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1. Introduction

Chemists routinely create models of reaction sys-
tems to understand reaction mechanisms, kinetic
properties, process yields under various operating
conditions, or the impact of chemicals on man and
the environment. As opposed to concise physical laws,
these models are attempts to mimic the system by
hypothesizing, extracting, and encoding system fea-
tures (e.g. a potentially relevant reaction pathway
versus another plausible one), within a process that
can hardly be formalized scientifically.1 The model
will hopefully help to corroborate or falsify a given
description of reality, e.g. by validating a reaction
scheme for a photochemical process in the atmo-
sphere, and possibly to influence it, e.g. by allowing
the identification of optimal operating conditions for
an industrial process or suggesting mitigating strate-
gies for an undesired environmental impact.

These models are customarily built in the presence
of uncertainties of various levels, in the pathway, in
the order of the kinetics associated to the pathway,
in the numerical value of the kinetic and thermody-
namic constants for that pathway, and so on.

Propagating via the model all these uncertainties
onto the model output of interest, e.g. the yield of a
process, is the job of uncertainty analysis. Determin-
ing the strength of the relation between a given

uncertain input and the output is the job of sensitiv-
ity analysis.2

Mathematical sensitivities (in the form of model
output derivatives) are a straightforward implemen-
tation of this sensitivity concept. If the model output
of interest is Y, its sensitivity to an input factor Xi is
simply Y′Xi

) ∂Y/∂Xi. This measure tells how sensi-
tive the output is to a perturbation of the input. If a
measure independent from the units used for Y and
Xi is needed, SXi

r ) (Xh i/Yh )(∂Y/∂Xi) can be used, where
Xh i is the nominal (or central, if a range is known)
value of factor Xi and Yh is the value taken by Y when
all input factors are at their nominal value.

If factors are uncertain within a known or hypoth-
esized range, then the measure SXi

σ ) (σXi/σY)(∂Y/∂Xi)
can be of use, where the standard deviations σXi, σY
are uncertainty analysis’ input and output, respec-
tively, in the sense that σXi comes from the available
knowledge on Xi, while σY must be inferred using the
model.

These sensitivity measures can be efficiently com-
puted by an array of techniques, ranging from
automated differentiation (where the computer pro-
gram that implements the model is modified so that
the sensitivities are computed with a modicum of
extra execution time3) to direct methods (where the
differential equations describing the model are solved
directly in terms of species concentrations and their
derivatives4). There is a vast amount of literature on
these sensitivity measures,5-11 which shall be re-
ferred to as local in the following. The majority of
sensitivity analyses met with in chemistry and phys-
ics are local and derivative-based. Local sensitivities
are useful for a variety of applications, such as the
solution of inverse problems, e.g. relating macroscopic
observables of a system, such as kinetic constants,
to the quantum mechanics properties of the system,6
or the analysis of runaway and parametric sensitivity
of various types of chemical reactors.8 Contexts where
local sensitivity has been widely used are as follows:
(1) to understand the reaction path, mechanism, or
rate-determining steps in a detailed kinetic model
with a large number of elementary reactions, e.g. in
photochemistry or in combustion chemistry,4,7,9 (see
ref 12 for an alternative approach in this context),
(2) to extract important elementary reactions from a
complex kinetic model to obtain a reduced model (e.g.
a minimal reaction scheme) with equivalent predic-
tive power7 or to select important reactions for
further analysis,13,14 (3) to estimate the output of a
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computer program in the neighborhood of a given set
of boundary conditions (BCs) without rerunning the
program [This is often the rationale for using auto-
mated differentiation software.3,15 This approach may
be effective for deviations of up to 10-20% away from
the baseline BC.], and, (4) for data assimilation, to
reconcile model parameters with observations.6,16,17

In these local sensitivity measures the effect of Xi
is taken while assuming all other factors fixed. This
approach falls, hence, in the class of the one-factor-
at-a-time (OAT) methods. A cruder approach often
met in the literature is when, instead of derivatives,
incremental ratios are taken by moving factors one
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at a time away from their baseline value by a fixed
(e.g. 5%) fraction, irrespective of the factor’s pre-
sumed uncertainty range.18

Using derivative or otherwise OAT methods for the
purpose of assessing the relative importance of input
factors, e.g. to decide which factor mostly deserves
better measurements, can only be effective if the
model is linear in all its factors, unless some form of
averaging of the system derivatives over the space
of the input factors is performed. The same reserva-
tion holds if the purpose of the sensitivity analysis
is to screen the factors as to fix those which are less
influential on the output, although when the factors’
derivatives differ by orders of magnitudes from one
another, their use in screening might be safe enough.
In general, though, a single measure such as SXi

σ )
(σXi/σY)(∂Y/∂Xi) can take care of the fact that different
factors have different ranges of uncertainty but not
of model nonlinearities due to the same factors.

Second-order derivatives can improve the sensitiv-
ity analysis offered by the first-order methods14,19 and
are useful for variational data assimilation.16

The chemists who in the 1970s applied Fourier
transforms to sensitivity analysis were motivated by
the realization that most models met in chemistry
are of a rather nonlinear nature. Nonmonotonic,
nonadditive features, to which we shall return later
in this review, are also not uncommon. For these
models, OAT methods can be of limited use if not
outright misleading when the analysis aims to assess
the relative importance of uncertain factors, and
model-free measures are needed, possibly indepen-
dent of assumptions about the model structure. To
this effect, Cukier, Schaibly, and co-workers devel-
oped the Fourier amplitude sensitivity test (FAST;20-23

see also ref 24, in which is given a variation of the
basic scheme of FAST, defined as the Walsh ampli-
tude sensitivity procedure (WASP), a method for
discrete models where the factor variation is intrinsi-
cally two-valued) later made computationally avail-
able by Koda, McRae, and others.25,26

What FAST does, in a nutshell, is to decompose the
variance V ) σY

2 of Y using spectral analysis, so that
V ) V1 + V2 + ... + Vk + R, where Vi is that part of
the variance of Y that can be attributed to Xi alone,
k is the number of uncertain factors, and R is a
residual. Thus, Si ) Vi/V can be taken as a measure
of the sensitivity of Y with respect to Xi. We will offer
a precise definition of Vi and R in section 2.

Although FAST is a sound approach to the prob-
lem, it has seen little use in the scientific community
at large, including among chemists, and few applica-
tions of FAST are available in the literature.27-30

Further chemical applications of FAST are cited in
ref 4. FAST is mentioned in some reviews of sensitiv-
ity analysis methods4,7,8,31-35 but ignored in others.10,36

At the time of its development, FAST was laborious
to implement and computationally expensive. Some
researchers were uncomfortable with moving away
from the mathematical appeal of derivatives. [The
review System Analysis at Molecular Scale by H.
Rabitz6 states, “Generally the emphasis in sensitivity
analysis is not on the explicit introduction of any
particular variation [in the input] but rather on the

computation and examination of the sensitivity coef-
ficients [the derivatives], as they are independent of
any special variation in the parameters”. The same
author later contributed considerably to the develop-
ment of global sensitivity analysis by introducing a
new class of high-dimensional model representation
(section 2).]

In the 1990s, several investigators, sometimes
without realizing it, developed Monte Carlo-based
estimates of the FAST sensitivity measure; see refs
37-44. In these approaches, the space of the input
factors was explored using Monte Carlo-based tech-
niques (such as Latin hypercube sampling, random
or quasi-random numbers), rather than by the Fou-
rier trajectories, but in general the same sensitivity
measure Si ) Vi/V was computed. The best formal-
ization of this approach is due to Sobol’.42

At the same time, practitioners in risk analysis
were using for the purpose of sensitivity analysis
various kinds of Monte Carlo (MC)-based linear
regression.31 In these approaches, the space of the
input factors is sampled via a MC method and a
regression model is built (e.g. by a least-squares
calculation) from the estimates of Y produced by the
model.

