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Abstract

Although recent guidelines for dealing with missing data emphasize the need for sensitivity 

analyses, and such analyses have a long history in statistics, universal recommendations for 

conducting and displaying these analyses are scarce. We propose graphical displays that help 

formalize and visualize the results of sensitivity analyses, building upon the idea of ‘tipping-point’ 

analysis for randomized experiments with a binary outcome and a dichotomous treatment. The 

resulting ‘enhanced tipping-point displays’ are convenient summaries of conclusions obtained 

from making different modeling assumptions about missingness mechanisms. The primary goal of 

the displays is to make formal sensitivity analyses more comprehensible to practitioners, thereby 

helping them assess the robustness of the experiment’s conclusions to plausible missingness 

mechanisms. We also present a recent example of these enhanced displays in a medical device 

clinical trial that helped lead to FDA approval.
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1. Introduction

Ever since the early work of McKendrick [1], statisticians have been developing methods to 

account for missing observations in data. Various approaches have been proposed, including 

weighting observed values by their inverse probability of being observed [2], computing 

maximum likelihood estimates [3], or imputing each missing value, either once [e.g., 4] or 

multiple times [5]. Each one of these approaches requires assumptions about the missingness 

mechanism, implicit or explicit, but, as emphasized by Molenberghs [6], full appreciation 

was not given to the importance of these assumptions until the mid-70s, when it was 

proposed in [7] to treat missingness indicators as random variables. It led to the definition of 

three main missingness mechanisms based on specific assumptions about the distribution of 

the missingness indicators given data: missing completely at random (MCAR), missing at 
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random (MAR), and missing not at random (MNAR). Detailed definitions of these 

mechanisms can be found in [8, Section 1.3].

Here, we focus on a special but common case when the univariate binary outcome variable 

is missing for some units (i.e., partially missing) and a set of predictors that explain the 

missingness and the outcome is fully observed. Let Y = (y1,…, yN)′, where yi denotes a value 

of an outcome variable for unit i and let D = (d1,…, dN)′ be the missingness indicator, such 

that di = 1 for units that are missing yi and di = 0 for units with observed yi. Let X = (xi, j) be 

the set of predictors, which can be partitioned into three subsets: predictors XY of the 

response Y only, predictors XD of the missingness indicator D only, and common predictors 

XYD for Y and D, such that XY, XD, and XYD do not overlap. The triplet (xi, yi, di) is assumed 

to be independent and exchangeable across units, so we suppress the index i to simplify 

notation in this section.

Let the conditional probability distribution of the outcome for each unit be

and the conditional probability distribution of the missingness indicator be

where θ and ϕ are vector parameters governing the corresponding distributions. Then, the 

three missingness mechanisms imply that the following holds for every unit:

• MCAR: f(d | xD, xYD, y; ϕ) = f(d | ϕ) for each ϕ and for all x and y. In other words, 

XD and XYD are empty, and the missingness is independent of the response y itself.

• MAR: f(d | xD, xYD, y; ϕ) = f(d | xD, xYD; ϕ) for the observed d, x, and y and for 

each ϕ.

• MNAR: f(d | xD, xYD, y; ϕ) ≠ f(d | xD, xYD ; ϕ). Note that MNAR implies that there 

are unobserved variables u that are associated with both the response and the 

missingness indicator, such that f(d | xD, xYD, u, y; ϕ) = f(d | xD, xYD, u ; ϕ), but, 

because we failed to measure u, the model for the missingness mechanism requires 

conditioning on the response y itself.

In practice, many studies with missing data either use complete-case analysis (i.e., discard 

units with partially missing data), which is generally invalid, except in very special cases of 

MCAR mechanism, or analyze the data under the MAR assumption. The latter is usually 

regarded as a more sound approach than the former, especially when the MCAR assumption 

is implausible given observed data. The MAR assumption allows us to avoid specifying a 

model for missingness mechanism for Bayesian or direct-likelihood inferences, assuming ϕ 

and θ are distinct [7,8]. However, although the MCAR assumption may be tested empirically 

[7,9], the MAR assumption is generally unassessable, because it implies comparing f(y | x, d 

= 0; θ) with f(y | x, d = 1; θ), and the latter can not be estimated from the observed data 

without making additional assumptions; detailed formalization of this statement is given in 
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[10]. Therefore, a sensitivity analysis is desirable to assess the influence of various 

assumptions about the missingness mechanism.

