described four criteria are ap-

plied in the design and the results are compared.

To make a better illustration, only three parameters

(k9, k28, and k36) are estimated in the example. These

three parameters are all identified to be influential in

our previous study of LSA [31,33]. The range of the

initial IKK concentration after equilibration is set to

[0.01, 1] µM. The simulation shows that the optimal

IKK input intensity is 0.06 µM with the A-, D-, and

E-optimal designs, and it is 0.01 µM for the modi-

fied E-optimal design. The 95% parameter confidence

intervals for these two results are given in Fig. 1. It

can be clearly seen that while the parametric uncer-

tainty region for the E-optimal design has a smaller

volume for all parameters, the modified E-optimal de-

sign produces a more circular uncertainty region. The

corresponding 95% confidence intervals for each pair

of parameters and their percentage estimation errors

are listed in Table II, for the E-optimal and the mod-

ified E-optimal design. The results in Fig. l and those

in Table II are consistent.

The above design shows that the optimal experi-

mental design is quite straightforward to be imple-

mented once the local sensitivity matrices are estab-

lished. Different optimization criteria can be employed

to determine the best experimental conditions for pa-

rameter estimation. Results from different criteria may

sometimes be different since these criteria represent

scalarized measures of the covariance matrix. Con-

sequently, preference information about the parameter

importance may be used to rank the different solutions.

It can be clearly seen that the OED results depend on

the quality of the model/sensitivity used and the re-

sults can be poor when the model uncertainty cannot

be ignored. In this case, robust strategies need to be

developed for the experimental design.

ROBUST EXPERIMENTAL DESIGN OF
MEASUREMENT SET SELECTION

The objective of robust experimental design (RED)

is to optimally design experiments when there exists

model uncertainty. As with OED, the aim is to de-

sign the experiments so that the uncertainties in the

estimated parameters are as small as possible. How-

ever, when the sensitivity matrix, and hence the FIM,

is a function of the parameters, the design results will

International Journal of Chemical Kinetics DOI 10.1002/kin
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Table II Ninety-five Percent Confidence Intervals and Estimation Errors

E-Optimal Design Modified E-Optimal Design

Parameters 95% CI Error% 95% CI Error%

(k9, k28) k̂9 [0.02002, 0.02078] 1.87 [0.01491, 0.02589] 26.93

k̂28 [0.01507, 0.01793] 8.65 [0.01169, 0.02130] 29.11

(k28, k36) k̂28 [0.01567, 0.01732] 5.01 [0.01416, 0.01887] 14.27

k̂36 [0.00377, 0.00439] 7.72 [0.00315, 0.00501] 22.84

(k9, k36) k̂9 [0.01907, 0.02173] 6.52 [0.01704, 0.02379] 16.54

k̂36 [0.00389, 0.00428] 4.78 [0.00313, 0.00503] 23.28

Figure 1 Confidence intervals with respect to two different IKK activation intensities calculated by the E-optimal (0.06 µM)

and the modified E-optimal (0.01 µM) design. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

be biased because the parameters are unknown. Se-

quential experimental design strategies that repeatedly

estimate the parameters and redesign the experiments

could be used; however, this is expensive in terms of

the number of experiments. RED is an alternative that

produces an experimental design that is valid across a

prespecified parameter range around the nominal val-

ues.

The problem of measurement set selection is ap-

plicable when there are a large number of states that

could be measured, but experimental constraints mean

that only a small number can actually be measured.

This is represented as the selection problem:

ξ =
{

x1 · · · xn

ω1 · · · ωn

}

,

n
∑

i=1

ωi = 1, ωi ≥ 0,∀i (6)

where ωi is the nonnegative weight relating to the ith

state xi . The selection problem is originally an integer-

programming problem as the weights should be binary

variables; however, this is relaxed to produce an ap-

proximate, continuous optimization problem. RED es-

timates the weights and consequently focuses on those

measurements with larger weight values, that is, state

measurements that are more informative for parame-

ter estimation. This is a vector optimization problem

over the positive semidefinite cone, for which several

scalarizations have been proposed, such as D-optimal,

A-optimal, E-optimal, and so on.