We anticipate here that the standardized regres-
sion coefficients âi thus generated, where âi ) (σXi/
σY)bi and bi is the raw regression coefficient, are
related to the FAST measure, as well as to SXi

σ . In
fact, for linear models âi

2 ) Si ) (SXi

σ )2. We show in
ref 45 how SXi

σ is an effective measure for linear
models, âi is an effective measure for moderately
nonlinear models, for which an effective linear re-
gression model can be built, and Si is the model-free
extension that works even for strongly nonlinear
models.

Rabitz and co-workers46,47 developed alternative
strategies for global sensitivity analysis that are
inspired by the work of Sobol’, and, hence, homolo-
gous to FAST, but are based on decomposing the
model Y of interest on the basis of finite differences
built along lines, planes, and hyperplanes that pass
through a given selected point in the space of the
input factors. Rabitz’s approachswhich can be seen
as “in between” derivative-based methods and vari-
ance-based onesscan also be used to compute the
variance-based sensitivity indices Si.

Finally, it is important to note that using variance-
based techniques in numerical experiments is the
same as applying ANOVA [analysis of variance33,48

(here and in the following we shall list references in
chronological order)] in experimental design, as the
same variance decomposition scheme holds in the two
cases. One could hence say that modelers are con-
verging with experimentalists treating Y, the out-
come of a numerical experiment, as an experimental
outcome whose relation to the control variables, the
input factors, can be assessed on the basis of statisti-
cal inference. Sacks, Welch, and others49,50 were
among the first to think along these lines. Morris51

developed an effective experimental design scheme
for numerical experiments which has similarities to
a variance-based measure.

Sensitivity Analysis for Chemical Models Chemical Reviews, 2005, Vol. 105, No. 7 2813



This convergence of FAST-based and sampling-
based strategies for sensitivity analysis and also a
convergence between these and experimental design
theory, which escaped even recent reviews,8 vindicate
the original intuition of the FAST developers that Si
was a good measure for chemical models. Both FAST
and MC computation schemes have been upgraded
in recent years,2,32,45,52-54 becoming less expensive and
easier to apply, as we shall see in the next sections.

As already mentioned, OAT approaches still domi-
nate the chemical literature even when the purpose
of the analysis is to assess the relative importance
of input factors in the presence of factors uncertainty.

To contrast this practice, we shall select and review
those which we consider as the most promising
modern approaches to sensitivity analysis, with some
emphasis on the methods in the FAST family,
comparing, with the help of worked examples, the
performances of variance-based methods with differ-
ent kinds of local, regression, or screening-based
measures.

2. Methods

2.1. A Simple Example, Using Local Sensitivity
Analysis

It would be impossible to describe all sensitivity
analysis methods within the purpose of the present
work. Available reviews are refs 4-8, 10, 11, 18, 31,
34-36, and 55-57. Those of Rabitz,5,6 Turányi and
Tomlin,4,7 and Varma and Morbidelli8 are of particu-
lar interest for chemists. References 31 and 34 cover
well Monte Carlo-based regression methods, ref 10
focuses on local strategies, and ref 56 focuses on
experimental design methods.

A wide spectrum of different perspectives and
approaches can be found in ref 2, a multiauthor book
with input from practitioners such as Rabitz, Turá-
nyi, Helton, Sobol’, the authors of the present review,
and others. Our plan here is to offer a selection of
sensitivity analysis methods, with emphasis on global
methods, which might be of relevance to and ap-
plicable by the Chemical Review readership. The
methods are illustrated by examples. We start with
a simple reversible chemical reaction A T B, with
reaction rates k1 and k-1 for the direct and inverse
reactions, respectively, whose solution, for the initial
conditions (ICs)

is

This “model” is so simple as to allow a characteriza-
tion of the system sensitivity by analytic methods,
but we shall work it out by pretending it is a system
of partial differential equations for a large reaction
model, as tackled by chemists using solvers such as

FACSIMILE,58 CHEMKIN,59 or others, where the
relative effect of the uncertain inputs in determining
the uncertainty on the output of interest is unknown.
We assume

where the symbol ∼ stands for “distributed as” and
N stands for normal distribution. Thus, both uncer-
tain factors are normally distributed with mean 3.
The standard deviation is 0.3 for k1 and 1 for k-1.

Figure 1 gives the time evolution of A, B while
Figure 2 gives the absolute values of the pure local
sensitivity of A with respect to the factors, i.e.

computed at the “nominal” value k1 ) k-1 ) 3, as well
as the absolute values of the pseudoglobal sensitivi-
ties:

[A](t)0) ) [A]0

[B](t)0) ) 0

[A] )
[A]0

k1 + k-1
(k1e

-(k1+k-1)t + k-1),

[B] ) [A]0 - [A] (1)

Figure 1. Time evolution of [A] and [B] from eq 1.

Figure 2. Absolute values of (a) [A] ′k1
) ∂[A]/∂k1 and

[A] ′k-1
) ∂[A]/∂k-1 and (b) Sk1

σ ) (σk1/σ[A])(∂[A]/∂k1) and Sk-1

σ

) (σk-1/σ[A])(∂[A]/∂k-1).

k1 ∼ N(3,0.3)

k-1 ∼ N(3,1)
(2)

[A] ′k1
)

∂[A]
∂k1

[A] ′k-1
)

∂[A]
∂k-1

Sk1

σ )
σk1

σ[A]

∂[A]
∂k1

, Sk-1

σ )
σk-1

σ[A]

∂[A]
∂k-1

2814 Chemical Reviews, 2005, Vol. 105, No. 7 Saltelli et al.



The value of σ[A] used in Figure 2 is not the exact
one but has been computed using the approximation
σY

2 = ∑i)1
k σXi

2 (∂Y/∂Xi)2 to model Y ) f(X1,X2,...,Xk),
which for our simple two-factor model of eq 1 gives

We discuss the applicability of this approximation
in a moment. It is evident from the plot that Sk1

σ and
Sk-1

σ offer a more realistic picture of the relative
importance of k1 and k-1 in determining the uncer-
tainty of [A] than [A] ′k1

and [A] ′k-1
, as the sigma-

normalized sensitivity measures are capable of weight-
ing the larger role of k-1 which descends from its
larger standard deviation. This is not to say that
[A] ′k1

and [A] ′k-1
are useless. We have used them, for

instance, to compute (Figure 3) an approximate map
of [A] as a function of k1 and k-1 using a simple Taylor
expansion. This kind of approximation60 becomes
very valuable when the model under analysis is
expensive to run. [Throughout this work, computa-

tion cost must be understood as the number of times
one needs to run the model that computes Y )
f(X1,X2,...,Xk). The time needed to compute the sen-
sitivity tests is usually negligible by comparison.]
More accurate tools for this kind of model ap-
proximation, also shown in Figure 3, are discussed
in section 2.4. Note that the entire Taylor represen-
tation in Figure 3 was built using for each plot just
the function value at k1 ) k-1 ) 3 plus the two
derivatives [A] ′k1

and [A] ′k-1
at the same point.

Derivative-based measures such as ∂[A]/∂k1 and
Sk1

σ are members of a large class of local measures
used in chemistry, which includes, e.g., functional
sensitivities, feature sensitivities, and others. These
are extensively dealt with in the literature. There are
furthermore a variety of methods to compute these
derivatives for large systems of differential equations,
such as the Green functions method, the direct
method, the decoupled direct method, the adjoint
method, and others.7,8,11 Given that the emphasis of
the present review is on global methods, we will not
describe them here. Automated differentiation meth-
ods, whereby the modeler modifies the simulation
model so that it can compute derivatives with a

Figure 3. First-order Taylor expansion (dotted lines); first cut-HDMR decomposition (bold gray lines); and first-order
HDMR decomposition (solid black lines). The star represents the base value, at which the Taylor and cut-HDMR expansions
are constructed.