Here, focusing on binary outcomes, we describe convenient graphical displays that reveal 

the effects of all possible combinations of the values of missing data in the first arm 

(‘treatment’ group) and the second arm (‘control’ group) of a two-arm study on various 

quantities of interest, typically, on p-values and point estimates. The displays are based on 

the idea of ‘tipping-point’ (TP) analysis, first introduced in [11], but anticipated in [12–14], 

as a method of assessing the impact of missing data on study’s conclusions about some 

quantity of interest. Yan et al. [11] defined tipping points of a study to be particular 

combinations of missing data values that would change the study’s conclusions, as 

summarized by its p-value, and presented a simple way to display them. We enhance this 

idea by formalizing the process of sensitivity analyses using a more detailed display in 

conjunction with multiple imputation (MI) of missing data. Outputs from multiple formal 

missingness models, including MNAR ones, are added onto the display along with any 

historical rates of outcomes, when available. The enhanced displays enable practitioners to 

identify whether alternative assumptions about the missingness mechanism change the 

study’s conclusions and thereby allow them to assess the strength of the study’s evidence.

The rest of the manuscript is organized as follows. Section 2 lays out the basics of the 

sensitivity analysis and the motivation for the proposed technique. Section 3 provides a 

detailed description of enhanced TP (ETP) displays for a binary outcome. In Section 4, we 

use a simulated example to demonstrate the display. We then proceed in Section 5 with a 

real-data example of a recent use of the ETP-displays in a medical device clinical trial and in 

Section 6 conclude with a discussion.

2. Sensitivity analysis for studies with missing data

A sensitivity analysis consists of several steps:

• drawing conclusions under working assumptions about missing data,

• identifying a set of plausible alternative assumptions, and

• studying the variation in the statistical output and conclusions under these 

alternative settings.

Because many methods for handling missing data assume a specific MAR mechanism, the 

last two steps involve using alternative MAR specifications or MNAR mechanisms. 

However, the majority of empirical studies omit any sensitivity analysis altogether, in part, 

because of the apparent complexity of such models. Yet, in some cases, omitting it is not an 

acceptable option, especially when important decisions, such as approving a drug or a 

medical device or implementing a new public policy are at stake. For example, a recent 

report on prevention and treatment of missing data, with a focus on clinical trials, produced 

by the US National Academy of Sciences [15, p. 5], made the following recommendation: 

‘Recommendation 15: Sensitivity analyses should be part of the primary reporting of 

findings from clinical trials. Examining sensitivity to the assumptions about the missing data 

mechanism should be a mandatory component of reporting.’ Other guidelines issued lately 
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[16–18] also stressed the need to perform sensitivity analyses that assess the impact of 

missing data on reported inferences and conclusions.

Nevertheless, there is no general agreement as to how one should perform systematic 

sensitivity analyses and summarize them [15,19]. As pointed out in [15, p. 83], ‘Unlike the 

well-developed literature on drawing inferences from incomplete data, the literature on the 

assessment of sensitivity to various assumptions is relatively new. Because it is an active 

area of research, it is more difficult to identify a clear consensus about how sensitivity 

analyses should be conducted.’

Recognizing the need for making unassessable assumptions when modeling MNAR 

missingness, many researchers emphasize the importance of conducting sensitivity analyses 

and reporting the resulting inferences from different models [e.g., 20–24]. Two general 

frameworks have been proposed for relaxing the MAR assumption: selection models and 

pattern-mixture models. With selection models [e.g., 7,25–30], the unassessable assumptions 

are made about the distribution of outcomes for all units and the distribution of missingness 

indicators conditional on outcomes, where the parameters for those distributions are distinct. 

Pattern-mixture models [20,31–34] postulate the distributions of outcomes for respondent 

and nonrespondents separately, such that the overall outcome distribution is a mixture of the 

two distributions. Examples of the use of both frameworks can be found in [31,35], in [36–

41] for pattern-mixture models, and in [42–47] for selection models. A variant of a pattern-

mixture model is used in Section 5 to assess the sensitivity of the estimated treatment effect 

in a real-data example.

However, few recommendations have been made to help summarize and compare the results 

of sensitivity analyses across many alternative models of interest, regardless of the 

framework used. Several authors [12–14] described graphical approaches for summarizing 

sensitivity analyses, similar to the TP displays proposed in [11] and, also, discussed in [48]. 