Semidefinite Programming and Robust
Experimental Design

Ideally the design should start from parametric un-

certainties and map these uncertainty information into

uncertainty bound in FIM. This mapping is difficult

to be established explicitly, but the link via Taylor ex-

pansion can be managed. Considering a local model

with additive uncertainties to the model parameters,

the corresponding parametric sensitivity matrix can be

represented by a simple truncated first-order Taylor

expansion:

S(θ + �θ ) ≈ S(θ ) +
dS(θ )

dθ
�θ (7)

International Journal of Chemical Kinetics DOI 10.1002/kin
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Here, only the first-order expansion is kept in the ap-

proximation. dS/dθ is the second-order parametric sen-

sitivity and is represented by a 3D matrix (state-by-

parameter-by-parameter). The FIM can then be locally

expressed as

FIM(θ + �θ ) = S(θ + �θ )T Q−1S(θ + �θ )

= S(θ )T Q−1S(θ )

+ (�θ )T
(

dS(θ )

dθ

)T

Q−1S(θ )

+ (S(θ ))T Q−1 dS(θ )

dθ
�θ

+ (�θ )T
(

dS(θ )

dθ

)T

Q−1 dS(θ )

dθ
�θ

(8)

Assuming that the parametric uncertainty is bounded

by ‖�θ‖ < c, for a some small value c (small region

around the nominal parameter values), the second- and

higher order terms of �θ can be neglected; thus,

FIM(θ + �θ ) = S(θ )T Q−1S(θ ) + (�θ )T
(

dS(θ )

dθ

)T

×Q−1S(θ ) + (S(θ ))T Q−1 dS(θ )

dθ
�θ

= FIM(θ ) + �̄ (9)

where �̄ can be regarded as the transformed paramet-

ric uncertainty to the additive uncertainty in FIM. For

a small parametric uncertainty �θ , to use the FIM as

a measure in a region, we could take the average value

or the worst case value (smallest—least informative).

To consider large uncertainties in parameters, the in-

terpretation is to relate the assumptions on �̄ to the

second and possibly higher order terms of the para-

metric uncertainties �θ .

On the basis of the understanding that the parametric

uncertainty can be linked with uncertainty in FIM, we

used the method proposed by Flaherty and his coau-

thors [36] to perform robust experimental design on

the measurement set selection. The weighting matrix

in FIM is taken to be Wl = W = diag[ω1 · · · ωn]

for all tl . Consider the additive uncertainty to form an

updated FIM represented by

FIM =
n

∑

i=1

ωi

(

ST
i Si + �i

)

(10)

where �i is an m × m matrix for i = 1, . . . , n, Si is the

ith row of the sensitivity matrix. Denoting � = blkdiag

(�1, . . . ,�n), a spectral norm bound is given on the

magnitude of the perturbations by ‖�‖ ≤ ρ. ρ is the

uncertainty bound. The robust E-optimal design can

be cast as the following semidefinite program (SDP)

[36,37]:

min max ‖�‖ ≤ ρ−s

subject to

n
∑

i=1

ωi

(

ST
i Si + �i

)

≥ sIm

n
∑

i=1

ωi = 1, ωi ≥ 0 (11)

By employing linear fractional representation and as-

suming that �1 = · · · = �n, the SDP problem in (11)

can be transferred into a regularized optimization prob-

lem [36]:

min −s

subject to

n
∑

i=1

ωiS
T
i Si − ρ

√
n‖W‖2 ≥ sIm (12)

with the uncertainty bound ρ as the regularization pa-

rameter.

Results and Discussion on Robust
Measurement Set Selection

The robust experimental design is applied to the IκB-

NF-κB model to estimate which subset of measure-

ments provides more information for parameter esti-

mation when the system is subject to uncertainties.

In the simulation study, we take �1 = · · · = �24 and

set the uncertainty range to be ρ ∈ [1e − 6, 10]. The

change of weights with respect to the uncertainty bound

ρ can be calculated for each state. Those weights with

comparatively large values are shown in Fig. 2 and the

rest are shown in Fig. 3. Each weight ωi corresponds

to a state xi . The larger the value of ωi is, the more

contribution the state xi has to the parameter estima-

tion. Therefore, those states with larger weight values

should be considered in the measurement set selection

with high priority.