σ [A]
2 = σk1

2 (∂[A]
∂k1

)2
+ σ k-1

2 (∂[A]
∂k-1

)2
, or equivalently

(Sk1

σ )2 + (Sk-1

σ )2 ) 1 (3)
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minimum of extra computing time, are also exten-
sively used in chemistry.3

The Sk1

σ and Sk-1

σ curves in Figure 2 are an ex-
ample of quantitative, albeit approximate, sensitivity
analysis. Imagine that k1 and k-1 are two poorly
known rates of a more complex system and that we
need to know which of themsonce properly deter-
mined in the laboratoryswould give us better chances
to reduce the uncertainty in the output [A] of interest.
Figure 2 would allow us to say that if we need to
reduce the uncertainty of [A] at the beginning of the
process (t ) 0.05), then k1 is a better candidate than
k-1. The reverse is true if we are interested in [A]
near equilibrium (t ) 0.4). Considerations of this
nature are also relevant for the purpose of model
calibration (see section 2.6). The reader will believe
Figure 2 conditionally upon the truth of eq 3, which
tells us that the variance of [A] can be partitioned in
bits proportional to the squared Sk1

σ and Sk-1

σ . We
reconsider the validity of this approximation in the
next section.

2.2. Monte Carlo Methods on the Simple Example

We move now into Monte Carlo simulation, draw-
ing independent samples from the distribution in eq
2 and running the computer program that evaluates
the solutions to eq 1. This would be a slow step if eq
1 were a system of many partial differential equa-
tions. Imagine we run eq 1 just 64 times, obtaining
64 different estimates [A]i, with i ) 1, 2, ..., 64, each
corresponding to a sample k1i,k-1i, where the two
factors have been drawn independently from one
another but in such a way that each of them is a
sample from its distribution (eq 2).

One way to use these estimates in sensitivity
analysis is to make scatter plots (Figure 4) which
allow a visual impression of the system degree of
linearity.31,61 For systems with tens of uncertain
factors, scatter plots become impractical, and a more
concise description of the system sensitivities can be
obtained by feeding [A]i, k1i, and k-1i, into a regression
algorithm, searching for a linear model of the form

The bi coefficients are dimensioned, and the common
use is to standardize them, rewriting eq 4 as

where [Ã] ) ([A] - µ[A])/σ[A] and k̃i ) (ki - µki)/σki are
standardized variables, µ[A] and µki are the mean of
[A] and ki, respectively, σ[A] and σki are the standard
deviations, âi ) (σ[A]/σki)bi are the so-called standard-
ized regression coefficients (SRC), and we have used
ki to indicate either k1 or k-1. It is a known result of
linear regression analysis62 that if the factors are
independent and the model is linear, then for the
model in eq 1:

If the model, as in our case, deviates from linearity,
then the sum of the squared â’s will quantify the
deviation. More often, this statistics is computed
directly from the simulation data and the regression
model results:

where N is the number of simulations, 64 in this case,
[A]i are the simulation results, and [A]i

/ are the
values of [A] provided by the regression model (eq
4). R[A]

2 , known as the model coefficient of determi-
nation, is a positive number in [0,1] which indicates
which fraction of the original model variance is
explained by the regression model. When this num-
ber is high, e.g., 0.7 or higher, then we can use the
standardized regression coefficients for sensitivity
analysis, albeit at the price of remaining ignorant
about that fraction of the model variance not ex-
plained by the SRCs. An application of this strategy
to a model for tropospheric oxidation of dimethyl
sulfide is in ref 63, where a rather high value of R2

allowed factors to be ranked confidently in a system
with about 50 temperature-dependent chemical reac-
tions.

Note that an improvement of the performance of
the regression-based approach, i.e., a higher value
of RY

2, can be obtained by transforming both the
input and the output sample vectors to ranks, e.g.,
rank N for the highest Y and rank 1 for the lowest,
and the same for the input factors.64 Rank transfor-
mation can substantially linearize a nonlinear, albeit
monotonic, function. The problem with this approach
is that the conclusions of the sensitivity analysis
apply to the rank version of the model rather than
to the model itself.65

The identity âki

2 ) (Ski

σ )2 for a linear model is
evident (eqs 3 and 6). Yet, when the model is even
partly nonlinear, the standardized regression coef-
ficients are superior to the normalized derivatives,
first, because they allow the degree of nonlinearity
of the model to be estimated and, second, as they offer
a measure of the effect of, e.g., k1 on [A] which is

Figure 4. Scatter plots of [A] versus k1,k-1 at time t )
0.3 and t ) 0.06. k1 appears more influential than k-1 at t
) 0.06, while the reverse is true at t ) 0.3.

[A] ) b0 + b1k1 + b-1k-1 (4)

[Ã] ) â1k̃1 + â-1k̃-1 (5)

â1
2 + â-1

2 ) 1 (6)

R[A]
2 ) ∑

j)1

N ([A]i
/ - µ[A])

2

([A]i - µ[A])
2

(7)

2816 Chemical Reviews, 2005, Vol. 105, No. 7 Saltelli et al.



averaged over a sample of possible values for k-1, as
opposed to being computed at the fixed point k-1 )
3, as was the case for Ski

σ .
In Figure 5 we have plotted the Ski

σ and âki for both
k1 and k-1. We see that for this test model (eq 1) the
two measures are equivalent. The model coefficient
of determination for these data is very high and
ranges from R[A]

2 ) 1 at the initial time points to R[A]
2

) 0.98. To stay with our pretension that the model
in eq 1 is something expensive to estimate, we have
performed only 64 model evaluations, and we have,
hence, computed the error bounds (2 standard devia-
tions) on the âi’s using bootstrap; i.e., we have re-
estimated the regression (eq 4) by drawing 100
different samples (with replacement) of size 64 of the
original 64 simulations. This procedure helps us to
decide whether N should be increased beyond the
present value of 64, e.g. when the uncertainty bounds
are too wide for our purposes.

On the basis of the value of R[A]
2 and on the basis

of Figure 5, we can say that the multidimensional
averaging provided by the âki’s with respect to the
ki’s does not make much of a difference, so that eq 3
is a valid approximation for this model. Yet what
would happen if we had a model with a low RY

2?
Obtaining a measure of the average local sensitivity,
e.g., 〈∂ci/∂kl〉, the effect of kinetic rate l over the
concentration of species i averaged over all the space
of the uncertain input k’s, was the main motivation
of Cukier and co-workers in the 1970s to develop a
new method, the Fourier amplitude sensitivity test
(FAST), suited to nonlinear problems.

Before moving into a discussion of it, let us make
the point of the preceding discussion. Derivatives can
provide detailed information about system behavior.
Yet, usual practice to estimate them at a single point
in the space of the input limits their applicability
away from that point, which is something needed in
sensitivity analysis when there are sensible uncer-
tainties in the input factors. Equation 3 can help, by
allowing a combination of local derivatives and input
factors variation. Yet to trust eq 3 on its own, without
a check of the linearity of the system, would be
unwarranted. A quick glance at the space of the
input, even with a handful of data points as done by

our regression analysis of size 64, is straightforward
and safer. The model coefficient of determination
would help to identify problems, such as, e.g., a
nonmonotonicity between input and output (Figure
6), which would result in low or zero âi and Si

σ even
for an influent factor Xi. In this case, in order to build
a regression-based sensitivity analysis, one would
have to look at various trial nonlinear regression
models, e.g., via a brute force search for the most
convenient regression variables (and combinations
of). Software packages are available to do that, but
the search may be computationally expensive.

2.3. Fourier Amplitude Sensitivity Test (FAST)
FAST20-27 is a sensitivity analysis method which

works irrespective of the degree of linearity or
additivity of the model. Let us call Si the FAST-based
sensitivity index for a generic factor Xi which feeds
into a model Y ) f(X1,X2,...,Xk) with k independent
uncertain factors. We can assume that all factors are
uniformly distributed in [0,1] (This is standard
practice.2 Input factors can then be mapped from the
unit hypercube to their actual distribution.), so that
the space of definition of f is a unit hypercube in k
dimensions.