The proposed plots share a common structure, with horizontal and vertical axes defined by 

some summary of possible values of the outcome for non-respondents in each of two 

treatment arms, and the plot with shaded areas corresponding to the result of an analysis for 

each combination of values on the two axes. However, because these previously proposed 

plots contain no information about the likelihood of each individual combination, we cannot 

utilize them to their fullest potential. In the following section we introduce ETP-displays, 

which provide information about the likelihood of each combination and, thereby, of the 

alternative conclusions.

3. Enhanced tipping-point displays for two-arm randomized studies with 

binary outcome

Consider a study with N subjects randomly divided into a treatment group of size NT and a 

control group of size NC, with ti = 1 if subject i is treated and 0 if not treated, T = (t1,…, tN)′. 

Two vectors of potential outcomes Y(t) = (y1(t),…, yN(t))′, t ∈ {0,1}, indicate whether each 

subject would be a ‘success’ (yi(t) = 1) or a ‘failure’ (yi(t ) = 0) under treatment assignment 

t. Under the stable unit treatment values assumption [49, SUTVA,], the observable outcome 

for subject i can be expressed as
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Then, Y = (y1,…, yN)′ is a vector of observable outcomes for the realized treatment 

assignment vector T.

Let τ be a marginal finite-population average treatment effect

Because the treatment is randomized, an unbiased estimator of τ is

Suppose some subjects are missing the outcome, as indicated by D = (d1,…, dN)′. For a 

binary outcome Y, a natural marginal summary of missing values is the number of successes 

among subjects with missing outcomes, considered separately for each arm,

(1)

where  and . Assuming that the outcome distribution 

among nonrespondents is binomial, (1) gives the minimum sufficient statistics for the 

underlying Binomial probabilities of success among nonrespondents.

Figure 1 displays a matrix of all possible combinations of the number of successes among 

nonrespondents in the treatment group, , and in the control group, . Each 

combination is classified by whether it changes, or ‘tips’, the conclusion about the estimated 

effect’s statistical significance. The staircase contour partitions the display into two different 

regions and marks the tipping points of the study, which are the combinations of the number 

of successes among nonrespondents in the treatment group (horizontal axes) and in the 

control group (vertical axes) that alter the conclusion about the statistical significance of the 

estimated treatment effect, based on a chosen hypothesis test and a significance level. A 

fundamental issue with the basic display is that it has no information about the relative 

likelihoods of the combinations.

We extend the idea of such displays by introducing the following enhancements:

• A colored heat map that illustrates the gradual change of a specific quantity of 

interest, which could be the p-value from a hypothesis test, the estimated treatment 

effect,

Liublinska and Rubin Page 5

Stat Med. Author manuscript; available in PMC 2015 January 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



(2)

a lower or upper bound of an interval, or any other quantity that depends on the 

combination of the observed success rates among nonrespondents in the treatment 

group and in the control group,  and .

• Tick marks on each axis that represent historical estimates of the number of 

successes in each group, if such are available.

• Results from the current modeling procedure, for example, draws of Ymis under the 

chosen model f(Y, D | T, X; θ, ϕ).

• Most important, the draws of Ymis obtained under models with alternative 

assumptions.

4. Simulated example with a binary outcome

We generated data for N = 100 subjects with two predictors, representing sex, Female = 

(female1,…, femaleN)′, and age in years, Age = (age1,…, ageN)′, a treatment indicator T = 

(t1,…, tN)′, and a partially missing binary outcome Y = (y1,…, yN)′ indicating that no adverse 

events occurred. The predictor Female was simulated from Bern(0.5), and the predictor Age 
was simulated uniformly between 18 and 55 (rounding to the nearest integer).

The following models were used to generate the outcomes and the missingness:

(3a)

(3b)

(3c)

(3d)

where I(·) is an indicator function. According to the notation introduced in Section 1, here 

XYD = (T, Age, Female), whereas XY and XD are empty. As evident from (3c), the 

missingness mechanism is MNAR. The model for pi (3a), the probability of success for 

subject i, indicates that although the treatment effect is positive (i.e., treated subjects had 

fewer adverse events), the success rates decline steeply for women older than 35 years. The 

rapid increase in the risk of adverse events after reaching a certain age is not an uncommon 

phenomenon, for example, the risk of heart disease increases for men after the age of 45 

years and for women after the age of 55 years, the risk of having fertility issues 

(miscarriage, birth defects, etc.) increases for women over the age of 35 years.