In robust experimental design, when the uncertainty

measure is very small, that is, when the model is close

to its nominal parameters, the measurements (states)

with more influential effects can be clearly distin-

guished from those that are less informative for pa-

rameter estimation. However, when the uncertainty is

large, all the weights converge to the same value. That

is to say, the difference in the contribution of differ-

ent states disappears under large uncertainty. This is

International Journal of Chemical Kinetics DOI 10.1002/kin
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Figure 2 Change of weights with respect to ρ. These six

weight variables have larger values when ρ is small com-

pared with the rest of the weight variables. When ρ is large,

all the weights have the same value of 0.417. [Color fig-

ure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

expected because when the knowledge about the model

is poor, there is little information to choose which states

are the most informative.

To further illustrate the results, the 24 weight val-

ues at three different uncertainty levels, ρ = 1e − 6

(small uncertainty), ρ = 1e − 2 (middle uncertainty),

and ρ = 10 (large uncertainty), are compared in Fig. 4.

It can be seen that the weights distribution in the case

of ρ = 10 is almost uniform, whereas the weight distri-

bution for ρ = 1e − 6 has a large variation. The weight

Figure 3 Change of weights with respect to ρ. These

weights are ω2, ω5, ω11, ω8, ω24, ω12, ω7, ω13, ω14, ω3,

ω18, ω20, ω6, ω4, ω2, ω15, ω19, ω23. Compared with the six

weights in Fig. 2, they have smaller values when ρ is small.

When ρ is large, all the weights also have the same value of

0.417. [Color figure can be viewed in the online issue, which

is available at www.interscience.wiley.com.]

Figure 4 Distribution of weight values at three uncer-

tainty levels, ρ = 1e − 6 corresponds to small uncertainty,

ρ = 10 corresponds to large uncertainty, and ρ = 1e − 2 cor-

responds to the uncertainty level in between the other two.

[Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]

value distribution with middle uncertainty stays in

between these two extrema. Therefore, the uncertainty

measure, ρ, can be regarded as a regularization factor

that trades off robustness against the number of states

needed to provide satisfactory parameter estimation.

It should be noted that this robust experimental design

naturally reduces to optimal experimental design when

ρ = 0.

The robust experimental design in this work is pa-

rameterized by the model uncertainty bound ρ. This is

different from the optimal experimental design that is

based on FIM evaluated at the nominal parameter val-

ues. Owing to the limitation of current measurement

techniques in exploring cellular networks, and also due

to the fact that cellular network systems often contain

a large number of parameters, large parametric un-

certainties are almost unavoidable in any cell network

models. It is, therefore, crucial to implement robust

experimental design and to understand the impacts of

parameters on system dynamics from a global point of

view.

GLOBAL SENSITIVITY ANALYSIS AND
OSCILLATION UNCERTAINTY

Modified Morris Method

Global sensitivity analysis investigates the parametric

influence on the system output in a large region around

the nominal parameter values, and as such takes into

account nonlinear effects and interactions between pa-

rameters. The Morris method is used for GSA because

of its computational efficiency.

International Journal of Chemical Kinetics DOI 10.1002/kin



ANALYSIS AND DESIGN OF SIGNAL TRANSDUCTION PATHWAY SYSTEM 737

The Morris method is a screening method that is

based on what is called an elementary effect (EE).

Through a predefined random sampling strategy, a cer-

tain number of EEs are obtained for each factor (i.e.,

parameter) [38]. The distribution of the EEs associ-

ated with the ith input factor is denoted as Fi . Two

sensitivity measures are used for each factor: (1) μi ,

the mean of Fi , an estimate of the overall effect of the

ith input factor on the output; and (2) σi , the standard

deviation of Fi , an estimate of the ensemble of the fac-

tor’s effects, due to either nonlinear and/or interactions

with other factors. These two measures will be used as

indicators of importance.

Consider a model for which the output y is a deter-

ministic function of the m input factors (parameters),

that is, y = g(k1, . . . , km). Assuming that each param-

eter, ki , is scaled in the interval [0, 1] and may take

values from {0, 1/(p − 1), 2/(p − 1), . . . , 1}, then the

region of interest, 
, is an m-dimensional, p-level grid.