We plan to illustrate that Si is a model-free
extension of the standard regression coefficients âi,
in the sense that Si ) âi

2 for linear models.
Before showing how Si can be arrived at using

Fourier analysis, a possibly intuitive description is
now given. We ask ourselves if we can reduce the
uncertainty in Y by removing the uncertainty (e.g.
by measuring directly) in some of the Xi’s. There will
surely be factors more promising than others for this
kind of analysis. Let us call V(Y) the variance of Y,
and VX-i(Y|Xi ) Xi

/) the variance that we would
obtain if we could fix Xi to some value. The subscript
X-i of V is to remind us that this variance is taken
over all factors other than Xi, which is fixed.

Xi
/ could be the true value of Xi determined with a

measurement. If we could compute VX-i(Y|Xi ) Xi
/)

for all factors at all points, we would surely find the
one with the smallest VX-i(Y|Xi ) Xi

/), but at this
point, we would be past sensitivity analysis, having
determined all uncertain factors. What we can do
before having actually taken the measure, i.e., be-
fore knowing Xi

/, is to look at what would be ob-
tained if we took the average of VX-i(Y|Xi ) Xi

/) over
the possible values of Xi

/. We would write this as
EXi(VX-i(Y|Xi)). We have dropped the dependency from

Figure 5. (i) R[A]
2 versus time; (ii) Sk1

σ and âk1 with
confidence bounds versus time (descending lines); (iii) Sk-1

σ

and âk-1 with confidence bounds versus time (ascending
lines). Error bounds are based on a bootstrap analysis of
size 100 of the 64 original data points.

Figure 6. Scatter plot for model Y ) ∑ i)1
k RiXi

2 and Xi ∼
N(0,1) for all i’s. âi’s are zero for this model (k ) 2; Ri ) 1
in the plots). FAST indices are instead Si ) Ri

2/∑ Ri
2.
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Xi
/, as the quantity EXi(VX-i(Y|Xi)) is independent of

any particular point in the distribution of Xi. This
quantity is relevant to the solution of the prob-
lem just posed; i.e., the factor with the smallest
EXi(VX-i(Y|Xi)) would appear to be the desired most
promising candidate for measurement, in terms of
expected reduction of the variance of Y. A known
algebraic result is that

so that the smallest EXi(VX-i(Y|Xi)) will correspond to
the largest VXi(EX-i(Y|Xi)). The FAST-based sensitivity
index is simply

Si is hence the educated answer to the question: “If
one wants to reduce the variance of the output, which
factors should be fixed first?” We have called this
question “factor prioritization setting” and have
argued that such a framing of the sensitivity analysis
with respect to a setting allows an otherwise vague
concept of factor importance to be clarified.45,54 Not
following this practice could result in several tests
being thrown at the problem and in several rankings
of factor importance being obtained, without a basis
to decide which one to believe.

The values of Sk1 and Sk-1 for the model in eq 1
would practically coincide with the âi of Figure 5, due
to model’s quasi-linearity, and hence, we do not plot
them here. Before introducing the next model, which
will make these measures worth using, we briefly
illustrate the theory behind FAST and the related
method of Sobol’.42

When using FAST, Si is computed by exploring the
k-dimensional space of the input factors with a search
curve defined by a set of parametric equations

with i ) 1, 2, ..., k, where s is a scalar varying in
(-∞,+∞), the ωi are a set of different angular fre-
quencies associated with each factor, and the Gi are
properly selected transformation functions. Scanning
eq 10 for different values of s results in a curve in
the k-dimensional hypercube whereby each di-
mension is explored with a different frequency ωi.
Fourier analysis allows, then, the computation of
VXi(EX-i(Y|Xi)) on the basis of the signal at ωi and its
harmonics. The implementation of the method re-
quires care, mostly in avoiding interferences, based
on accurate selection of the set of k frequencies ωi.26,27

Extensions of the FAST method are described in refs
53 and 66.

Cukier and co-workers had noted23 that the FAST
indices could be seen as the first-order terms in the
decomposition of the unconditional variance, which
for independent factors can be written as

where

Note that in writing, e.g., VXiXj(EX-ij(Y|Xi,Xj)) we mean
that the inner expectation is over all factors but Xi,Xj
and the outer variance is over Xi,Xj.

In classic FAST, only the main effect terms Si are
computed, and the success of a given analysis is
empirically evaluated by the sum of these terms: if
this is high, as a rule of the thumb greater than 0.6,30

then the analysis is successful.
The Vi describe the so-called “additive” part of a

model. In turn, additive models are defined as those
for which ∑iSi ) 1. Extended FAST53 allows the
computation of higher order terms.

It is easy to verify45 that for linear models both
relations ∑iâi

2 ) 1 and ∑iSi ) 1 hold. Yet the second
relationship holds also for models that are nonlinear
albeit additive. To make a trivial example, Y )
∑i)1

k RiXi
2 is nonlinear and nonmonotonic if the dis-

tribution function of the Xi’s is centered at zero
(Figure 6). Yet, this is an additive model, for which
V(Y) ) ∑iVi and ∑iSi ) 1. For our almost linear model
(eq 1), ∑iSi ) Sk1 + Sk-1 ) 0.995 at t ) 0.06 and
)0.991 at t ) 0.3, while the remaining bit of variance,
Sk1k-1 ) 0.005/0.009 for t ∈ [0,0.3], describes the
insignificant interaction effect of k1 and k-1. In
experimental design, Sk1k-1 is also known as a second-
order or two-way effect.

Unlike the case of local sensitivity analysis, where
the cost of computing a second-order term is, in
general, affordable,3 terms of higher order in eq 11
are seldom used in global sensitivity analysis, be-
cause of their number and computational cost. There
are in fact

terms of the second-order (Vij),

terms of the Vijl type, and so on, for a total of 2k - 1
terms in eq 11. This problem is known among
practitioners as “the curse of dimensionality”. It has
been argued46,47 that terms above the second-order
ones should not be too frequent in sound models of
physical systems, but we find this assumption unsafe.

2.4. Monte Carlo-Based Version of FAST and the
Work of Sobol’

Several Monte Carlo-based estimates of the first-
order terms Vi have been proposed.37-44 It will be
sufficient here to consider the work of Sobol’.42 Sobol’
noted that the function itself can be decomposed into

V(Y) ) EXi
(VX-i

(Y|Xi)) + VXi
(EX-i

(Y|Xi)) (8)

Si )
VXi

(EX-i
(Y|Xi))

V(Y)
(9)

Xi ) Gi sin(ωis) (10)

V(Y) ) ∑
i

Vi + ∑
i<j

Vij + ∑
i<j<l

Vijl + ... + V123...k

(11)

Vi ) VXi
(EX-i

(Y|Xi))

Vij ) VXiXj
(EX-ij

(Y|Xi,Xj)) - Vi - Vj

Vijl ) VXiXjXl
(EX-ijl

(Y|Xi,Xj,Xl)) - Vij - Vjl - Vil -
Vi - Vj - Vl

... (12)

(k2 )

(k3 )
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terms of increasing dimensionality, i.e.,

There are infinite ways of decomposing f, but for
independent factors there is a unique decomposition
in orthogonal terms which ensures [As described in
ref 42, fi ) E(Y|Xi) - E(Y) and fij ) E(Y|Xi,Xj) -
E(Y|Xi) - E(Y|Xj) + E(Y), where E(Y) ) f0.]

and so on. The fi’s, fij’s, ... are known as ANOVA-
HDMR,46 where HDMR stands for high-dimensional
model representation and ANOVA refers to the
analysis of variance from experimental design.48

Sobol’ offered a Monte Carlo strategy to compute
indices of any order, that is based on a Monte Carlo
exploration of the input space. To make an example,
to estimate Vi, the following algorithm is used

where N is the sample size of a MC simulation, k is
the number of independent factors, and the super-
scripts a and b stand to indicate that different
independent input matrixes have been used:

Equation 15 says that in order to compute Ṽi one
has to resample all factors but Xi. While it takes some
reasoning67 to demonstrate that Ṽi is an estimate of
the partial variance VXi(EX-i(Y|Xi)), it is intuitive that
Ṽi is large when Xi is influent. If Xi controls the
output, then large values of f will be multiplied with
one another in eq 15, and the same is true for low
values. If Xi is non-influent, low and high values of f
will be randomly combined, resulting in a lower value
of Ṽi.