In the simulated data, out of the 100 subjects, NT = 40 were randomly assigned to the 

treatment group and NC = 60 to the control group, with  and  subjects 

Liublinska and Rubin Page 6

Stat Med. Author manuscript; available in PMC 2015 January 16.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



missing the outcome in each group, respectively. Choosing unequal numbers of treated and 

control units was intentional to illustrate the generality of the idea. Among the respondents, 

the success rates were 0.48 (or 12 out of 25) in the treatment group and 0.21 (or 8 out of 39) 

in the control group.

Figure 2 shows the heat map of τ̃ for the generated data set, calculated according to (2). If 

we perform a one-sided hypothesis test for the difference in proportions of successes 

between the completed treatment group and the completed control group, the results may 

also be demonstrated using the ETP-display: Figure 3 shows the heat map of p-values and 

outlines the region with combinations that resulted in rejecting the null hypothesis that the 

treatment has a lower rate of success based on the significance level of 0.05. Hence, the 

outer contour of the region indicates the tipping points of the study, for example, {0,0},

{1,1}, or {2,3}. Undoubtedly, the best possible scenario is when the display shows no 

tipping points, that is, when all combinations of missing outcomes lead to the same 

conclusion of the study. If this is not the case, as in our simulated example, then performing 

sensitivity analyses can be critical, and ETP-displays summarize them.

Next, we illustrate the results of two analyses performed on the simulated data. Both 

analyses assume a MAR mechanism and multiply impute missing values from their 

approximate posterior predictive distributions, obtained using multivariate imputation by 

chained equations (MICE) algorithm [50–52]. The first analysis uses a naïve linear model 

for the log-odds of success to impute the missing responses, that is, logit(pi) = θ0 + θ1 ti + 

θ2agei + θ3femalei. The second analysis includes all the relevant interactions, as specified in 

(3a), and therefore is more complete. Note that the actual details of the imputation procedure 

are not essential, as long as the procedure is valid and it uses plausible assumptions about 

the missingness mechanism.

Table I gives the estimates of the treatment effect and its 95% credible intervals (CIs) for 

each model, combined using Rubin’s rule [5, 53] from 100 generated MIs, as well as the 

estimate and a 95% CI obtained from the full data. Figure 4 shows the results of the MI 

procedures from both models‡. Brown and blue rectangles are drawn by connecting 

minimum and maximum values among 100 imputations in each group under the naïve and 

the complete models, respectively. The nonparametric intervals formed by minimum and 

maximum values approximate the 98% CIs for each group, because only 100 simulations 

were produced (99/101 ≈ 98). Other ways to summarize the joint distribution of successes 

among non-respondents in treatment group and control group include a 95% credible region 

based on more simulated values [54] or a kernel density approximation.

We also added several vertical and horizontal ticks showing counts that correspond to 

hypothetical historical data. For example, if rates of success for subjects with similar 

demographics were observed to be 0.35 and 0.60 in previous studies of similar treatments, 

for our example, they would correspond to having 2 and 12 successes among 

nonrespondents in the treatment group, respectively.

‡The R-procedure that draws ETP-displays for generated MIs can be downloaded from sites.google.com/site/vliublinska/research.
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Figure 4 reveals the differences between counts imputed using the two models. In addition, 

Table I shows that the two models produce conflicting conclusions regarding the 

significance of the effect, with the naïve one indicating that there is no significant treatment 

effect. Note that if additional predictors in the complete model were not associated with both 

the outcome and the missingness, we would have expected similar results produced under 

the two models. Next, we describe how a systematic sensitivity analysis was performed on a 

real data from a medical device clinical trial with multiple binary outcomes and substantial 

missingness and show how ETP-displays were utilized to summarize the results for a report 

to FDA.

5. Real-data example with multiple binary outcomes

So far, we focused on the situation with missing values confined to a single binary outcome. 

However, the example that we now present involves a TP analysis extended to missingness 

in more than one binary outcome, where some units are missing subsets of outcomes, which 

may differ across units. This data set is from a clinical trial that studied kyphoplasty, a novel 

treatment of vertebral compression fractures, which are common complications of 

osteoporosis, and compared its efficacy and safety to that of vertebroplasty, a current 

treatment. Both treatments consist of injecting bone cement into fractured vertebrae, with a 

goal of relieving pain caused by their compression and to prevent further damage.