The EE of the ith input is defined as

EEi(θ ) =
g(k1, k2, . . . , ki−1, ki + �, ki+1, . . . , km) − g(θ )

�
(13)

where θ = [k1 · · · km] ∈ 
, ki ≤ 1 − �. � is a

predetermined multiple of 1/(p − 1) and is taken to

be � = p/[2(p − l)] in this work. Producing a value

for Fi requires random selection of a value for each

ki(i = l, 2, . . . , m) from the grid and evaluation of y

twice, one at the selected m values, the other at the

values after increasing ki by the quantity of �. The

difference between these two runs yields one elemen-

tary effect. This calculation will be repeated r times to

produce a random sample of r EEs for each Fi . Ow-

ing to its designed sampling strategies, this method is

computationally cheap as it requires a relatively small

number of model evaluations.

In the original Morris method, all the input fac-

tors were assumed to be uniformly distributed in the

same [0, 1] intervals. For signal transduction pathway

models, parameter ranges are normally different and

widely dispersed; therefore, a log-uniform distribution

is preferred for the random sampling strategy. Also,

different lower and upper bounds are considered for

each parameter and in this paper, this is known as the

modified Morris method [39].

Global Sensitivity Analysis
of IκB-NF-κB Model

The modified Morris GSA method is implemented to

analyze the IκB-NF-κB signal transduction pathway

model, using the variable of nucleus NF-κB concen-

tration (x15). The number of measures for each input

factor is taken to be r = 100, the grid level is p = 10,

and the simulation length is 400 min. Simulations are

carried out for two cases: one is focused on a local

range, which is ±5% around the nominal value θ0

(Fig. 5); the other is in a wide range of two orders

variations on both sides of θ0, that is, [0.01 θ0, 100 θ0]

(Fig. 6).

A number of observations have been obtained from

the Morris GSA:

(a) When the GSA is implemented within a narrow

range around the nominal parameter values, the

sensitivity ranking results from GSA using the

modified Morris method agrees well with the

results from LSA shown in our previous work

Figure 5 Morris sensitivity analysis within a narrow range [0.95, 1.05] θ0. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]
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Figure 6 Morris sensitivity analysis within a large range [0.01, 100] θ0. [Color figure can be viewed in the online issue, which

is available at www.interscience.wiley.com.]

[31,33]. This is particularly true for those sen-

sitive parameters when they are clearly distin-

guished from the rest set of parameters.

(b) For GSA performed in a large parameter range,

different sensitive parameters are identified, for

example, k19 and k42 in Fig. 6. Their effects

in terms of nonlinearity and/or interactions are

neglected in local analysis. In the IκB-NF-κB

signal pathway system, k19 is the NF-κB nuclear

import rate, which impacts all the reactions in-

volving NF-κB in the nucleus and may reason-

ably be expected to contribute significantly to

the system output. Parameter k42 is the constitu-

tive IκBβ translation rate. The biological impli-

cation of its influential contribution to NF-κB

in the nucleus cannot be clearly revealed by the

authors unfortunately.

(c) The parameter sensitivities in GSA are more

evenly distributed compared with that of LSA

(see Fig. 5a and Fig. 6a). Here we use the local

range GSA result to represent the LSA result

since they are almost the same. The compar-

atively dispersed distribution of GSA is due to

the fact that interactions between parameters are

considered.

(d) In the (μ − σ ) plots in Fig. 5b and Fig. 6b, a

large value of µ, indicates an input factor with

an important overall influence on the output.

A large value of σ indicates an input whose

influence is highly dependent on the values of

other inputs or whose effect is highly nonlinear.

It is worth noting that the relationship between

µ and σ is approximately linear. This is true for

most GSA using the Morris method since the

majority of the models encountered in natural

science are highly nonlinear [40]. Thus, a factor

that is important in the model is usually more

involved in curvature or interactive effects and

vice versa. The slope of the relationship is not

necessarily relevant in the study of GSA.

Impacts of Sensitive Parameters
on Oscillation Behavior

Since the oscillation of NF-κBn is an important fea-

ture of this signal transduction pathway [25,29], it is

crucial to understand how the variation of sensitive pa-

rameters affects its oscillation patterns. Based on both

LSA and GSA results, k36, k28, and k61 have been cho-

sen as the sensitive parameters to study the impacts

of their variations on the oscillation of NF-κBn. Only

one parameter is changed in each run, and the value

is taken as the nominal value multiplied by a factor γ .