Sobol’ noted that an important objective of the
sensitivity analysis is to identify those factors that
have no sensible effect on the output. To tackle the
problem, he rewrote eq 11 for sets of factors as

where all factors in X have been partitioned in two
sets, (1) a trial set U of supposedly noninfluential
factors and (2) the remaining factors Z. VUZ is the

pure interaction effect between the two sets and can
be easily computed by difference. If V(Y) )
VZ(EU(Y|Z)), then one can conclude that the set U is
truly noninfluential. Note that the condition of non-
influence implies VU(EZ(Y|U)) + VUZ ) 0, and not
simply VU(EZ(Y|U)) ) 0. We shall go back to this in
a moment.

As mentioned in the Introduction, decompositions
such as in eqs 11 and 13 are common in experimental
design, where one varies control variables; e.g., for a
chemical experiment one would vary temperature,
catalyst, and concentrations among a set of pre-
established levels (often just two, high and low, for
each variable) as to maximize the number of effects
(first order, second order, ...) one can determine for
a given cost in terms of number of experiments.48

More precisely, if we had sampled the points in the
k-dimensional hypercube with a nk factorial design
as {0, 1/(n - 1), ..., (n - 2)/(n - 1), 1}, then the fi(Xi)
of eq 13 would be identical to the ANOVA estimate
of the main effect in a complete factorial.33,48 It has
also been suggested to use the functions in eq 13
directly for the purpose of sensitivity analysis.49

We have plotted in Figure 3 fk1 and fk-1 for the
model in eq 1. No other functions are needed for this
model, as [A] ) fk1 + fk-1 + fk1k-1 and the term fk1k-1 is
almost flat at zero.

This direct use of functional decompositions such
as fki for sensitivity analysis is elegant and informa-
tive but can become impractical when the number of
factors and/or of their nonzero interactions increases.

Representations such as eq 13 of multivariate
functions by superposition of simpler functions such
as projection pursuit, radial basis functions, and
others are common in Mathematics46 and have a long
history.47,68

Rabitz and co-workers46,47 further proposed an
alternative model representation that is based on
knowing the model values on lines, planes, and
hyperplanes that pass through a selected point in the
space of the input factors. He calls these cut-HDMR,
to distinguish them from the ANOVA-HDMR of eq
11.

An example of cut-HDMR for the model in eq 1 is
also in Figure 3, together with the Taylor expansion
(based on local derivatives at the midpoint) of the
same factors.

The three model representations are substantially
equivalent for this quasi-linear model.

The cut-HDMR has been applied to chemical
problems.69-72 An interesting property of the cut-
HDMR is that it can be used as a basis for efficiently
computing the ANOVA-HDMR (the terms in eq 11).
We shall discuss the merits of the HDMR with an
application in the next section. Yet, the method still
depends on the assumption that in eq 13 terms of
order higher than two or three are negligible.

2.5. The Second Test Case
We move now to show that it is better to have

global sensitivity analysis in terms of FAST or Monte
Carlo estimates of Si, rather than in terms of âi or
derivatives. [Although, as discussed in section 2.2,

Y ) f(X1,X2,...,Xk) ) f0 + ∑
i

fi(Xi) + ∑
ij

i<j

fij(Xi,Xj) +

... + f12...k (13)

Vi ) V(fi)

Vij ) V(fij) (14)

Ṽi ) ∑
j)1

N

f(xj1
a ,xj2

a ,‚‚‚,xji
a,‚‚‚,xjk

a ) ×

f(xj1
b ,xj2

b ,‚‚‚,xji
a,‚‚‚,xjk

b ) - f0
2 (15)

A ) (x11
a ‚‚‚ x1k

a

‚‚‚ ‚‚‚ ‚‚‚
xN1

a ‚‚‚ xNk
a )

B ) (x11
b ‚‚‚ x1k

b

‚‚‚ ‚‚‚ ‚‚‚
xN1

b ‚‚‚ xNk
b ) (16)

V(Y) ) VU(EZ(Y|U)) + VZ(EU(Y|Z)) + VUZ
(17)
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Si
σ and âi can provide an approximate estimate of

Si.] To do this, we introduce our second example.
This is a thermal runaway analysis of a batch

reactor, with exothermic reaction A f B

where n is the order of the reaction, and

where F is the density of the fluid mixture [kg/m3],
cv is the mean specific heat capacity of the reaction
mixture [J/(K mol)], ∆H is the molar reaction en-
thalpy [J/mol], sv is the surface area per unit volume
[m2/m3], u is the overall heat transfer coefficient
[J/(m2 s K)], and Ta is the ambient temperature.

The initial conditions are [A] ) [A]0, T ) T0, and t
) 0.

This is customarily rewritten in dimensionless
form:

with initial conditions (IC’s) x ) 0 and θ ) 0, at τ )
0, and the dimensionless variables

and dimensionless parameters

This system has been widely analyzed in the last
century to characterize thermal runaway at varying
operating conditions.8 At given rate constant and
ambient temperature, the system is completely de-
termined by the parameters B and ψ, and critical
conditions are usually illustrated in the B - ψ
parameter plane.

A reactor under explosive conditions is sensitive
to small variations in, e.g., the initial temperature,
while, under nonexplosive conditions, the system
remains insensitive to such variations. Thus, bound-
aries between runaway (explosive) and nonrunaway
(nonexplosive) conditions can be identified on the
basis of its sensitivity to small changes in the
operating parameters. The system can also be char-

acterized by the derivative of the maximum temper-
ature reached in the reactor versus the initial tem-
perature, i.e.,73 S(θ*,θ0) ) dθ*/dθ0.

The runaway boundary is defined as the critical
value of each parameter for which the sensitivity to
the initial condition is maximum; e.g., for the Se-
menov number ψ, we have the results in Figure 7.

For ψ values smaller than ψc, the system is in
nonrunaway conditions; i.e., the maximum temper-
ature reached in the reactor is not very high, and this
maximum is insensitive to small variations in the
inlet temperature. With an increase in ψ, both the
maximum temperature and its sensitivity to T0
smoothly increase until, in proximity to ψc, there is
a sharp rise for both of them that rapidly brings the
reactor to a strong temperature increase. For ψ
values higher than ψc, the sensitivity goes back to
smaller values, leaving unchanged the extreme tem-
perature rise reached at ψc. From this, fixing reaction
kinetic (n,γ) and ambient temperature (θa), the curve
in the B - ψ plane can be obtained (Figure 8).

Let us consider the case of a system with nominal
parameter design B ) 20, γ ) 20, n ) 1, θa ) 0, and
ψ ) 0.5. Under these conditions, the system should
be within the nonrunaway region. The system, how-
ever, is characterized by uncertainties. So, let us
assume the following uncertainty distributions for
model parameters:

where U indicates a uniform distribution.
Under the chosen operating conditions (γ ) 20), a

0.02 standard deviation for the ambient and initial
dimensionless temperatures corresponds to an about
3 K standard deviation in the absolute temperature
scale.