A randomized prospective open-label study took place in four health centers across 

Germany. The inclusion criteria for patients required, among other things, to have up to 

three vertebral compression fractures in a specific region of their spines, to be at least 50 

years old, and to have pain levels above a certain threshold. A total of 84 subjects were 

evaluated, qualified, consented, and randomized to one of the two procedures, yielding 56 

subjects assigned to the kyphoplasty (treatment group) and 28 to the vertebroplasty (control 

group).

The primary endpoint of the study was a number of cement leaks into the spinal canal, a 

potentially extremely serious complication that can lead to paraplegia. This endpoint, along 

with pain, was assessed 24 h after the surgery, while patients were still in the hospital. Both 

variables had no missing data, and we will not focus on them in this section; randomization-

based analysis of these endpoints was highly supportive of the superiority of the kyphoplasty 

procedure performed using the new device.

The study also had several secondary endpoints, including the occurrence of various adverse 

events within 3 months and between 3 and 12 months after the procedure, which assessed 

the relative safety of the new device. The following six types of adverse events were 

recovered:

• adjacent level vertebral fracture (symptomatic and asymptomatic),

• distant level vertebral fracture (symptomatic and asymptomatic),

• retreatment (including re-fracture), and

• death.
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In addition, subjects’ pain levels (0 through 10) and disability scores (0 through 100, based 

on a completed questionnaire) were recorded during the 3-month and 12-month follow-up 

appointments. Table II summarizes all secondary endpoints in the study. In addition, a set of 

baseline measurements was collected for each patient, including:

• the number of vertebral compression fractures that required treatment (1, 2, or 3),

• demographic and health data (age, sex, height, weight, BMI, physical activity level, 

and smoking status), and

• baseline pain and disability scores, duration of symptoms, and health center of stay.

A considerable fraction of subjects were missing secondary endpoints. Table III reports 

percents of subjects in each group that had missing outcomes at each time-point. The 

occurrence of adverse events was rare—the observed rates were between 0% and 2.6%—

with the exception of deaths, which were reported at 10.4% rate during the 12 months 

follow-up; the patients’ age range at baseline was 50–93 years; therefore, such a high death 

rate was expected. In addition, a few subjects had missingness in one or more of the baseline 

covariates.

For the purpose of imputation, death is considered to be unrelated to the treatment assigned. 

Because the death rate was somewhat higher in the control group, by ignoring possible 

differences between subjects who died and the ones who did not die, the imputation 

procedure is likely to produce outcomes favorable to the control group, that is, for treated 

and control subjects with the same covariate values, those who died were more likely to be 

worse off then those who lived. The procedure is likely to underestimate the rates of adverse 

events in the control group, making our analysis more ‘conservative’.

Thus, the study had several major missing data issues that complicated the analysis: a 

considerable fraction of nonmonotone missing data in secondary outcomes that were rare 

events, some missingness in covariates, and, moreover, small sample sizes. Therefore, 

regardless of the missingness assumptions that were used for the initial analysis, it was 

important to perform a thorough sensitivity check.

We start with assessing the randomization performance and making sure it produced an 

acceptable balance between the treatment group and the control group. Figure 5 contains 

two ‘Love plots’ [55] that show standardized differences between average values of baseline 

measurements, or between proportions for binary measurements, observed in each group. 

The two plots indicate excellent balance between the two groups.

We proceed with multiply imputing the few missing values in baseline covariates. For that, 

we combine the two groups, as justified by the randomization, but remove the outcome data. 

We assume MAR and use the MICE algorithm (based on linear models with main effects 

only) to produce 100 complete data sets of baseline measurements that will be utilized in 

subsequent analyses. Next, we describe our assumptions about the missingness mechanism 

in secondary endpoints, the procedure used for estimating the treatment effect, and the 

obtained results.
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We address the following question regarding secondary endpoints: Do the treatments differ 

in rates of adverse events or in post-treatment pain levels and disability scores? The 

approach that we take here is similar to the one used in the Section 3. For the initial analysis, 

we assume MAR and proceed to multiply impute missing secondary outcomes using MICE, 

utilizing available baseline covariates. For that, the outcome data collected post-operatively 

are split into treatment group and control group. Two analysts are assigned to perform MI 

procedure, one on each group separately; both are blinded to each other’s outcome data. 