In Figs. 7–9a, the initial conditions of IKK after equi-

librium are set to be 0.1 µM. The uncertainty range of

k36 in which damped oscillations can be practically ob-

served is roughly one order around the nominal value,

whereas for k28 the uncertainty range that produces

damped oscillations is much larger. Within these un-

certainty ranges, the amplitude and phase of oscillation

change a lot. The observation of the parameter range

in which oscillations occur at all is particularly impor-

tant for parameter estimation as it straightforwardly

reduces the search space for uncertain parameters.

When focusing on another sensitive parameter, the

IKK decay rate k61, extra insights about the oscilla-

tion of NF-κBn can be discovered. Figure 9a shows

that when k61 is varied from 0 to 4 times of its nom-

inal value, the NF-κBn profile goes through several

damped oscillations until it reaches the steady state
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Figure 7 NF-κBn oscillation with respect to variations in

k36. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]

Figure 8 NF-κBn oscillation with respect to variations in

k28. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]

without oscillation. This is under the condition that the

initial concentration of IKK after equilibrium is kept

to be 0.1 µM. However, when this initial condition is

set to be 0.03 µM, a sustained oscillation of NF-κBn

is obtained when k61 = 0 (as shown in Fig. 9b). This

means that a constant activation level of IKK can pro-

duce sustained oscillations of NF-κB in the nucleus

when the activation level is kept within a certain range.

Similar scenarios can be found in a simulation study of

inhibitor drug effects on the dynamics of NF-κB signal

pathway by Sung and Simon [41]. In their work, they

introduced molecules with different inhibitory targets.

It was observed that when the drug dosage is con-

trolled at certain levels, IKK is constitutively active

and the nuclear NF-κB exhibits sustained oscillations

(see Fig. 4a in [41]). Although the biophysical feasibil-

ity of this scenario in NF-κB pathway is not clear yet,

with the help of nonlinear dynamic analysis, for exam-

ple, bifurcation analysis, the conditions under which

sustained oscillations of nuclear NF-κB will occur can

be identified.

Robust analysis of the sensitive parameters is impor-

tant for cell networks with oscillation behavior. This is

also revealed by some studies of other oscillation net-

works. An example is the study of cyclic monophos-

phate (cAMP) oscillations, which shows that a small

but significant portion of uncertain parameters can se-

riously affect the sustained oscillations [42].

CONCLUSIONS

In this work, optimal and robust experimental design

procedures are discussed for the IκB-NF-κB signal

pathway model, using local and global parametric sen-

sitivity analysis. Initially, a local, optimal experimental

Figure 9 NF-κBn oscillations with respect to variations in k61. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]
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design is used to determine the starting IKK activation

intensity as part of a simplified three parameter estima-

tion problem. It is shown that in this simple scenario,

the A-, D-, and E-optimal designs produce similar re-

sults as they all chose the same IKK activation in-

tensity that minimized the parametric uncertainty in

estimation. However, using local techniques such as

these are only approximately valid because the mea-

sure of parametric uncertainty, the FIM, depends on the

optimal parameters which are, of course, unknown. A

number of robust experimental design methods have

been developed to address this problem, and this paper

described a RED with the minimax design principle,

in which it is assumed that the parameters lie within

a bounded region around the nominal values. It is in-

teresting to compare this minimax robust experimental

design with the Morris GSA as both methods are based

on the assumption of bounded and known parametric

uncertainties. In the RED method, the performance

function is optimized at the worst case (largest norm

of uncertainty factor), which turns out to be a mini-

max robust design. In the Morris GSA, the sensitivity

measure, which is the elementary effect, is evaluated

at a number of sampling points and the “averaged” re-

sult is used to represent the global sensitivities. While

in the minimax RED, the nominal local model is used

with uncertainty bound considered, in the Morris GSA,

there is no such a nominal model because in each cal-

culation, the base parameter vector is randomly chosen

from the parameter domain. The idea of Morris GSA

can be used to develop another group of robust exper-

imental design methods, which uses “averaged” infor-

mation on FIM instead of the current minimax design.

The work along this line is under investigation.

Based on the sensitivity analysis, the study is also

undertaken for the parametric impacts on the oscilla-

tory behavior of NF-κB in the nucleus. It shows that

sensitivity analysis can provide information on signal-

ing pathway systems, which are not necessarily ob-

vious in the dynamic model itself. In particular, very

small changes in certain sensitive parameters can cause

significant changes to the oscillation patterns, say from

damped oscillations to sustained oscillations, or vice

versa.
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