We perform a Monte Carlo simulation, whose total
cost is 6144 model evaluations, and analyze the
behavior of the temperature maximum. In Figure 9
we can see that, even if the nominal conditions of the
reactor are stable, there are threshold values for B,
θa, and ψ for which the maximum temperature in the

d[A]
dt

) -k(T)[A]n (18)

Fcv
dT
dt

) (-∆H)k(T)[A]n - svu(T - Ta) (19)

dx
dτ

) exp( θ
1 + θ/γ)(1 - x)n ) F1(x,θ)

dθ
dτ

) B exp( θ
1 + θ/γ)(1 - x)n - B

ψ
(θ - θa) ) F2(x,θ)

x )
[A]0 - [A]

[A]0
θ )

T0 - T
T0

γ τ ) tk(T0)([A]0)
n-1

B )
(-∆H)[A]0

FcvT0
γ: dimensionless heat of reaction

γ ) E
RgT0

: dimensionless activation energy

ψ )
(-∆H)k(T0)([A]0)

n

svuT0
γ:

Semenov number ) (heat release potential)/
(heat removal potential)

Figure 7. S(θ*,θi) ) dθ*/dθi versus Semenov number ψ
for model (18, 19).

B ∼ N(20,4)

γ ∼ N(20,2)

θa ∼ N(0,0.2)

θ0 ∼ N(0,0.2)

and ψ ∼ U(0.4,0.6) (20)
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reactor can have a sharp rise (absolute temperature
can double, with a rise of e.g. 300 K). This striking
result vindicates the use of global (e.g. Monte Carlo)
exploration methods for uncertainty analysis even in
the presence of moderate factors uncertainty. This
result is due to the nonlinear and nonadditive nature
of the problem, as shown by the different sensitivity
measures for Y.

Let us look at the âi
2 and Si in Table 1 first. The

sensitivity based on the âi’s can only capture 40% of
the variation of the maximum temperature. Consid-
ering the variance-based main effects, we can arrive
at 43%. This implies a 57% interaction between the
model parameters. We could stop the analysis at this
point, or we might pursue our investigation to
achieve a full mapping of the input/output relation-
ship. Stopping here would mean that we are happy
with having learned that the parameter which offers
a better chance of reducing the variance in the
maximum temperature is ψ. Yet, this factor only
accounts for ∼18% of the variance, and the large
unknown interactions might suggest that a much
larger reduction in variance can be achieved if one
could identify the interacting factors and try to fix
them.

One avenue to do that would be to compute
individual interaction terms.74,75 [In this example all

the second- and third-order interaction terms could
be computed at no extra cost; see also section 3.74 The
full variance decomposition in this example could be
obtained with a total cost of 6144 model runs. If only
first-order indices were of interest, only a single shot
of 500 runs would be sufficient, applying the method
of Ratto et al.75 To compute only first and total effects
(see section 2.7 next), leaving out second-order effects
from the analysis, 3000 runs would have been suf-
ficient.] We get that the most significant second-order
interaction terms Sij ) Vij/V(Y) are SBψ ) 0.17, Sθaψ
) 0.17, and SBθa ) 0.166. Given that B, θa, and ψ
seem to be the factors that interact the most, we may
further compute the overall effect of these three
factors. This comes out to be 0.961 [The sum of all
effects of the factors B, θa, and ψ is made of their
first-order terms, plus the three second-order terms,
plus the single third-order term. This sum can also
be written as VBθaψ(Eγθ1(Y|B,θa,ψ))/V(Y) and computed
as such, i.e., without computing all the terms.], i.e.,
almost the total variance. If we measure the third-
order interaction term, we obtain SBθaψ ) 0.032.

This example points to the importance of identify-
ing interactions in sensitivity analysis.

We now apply to the example both ANOVA- and
cut-HDMR. In Figure 10 we show the first-order
ANOVA-HDMR terms (the fi terms in eq 11) of the
maximum relative temperature rise (Tmax - T0)/T0
for the three most important parameters.

These show that the first-order relationships are
monotonic, which explains why âi

2 gives an accept-
able estimate of the first order sensitivities in Table
1, with an overall error of about 0.03.

In Figure 10 we also show the approximated
ANOVA-HDMR terms fi, obtained by passing through
the third-order cut-HDMR expansion of the most
important factors (B,θa,ψ). The approximation is
fairly good and illustrates the standard usage of cut-
HDMR, i.e., as an efficient way to estimate the
ANOVA-HDMR, such as fi.

Figure 8. Runaway versus nonrunaway in the plane B,1/
eψ for fixed (n,γ) and (θa) (e is the number of Neper).

Figure 9. Relative temperature change at the maximum
[(Tmax - T0)/T0] versus the uncertain model parameters. A
rise in the ordinate to about 1.2 corresponds to a temper-
ature shift of about 300 K for the operating conditions
assumed.

Figure 10. First-order ANOVA-HDMR (solid lines) and
its approximation through the cut-HDMR expansion of only
the subset of factors (B,θa,ψ, dotted lines) of maximum
relative temperature rise (Tmax - T0)/T0 (mean value of
(Tmax - T0)/T0 is 0.1). Plain cut-HDMR terms are also
shown (dash-dot lines). All the lines have zero mean; i.e.,
HDMR functions plot the change with respect to the overall
mean (which is about 0.1).
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In Figure 11 we show the approximated second-
order ANOVA-HDMR terms, again obtained through
the cut-HDMR expansion of the subset (B,θa,ψ). The
grid of points for the cut-HDMR expansion up to the
third order was of size 16 for each factor, for a total
cost of 4912 runs.

2.6. Monte Carlo Filtering sAn Overview

Sensitivity analysis plays an important role in the
verification of the formal correctness of models. It is
rare to perform a SA without identifying model
formal or coding errors, whose correction is thus
made possible. For a discussion of the motivation for
sensitivity analysis in the scientific method, see the
last chapter in ref 45. We focus in this work on two
possible objectives for sensitivity analysis, i.e., factors
mapping and factor importance analysis. The cut-
HDMR is effective for both, as it allows for an
efficient though approximate estimate of the fi terms
(mapping), on which a sensitivity measure such as
Si can be computed (importance). At times, one is
interested in a particular form of mapping, i.e., when
the objective of the analysis is to measure what
fraction of the model realizations falls within estab-
lished bounds or regions. This objective can be
pursued using a Monte Carlo method known as
Monte Carlo filtering (MCF76-78). In MCF, one samples
the space of the input factors as in the plain MC
method and then categorizes the corresponding model
output as either within or without the target region
(the terms behavior (B) or nonbehavior (NB), are
used). This categorization is then mapped back into
the input factors, each of which is thus also parti-

tioned into a behavioral and a nonbehavioral sub-
sample. When the two B, NB samples for a factor are
statistically different, then the factor is an influential
one. This approach to SA is also known as regional-
ized sensitivity analysis (RSA). MCF is often used
in calibration, as it can successfully point to the
existence of alternative behavioral regions in the
multidimensional space of the input. In this case, a
combination of MCF and variance-based sensitivity
analysis of the likelihood (the probability of the data
given the model) can be helpful. This and the pros
and cons of RSA and its extensions are reviewed in
ref 45.

2.7. Total Sensitivity Indices
Is there a more compact way to analyze the model

in eqs 18-20 without computing all 25 - 1 terms of
our 5-factor model? Surely for larger dimensionalities
of the input factors space, a more compact measure
would be useful. This is offered by another variance-
based measure,43 which was implicit in our discussion
of the Sobol’ “group” sensitivity (eq 17). Imagine that
the set U in eq 17 contains only one factor, Xi, and
that as a result Z ) X-i. Hence, eq 17 becomes

The condition for Xi to be truly noninfluential is that
VXi(EX-i(Y|Xi)) + VXiX-i ) 0, which is the same as V(Y)
- VX-i(EXi(Y|X-i)) ) 0. Because of eq 8, this is the
same as to say that EX-i(VXi(Y|X-i)) ) 0. In summary,
if Xi is noninfluential, then STi ) EX-i(VXi(Y|X-i))/V(Y)
) 0. We call STi the total sensitivity index of factor
Xi. It is easy to prove45 that the condition STi is
necessary and sufficient for Xi to be noninfluential.
The descriptive power of this measure is evident by
looking at the last column of Table 1. Even if we had
not computed all second- and third-order interaction
effects, it would now be evident from the difference
between the Si and STi values for each factor that B,
θa, and ψ are involved in significant interactions.
From the total indices we can also see that all the
interaction terms of factor γ with (B,θa,ψ) cover most
of the 3.9% of total variance unexplained by the group
(B,θa,ψ). Other advantages of the STi measure are as
follows:

(i) With STi, we no longer have to limit our analysis
to additive models.