This limits the opportunity to bias the results, for example, by systematically imputing better 

values for subjects in the treatment group, as well as to allow different response functions 

for outcomes in each group.

The sparsity of adverse events requires a special method of conditional imputation because it 

is not feasible to model the occurrence of each of twelve adverse events (six types of events 

at two time-points) individually. Instead, we use a hot-deck approach by adopting a file-

concatenation matching method introduced in [56], where each subject with missing 

secondary outcomes (i.e., a nonrespondent) is matched based on available characteristics to 

a donor from a pool of respondents, and the entire set of outcomes from the chosen donor is 

used to impute missing outcomes for that nonrespondent. In addition, post-treatment pain 

scores and disability indexes, collected during the 3-month and 12-month follow-up 

appointments cannot be modeled as continuous variables because of small sample size and 

irregular distributions of the observed values. Therefore, for the purpose of MI, we employ 

predictive mean matching [56, PMM,; 57], another hot-deck-type method that fits a linear 

model to observed responses and uses it to match each nonrespondent with a set of 

respondents.

To test whether or not the treatment group and control group showed similar results in 

secondary outcomes, we employ a one-sided Fisher randomization test. Table IV reports 

results obtained from 100 completed data sets, combined using Rubin’s rule as described in 

[58]. These results support the conclusion that there is essentially no evidence that 

kyphoplasty, performed using the new device, is worse than vertebroplasty in the rate of any 

adverse event, as well as in average post-treatment pain scores or disability indexes. Next, 

we subject these conclusions to a thorough sensitivity assessment.

The generally unassessable MAR assumption that underlies the imputations of missing 

secondary endpoints raises concerns because of the large fraction of missing values. Also, 

the hot-deck imputation methods used for secondary endpoints were drawing outcomes that 

were actually observed, and an implicit assumption of such methods is that each 

nonrespondent resembles one or more of the respondents. However, further analysis 

revealed that there was some nonoverlap in the values of baseline measurements between 

respondents and nonrespondents in the control group. Specifically,

• At the 3-month follow-up:

– all three male nonrespondents were older than the oldest male respondent 

(76, 77, 83 vs. 69 years old at the beginning of the study);

– two out of three male nonrespondents had lower BMI than the lowest 

observed BMI among respondents (21.5, 20 vs. 23.5 kg/m2);
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– one out of two female nonrespondents had prior smoking experience, and 

no female respondent had any; and

– one male nonrespondent had a longer hospital stay duration than all male 

respondents.

• At the 12-month follow-up:

– two female nonrespondents were older than the oldest female respondent 

(88, 89 vs. 85 years old); and

– one male nonrespondent was older than the oldest male respondent (83 

vs. 77 years).

Note that the nonrespondents who did not resemble any respondents in the control group 

appeared to be in poorer health than the respondents, for example, older and with low BMI. 

Consequently, by using responses from healthier subjects in the control group to impute 

missing outcomes for nonrespondents, the hot-deck imputation procedure produces results 

favoring the control group. Nevertheless, the detection of nonoverlap provided us with a 

direction for constructing MNAR models: identify specific characteristic of nonrespondents 

that are outside of the range observed among respondents and modify the odds of adverse 

events for subjects with these characteristics, taking the odds estimated under the MAR 

model as a baseline

where δ(ti, xi) is an introduced shift that may depend on subject’s i treatment assignment, ti, 

and baseline values, xi. The following eight characteristics were selected for the purpose of 

this sensitivity analysis: men older than 69 years, men with BMI lower than 23.5, women 

with prior smoking experience, men with duration of hospital stay longer than 2 days, 

women older than 85 years, men older than 77 years, patients dead at 3 months, and patients 

dead at 12 months. The odds of not having adverse events were imputed to be 50% higher (δ 

= ln (1.5)) or 50% lower (δ = ln (0.5)) than implied by the MAR model for the treatment 

group or the control group separately.

A total of 32 alternative models were fitted (eight characteristics for two groups and two 

odds adjustments), and 100 MIs were produced for each of them. Similarly to the simulated 

example on Figure 4, Figures 6–8 show resulting ETP-displays with rectangles indicating 

ranges of the number of adverse events imputed under the initial model with the MAR 

assumption (dark blue), as well as under each of the 32 alternative models. The heat map 

represents p-values for one-sided Fisher randomization tests with alternative hypothesis that 

treated subjects have higher rates of adverse events than control subjects. Historical values 

obtained from experts are marked on each axis, and tipping points of the study, based on a 

0.05 significance level, are highlighted using red contour.

It is evident from displays that the study conclusion is robust to all alternative models 

explored here; none of the rectangular areas cover the TP contour on any of the 12 displays. 

These ETP-displays reassure us that there is no evidence for differences in safety between 
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the new kyphoplasty device and the traditional vertebroplasty procedure. Considering that 

the analysis of primary endpoints indicated a considerable advantage of the new device over 

the current procedure, our TP analysis and displays helped to advance the approval of the 

device by the FDA.

6. Discussion

We proposed a systematic way to summarize sensitivity analyses in a randomized two-arm 

study with one or more binary outcomes that are partially missing using ETP graphical 

displays. The displays facilitate the assessment of the strength of study’s conclusions under 

adopted assumptions and inform us about the effect of alternative models on the initial 

conclusions. They systematize sensitivity analyses by taking advantage of fast computing to 

create MIs under the current and alternative models and to display results using modern 

computational graphics.

Sometimes, when assessing the impact of missing data on a study’s conclusion, researches 

focus on the worst-case scenario, that is, treated subjects with missing outcomes are 

assumed to have zero favorable outcomes and, at the same time, missing outcomes for 

controls are set to be all favorable. In fact, in the simulated example shown in Section 4, this 

scenario would reverse the sign of the treatment effect, as it is evident from Figure 4. 

Among the advantages of the ETP-displays is that they allow the assessment of other 

intermediate combinations, which usually are more realistic than the worst-case scenario. 

Moreover, the displays can help to convey the fact that the worst-case scenario may likely 

be unachievable, even if alternative assumptions, including MNAR, about missing data 

mechanism are employed. Finally, ETP-displays show the posterior probability of each 

combination, thereby helping to assess the influence of alternative assumptions on the 

study’s conclusions. An R-procedure for ETP-displays is available at sites. google.com/site/

vliublinska/research.

In the real-data example in Section 5, we tackled several issues at once, including substantial 

missingness in the outcomes with small sample sizes in treatment and control groups. A 

thorough sensitivity check is a key step in this situation, exploring plausible models with 

alternative assumptions about the nature of missingness mechanism, including MNAR ones. 

An intuitive way to explore MNAR models is to use the fitted outcome model under the 

MAR assumption as a baseline and introduce various modifications for the nonrespondents’ 

model, informed by experts in the field. In addition, by summarizing imputation results on 

ETP-displays, investigators can identify alternative models that are most likely to tip the 

study’s conclusions. This idea can be generalized to studies with other types of outcomes. It 

provides a new collection of useful tools for the analysis of data sets plagued with missing 

values.
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Figure 1. 

Basic tipping-point display proposed in [48]. The horizontal and vertical axes indicate the 

number of successes that can potentially be observed among nonrespondents in the 

treatment group and the control group. Each combination is marked as either ‘altering the 

study’s conclusion’ (lighter squares) or ‘keeping the study’s conclusion unchanged’ (darker 

squares). The staircase region indicates the tipping points of the study.
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Figure 2. 

Enhanced tipping-point display for the simulated binary outcome Y, showing estimated 

treatment effects using a heat map. Axes represent the number of successes that could be 

observed among nonrespondents in the treatment group and in the control group. Each 

combination corresponds to a value of the estimated treatment effect τ̃, according to (2). Its 

magnitude and sign are represented using a color palette that changes from dark blue (large 

negative value) to dark orange (large positive values), with white representing zero 

estimated effect. Note that displaying each individual value is optional (and, in fact, largely 

redundant), so we omit it in further displays. The axes indicate that there were 15 missing 

outcomes among treated subjects and 21 among control subjects. Vertical and horizontal 

dashed lines (in blue) correspond to observed success rates among treated and control 

subjects, 0.48 and 0.21.
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Figure 3. 

Enhanced tipping-point display for the simulated binary outcome Y, showing p-values from 

a chosen hypothesis test (here, a one-sided test of the difference in proportions of successes 

between treated group and control group). The heat map represents p-values obtained from 

the test conducted for each combination of the number of successes among treated and 

among control subjects. The red grid (bottom-right half of the display) highlights 

combinations that result in rejecting the null hypothesis that the treatment has lower rate of 

success at the 0.05 significance level, with the staircase region indicating the tipping points 

of the study.
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Figure 4. 