(ii) It dispels the curse of dimensionality. One does
not need to calculate all the 2k terms in eq 11 but
just the 2k measures Si and STi, to obtain a good
characterization of the system.

(iii) STi can be easily computed using extended
FAST53 or extended Sobol’ methods.74

(iv) When eq 11 holds, e.g. when the input factors
are independent, STi can be easily seen to be equal
to the sum of all terms (first-order plus interactions)
that include factor Xi. For a simple three-factor
model, this would imply that ST1 ) S1 + S12 + S13 +
S123. Even when the factors are not independent, STi
is an effective measure to use, e.g., if one wants to
reduce the variance of the output acting on a sub-
group of factors.54 It is intuitive that when interac-

Table 1. Sensitivity Measures for Model (16-18)

âi
2 Si Si

T

ψ 0.1761 0.1781 0.6738
θa 0.117 0.1641 0.556
B 0.1043 0.08 0.4692
γ 0.0028 0.0019 0.0322
θi 0.0016 0.0015 0.0128
sum 0.40 0.43

Figure 11. Second-order ANOVA-HDMR terms of the
maximum relative temperature rise, approximated through
the cut-HDMR of the subset of factors (B,θa,ψ). The grid
of points for the cut-HDMR expansion up to the third order
was of size 16 for each factor, for a total cost of 4912 runs.

V(Y) ) VXi
(EX-i

(Y|Xi)) + VX-i
(EXi

(Y|X-i)) + VXiX-i

(21)
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tions are present, a reduction in the variance of the
output can be achieved by determining simulta-
neously the true values of two or more interacting
factors.

Note that when one wants to criticize the use of Si

as a sensitivity measure, one usually builds a test
case where a factor has a zero first-order term and
important nonzero higher order terms.44,79 These
criticisms are, in our opinion, unfounded,45 as Si is
the right measure to use for factors prioritization, as
we discussed above. If one factor has a zero first-order
term, no variance reduction can be expected by
determining the true value of just that factor. On the
other hand, if the analyst intends to identify nonin-
fluential factors in order to remove them from the
variance propagation analysis, then a broader con-
cept of importance must be invoked, which corre-
sponds to the STi measure. STi ) EX-i(VXi(Y|X-i))/V(Y)
is, in fact, the expected variance that would be left if
all factors but Xi were determined and provides the
educated answer to the question, “Which factor can
be fixed anywhere in its range of variability without
affecting the output?”, the answer being all those
factors whose STi is zero. We call this the “factors
fixing” setting.45

Computing Si and STi for each factor Xi, while still
being far from a full factors mapping, gives a fairly
instructive description of the system.

2.8. The Method of Morris

Another useful sensitivity measure, which is com-
putationally less expensive than the variance-based
methods, is the measure of Morris,51 which is par-
ticularly suited when the number of uncertain factors
is high and/or the model is expensive to compute. It
belongs, thus, to the family of screening sensitivity
analysis methods.80

To illustrate it, we go back to the dimethyl sulfide
(DMS) example already mentioned when discussing
regression-based sensitivity analysis. The model
KIM12,63 describes temperature-dependent tropo-
spheric air and droplet chemistry for DMS. DMS
chemistry is extensively investigated for its climatic
implications.81 In a work published in 1999, the KIM
model included about 50 chemical reactions and 68
uncertain input factors, mostly kinetic and Henry law
constants, which could be screened down to the 10
most important ones using the method of Morris.82

The analysis was then completed by applying ex-
tended FAST to the 10 most important factors for a
quantitative analysis using the Si and STi indices.
Here, an updated version of KIM83 is considered
where the number of uncertain input factors is cut
down to 56, and the sensitivity of the model is
investigated via the Morris method. In an explana-
tory fashion, results are also compared with what
would be obtained by a derivative-based analysis.

The method of Morris51 varies one factor at a time
across a certain number of levels selected in the space
of the input factors. For each variation, a factor’s
elementary effect is computed, which is an incremen-
tal ratio for that factor:

A set of stepwise curves scan the factors levels, as to
generate for each factor r different estimates of
elementary effects ui. The mean µi and the standard
deviation σi of the elementary effects ui over the r
repetitions are used to assess the factors’ importance.
A high value of µi flags a high linear effect for a given
factor, while a high value of σi flags either nonlinear
or nonadditive factor behavior. It is useful also to
compute the modulus version µi

/ of the Morris meth-
od, i.e., the average of the |ui|, and the importance of
input factors is often assessed by plotting factors on
the (µi

/, σi) axes (Figure 12). The factors closest to
the origin are less influential.

µi
/ has similarities with the STi index, in the sense

that it tends to produce a ranking of the factors very
similar or identical to that based on the STi indices.45

Looking at Figure 13 (comparative ranking for the
input factors using ∂Y/∂Xi, Si

σ, and µi
/) for the KIM

model suggests that ranking of factors is strongly
altered when using derivative-based measures. If the
rankings of the different measures were equal, we
would have points in the left panel of Figure 13
aligned on a monotonic curve, while in the right panel
points would stay on a straight line of unit slope.
Conversely, both high and low importance factors are
completely shifted if derivative-based measures are
used. Only the least important factors seem to have
a similar ranking, even if significant changes are
detected also in this case (see points in the gray oval
in the right panel of Figure 13).

The lack of reliability of the derivative-based
measures is due to the nonlinearity of the present

ui )
Y(x1,x2,...,xi+∆xi,...,xk) - Y(x1,x2,...,xi,...,xk)

∆xi
(22)

Figure 12. Screening of input factors based on the method
of Morris. Factors away from the origin are the most
important, while the factors clustered in (0,0) can be fixed.
RHLO3 is the Henry’s law constant for ozone (O3). WATLIQ
is the water liquid content. Y0OHRAD is the initial
concentration of the OH radical. The R and B parameters
represent rate constants of gas-phase reactions, while the
W parameters indicate rate constants of liquid-phase
reactions. A more detailed factors description is in ref 82.
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version of the KIM model, as confirmed by perform-
ing a regression-based analysis through Monte Carlo
simulation which generates a R2 value of 0.57.

3. When to Use What
We discuss now the choice of the proper sensitivity

analysis technique depending on considerations such
as (i) the computational cost of running the model,
(ii) the number of input factors, (iii) the degree of
complexity of the model coding, (iv) the amount of
analyst’s time involved in the sensitivity analysis,
and (v) the setting for the analysis. Figure 14
supports graphically the explanations using these
characteristics as discriminating criteria.

For models that require a modest amount of CPU
time (i.e. up to the order of 1 min per run), and with
a number of input factors which does not exceed, say,
20, the class of the variance-based techniques yields
the more accurate pattern of sensitivity. Both the
method of Sobol’ (very easy to code42,45,74) and the
extended FAST (less easy53) provide all the pairs of

first-order and total indices at a cost of (k + 2)N74

model runs for Sobol’ and ≈kN model runs for the
extended FAST, where k is the number of factors and
N is the number of rows of the matrixes A and B in
eq 16. Typically, N ≈ 500/1000. To give an order of
magnitude of the computational requirement, for a
model with 10 factors and 0.5 min of CPU time per
run, a good characterization of the system via Si and
STi can be obtained at the cost of ∼42/84 h of CPU
time. [Note that FAST is impractical if the input
factors are sampled from discrete distributions.53]

With the method of Sobol’, in addition to the first-
order and total indices computed with (k + 2)N model
runs, all the interaction terms of order (k - 2) can
be obtained at no extra cost.74 At the additional cost
of kN model runs, double estimates of all the first-
order, second-order, (k - 2)-th order, and total indices
can be obtained74. [This sampling design scheme has
been applied in the test case of section 2.5, with N )
512, k ) 5, and an overall cost (2k + 2)N ) 6144.]
Finally, any other interaction term between the third

Figure 13. ∂Y/∂Xi (circles) and Si
σ (stars) versus µi

/. Left panel: logarithmic plots. Right panel: rank-rescaled measures
(high importance ) high rank; i.e., the most important factor has rescaled measure ) 56).