Enhanced tipping-point display showing the results of two multiple imputation procedures 

for the simulated binary outcome Y. As before, the red grid highlights combinations that 

resulted in rejecting the onesided null hypothesis that the treatment has a lower rate of 

success based on a proportion test, using 0.05 significance level. Rectangles connect 

minimum and maximum number of successes among 100 imputations for nonrespondents in 

treatment group and control group under the naïve (brown, taller rectangle) and the complete 

(blue, shorter rectangle) models, approximating the 98% intervals for each group. Also, the 

display shows two vertical and two horizontal ticks (in purple), representing counts that 

correspond to success rates {0.35,0.60} for the treated, and {0.15,0.34} for the controls, the 

information that might be available from previous studies.
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Figure 5. 

Love plots to check the balance between the treatment group and the control group produced 

by the randomization. Part (a) shows standardized mean differences for continuous 

predictors, and part (b) shows differences between raw proportions for categorical 

predictors.
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Figure 6. 

Enhanced tipping-point displays for the first four adverse events from the clinical trial 

described in Section 5, with (jittered) rectangles showing ranges of the number of adverse 

events for nonrespondents in treatment group and control group, imputed under the MAR 

assumption (thick blue rectangle), as well as under each of the 32 alternative models chosen 

for the sensitivity analysis. None of the models resulted in changes in the study’s 

conclusions.
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Figure 7. 

Enhanced tipping-point displays for the next four adverse events from the clinical trial 

described in Section 5. Again, all models lead to the same conclusion of no difference in 

rates of adverse events between the treatment group and the control group.
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Figure 8. 

Enhanced tipping-point displays for the last four adverse events from the clinical trial 

described in Section 5. Only a couple of models for the adjacent symptomatic fractures (top 

left) produced borderline results.
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Table I

Treatment effect on the outcome Y, estimated for the full data set and for the observed data set, with missing 

values multiply imputed using two models: naïve and complete.

Analysis Estimated difference 95% CI

Full data 0.27 (0.09, 0.46)

Naïve model 0.24 (−0.04, 0.53)

Complete model 0.31 (0.05, 0.57)

For both models, we assume MAR missingness and combine results from 100 MIs using Rubin’s rule.
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Table II

Secondary endpoints collected in the study, indicated by “+”.

Time after surgery

Secondary endpoint At 24 h 1 day to 3 months 3 to 12 months

Occurrence of each of the six adverse events + +

Pain level (0–10) + + +

Disability score (0–100) + +

Stat Med. Author manuscript; available in PMC 2015 January 16.
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Table III

Percent of subjects missing all secondary endpoints at each time-point.

Follow-up time-point

Treatment group 3 months, % 12 months, % 3 & 12 months, %

Kyphoplasty (NT = 49)† 24 43 18

Vertebroplasty (NC = 28) 18 36 11

†
Seven subjects were excluded from the treatment group after randomization because of reasons unrelated to the treatment.
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Table IV

One-sided p-values from a Fisher randomization test for null hypotheses of no difference between the 

treatment group and the control group in the rate of each of the adverse events.

Alternative hypothesis Treated subjects have fewer adverse events

Adverse events With 3 months Between 3 and 12 months

Retreatment 1.00 1.00

Symptomatic adjacent fracture 0.30 1.00

Symptomatic distant fracture 0.99 0.27

Asymptomatic adjacent fracture 1.00 0.99

Asymptomatic distant fracture 1.00 0.48

Death 0.13 0.59

Any event before 3 months 0.29 0.32

Pain score 0.66 0.29

Disability index 0.26 0.19

Alternative hypothesis Treated subjects have more adverse events

Adverse events With 3 months Between 3 and 12 months

Retreatment 0.39 0.99

Symptomatic adjacent fracture 0.89 0.46

Symptomatic distant fracture 0.38 0.99

Asymptomatic adjacent fracture 1.00 1.00

Asymptomatic distant fracture 1.00 0.90

Death 0.99 0.68

Any event before 3 months 0.83 0.80

Pain score 0.34 0.71

Disability index 0.75 0.82

A one-sided alternative hypothesis was used to make it possible to combine the p-values from 100 complete data sets [58]. Note that none of the p-

values provide any evidence against the corresponding null hypotheses.
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