Figure 14. Sketch of the various techniques available and their use as a function of computational cost of the model,
complexity of the model, dimensionality of the input space, and analyst time. AD means “automated differentiation”.
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and the (k - 3)-th can be estimated at the further
additional cost of N model runs each.

When using the method of Sobol’, we make use of
quasi-random numbers to generate the sample ma-
trixes A and B (eq 16) for the analysis. These are
sequences of multidimensional points characterized
by “optimal” space-filling properties.84,85

A very popular form of sampling that also aims to
scan efficiently the input factors space is the latin
hypercube sampling (LHS), considered by some as
the most effective strategy when the model is expen-
sive to evaluate.86 ′The space-filling properties of LHS
can be enhanced by optimization algorithms.49

When the input factors are correlated, an ad hoc
computational scheme must be adopted. An efficient
and unbiased estimation procedure is available for
first-order indices and is based on replicated LHS.87,88

This is also easy to code,45 and the cost to estimate
all the first-order indices is Nr model runs, where r
is the number of replicates needed (usually around
10) and the cost is independent of the number of
factors.

For higher order indices as well as total indices in
the case of correlated input, one has to apply a brute
force approach whereby the operators V and E (eq 9)
are to be written in explicit form (i.e. as the variance
of a mean, involving a double computing loop). The
computational cost is thus Nr model runs per index.

All these techniques are implemented in SIMLAB,
a free software package.89

Less expensive alternatives to the variance-based
methods are the standardized regression coefficients,
SRCs. With a single batch of N sampled points (say,
N ≈ 500/1000 LHS points or less depending on the
cost of the model), the SRCs and their rank-
transformed version can be estimated for all the
input factors.

As mentioned, the SRCs are only effective for linear
or quasi-linear models, i.e., for R2 g 0.7/0.9. Regres-
sion methods, also implemented in SIMLAB, are
always useful to be looked at in order to investigate
the degree of linearity of the model.

When the CPU time increases (say, up to 10 min
per run) or the number of factors increases (say, up
to 100), the method of Morris,51 of which an extension
is implemented in SIMLAB, offers the best result.

The number of sampled points required is NMorris
) r(k + 1), where r is generally set to r ≈ 4/8 and k
is the number of input factors. To make an example,
with 80 factors and 5 min of CPU time per run, all
the model outputs can be ready in 27 h if r ) 4 is
taken. The main drawback of this method is that
samples are taken from levels, while both the SRC
and the variance-based methods take samples from
distributions.

When the number of input factors and/or the CPU
time is even as large as to preclude the use of the
method of Morris, then supersaturated fractional
factorial designs, where factors are iteratively per-
turbed in batches, can be used.41,80 However, these
methods preclude an effective exploration of the space
of the inputs, as they mostly operate at very few
factor levels and require strong assumptions on the
model behavior. To make an example, Bettonvill,

reviewed in ref 80, assumes a known monotonic
relationship between the output and each of the
inputs.

Automatic differentiation techniques3 can also be
used when CPU time is very large. They are inher-
ently local. In addition, they require intervention of
the analyst in the computer code that implements
the model. However, for expensive models, these
methods may offer an approximate solution for fac-
tors importance assessment and are very informative
for factors mapping, as well as for data assimilation
applications.17 If higher order derivatives are com-
puted,16 these give information about multifactor
curvature effects and could be seen as a bridge
between local and global methods; e.g., a second-order
term of the type ∂2Y/∂Xi∂Xj gives information about
a possible interaction effect between Xi and Xj,
although the Sij variance-based measure will include
an element of averaging over the entire space of the
factors. The advantages of higher order (second,
third) local sensitivity analysis in the presence of
nonlinear outputs (e.g. an ozone peak concentration)
are discussed in ref 19. In a Taylor-expansion frame,
higher order terms allow a better exploration further
away from the baseline. According to ref 14, while
first-order sensitivities can predict ozone concentra-
tion at about a 25% factors variation away from their
baseline, with second-order terms the prediction is
good up to 50% variations away from the baseline
values.

As an alternative, a Monte Carlo based approach
to estimation has also been tried in chemistry, which
includes a quantitative sensitivity analysis step.45,90,91

Sensitivity analysis is also driven by the setting.45

When the purpose of the analysis is to prioritize
factors, the first-order sensitivity indices Si have a
strong motivation for use. If the objective is to fix
noninfluential factors, then the total sensitivity
indices STi, or equivalently the measure of Morris,
come into use. If a particular region in the space of
the output (e.g. above or below a given threshold) is
of interest, then Monte Carlo filtering and associated
methods can be tried as an alternative or complement
to the measures just mentioned. If the purpose of the
analysis is a diagnostic mapping of the input/output
relationship, then various types of HDMR can be
tested (see Figure 10). At all of these settings, the
computation of derivatives, especially if achieved
with a modicum of extra computing, is advisable for
a general understanding of the model.

Additional software sources are given in ref 3.
Among these, we would like to recommend as a
suggested practice the KINALC package.92 KINALC
is a postprocessor to CHEMKIN, a widespread simu-
lation program, and carries out processing sensitivity
analysis including principal component analysis of
the sensitivity matrix. As argued in ref 7, a principal
component analysis (PCA) is a useful postprocessing
tool to local sensitivity analysis. PCA can extract at
no additional cost relevant features of the chemical
mechanism and can assist in the setup of the
parameter estimation step.
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4. Other Methods and Ongoing Research
Several methods have been proposed for sensitivity

analysis in various settings, and a wealth of special
issues where these are applied is available in the
literature.93-96 Some of these methods are domain
specific, such as for instance methods for use in
reliability engineering,97 and we have not treated
them in the present review.

With the exception of the automated differentiation
approach,3 which requires extensive manipulation of
the computer program where the model is imple-
mented, we have also left out in the present review
methods that require a direct intervention of the
analyst on the model. In fact, all methods described
so far treat the model as a black box.

In Bayesian sensitivity analysis,98,99 the analyst
needs to implement, by Bayesian updating, the
algorithm to estimate the model itself at “untried”
points.49 Once the appropriate sample is generated,
model values and good estimates of Si can be very
cheaply generated. Bayesian methods can be recom-
mended when CPU time is very large. They are
superior to factorial designs, in that they operate on
distributions, not on levels, for the input factors. Note
that the Bayesian approach can be unsuccessful for
particularly stiff models.

Approaches that demand extensive analysis of the
model also require that the model remains stable in
time, as each model revision, especially in the Baye-
sian approach, will call for a new analysis of the
model prior to sensitivity calculation.

Present research in sensitivity analysis focuses on
how to accelerate the computation of the sensitivity
indices (Si and higher order). The Bayesian method
already cited98,99 is a possible avenue, as well as the
cut-HDMR-based approach illustrated in Figure 10.
Another strategy, easier to code, is based on random
balance designs and uses Fourier analysis to estimate
all the first-order indices at a total cost of N model
runs (i.e. the same cost of SRCs).66 State-dependent
parameter (SDP) modeling, a nonparametric model
estimation approach based on recursive filtering and
smoothing estimation, is also being applied success-
fully75 to produce both the ANOVA-HDMR fi terms
and the relative Si at the same cost of SRCs.
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