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1. Introdution

Consider a randomized, two-arm, plaebo-ontrolled linial trial to evaluate eÆay of

a preventive HIV vaine. The �rst two trials of this kind began in 1998 and 1999, and

are ongoing (Franis et al., 1998). For eah trial, the primary objetive is to assess the

vaine's impat on the inidene of HIV infetion (Rida and Lawrene, 1995). Another

objetive of these trials and future trials is to assess the vaine's impat on viral load

post aquisition of HIV (Nabel, 2001); viral load is the onentration of HIV in blood or

another body ompartment. This objetive is important beause natural history studies

have shown that the viral load of an infeted person predits infetiousness (Quinn et al.,

2000) and the rate of disease progression (f., Mellors et al., 1997), and several animal

studies have identi�ed vaines that failed to prevent infetion but suessfully ontrolled

viremia and prevented disease (f., Shiver et al., 2002). Therefore, a vaine e�et to

lower viral load may be bene�ial, whereas an e�et to inrease viral load may hasten or

exaerbate disease. The risk of harmful vaine \enhanement" of viral load is genuine

(Burke, 1992), and has been observed for several viral vaines (f., Masola et al., 1992).

The impat of vaination on viral load an be studied in several ways. The data

available for analysis are right-ensored HIV infetion diagnosis times in all randomized

subjets, and longitudinal quantitative measurements of viral load in subjets who beome

infeted. Two main inferential approahes are intent-to-treat (ITT) analyses of all ran-

domized subjets and onditional analyses of infeted subjets only. The ITT approah

assesses the ausal e�et of randomizing to vaine. However, the majority (likely > 80%)

of randomized subjets will have zero viral load beause they do not beome infeted dur-

ing the trial, whih an give ITT analyses low power for deteting many alternatives of

interest (Hudgens, Hoering, and Self, 2002a). Also, in ITT analyses two very di�erent

populations (uninfeted and infeted subjets) are plaed on the same response sale.
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Consequently, the ITT analysis of viral load assumes that the outomes absene of infe-

tion (with zero viral load) and infetion with viral load below the quanti�ation limit of

the assay are approximately equally prognosti for disease progression. This assumption

is diÆult to justify, beause the initial suppression of viral load in infeted subjets may

be lost due to HIV evolution (Barouh et al., 2002). Alternatively, rank-based ITT meth-

ods ould be used that assign the lowest two ranks to absene of infetion and viral load

below the assay limit, respetively. However, to ahieve greater power and to study the

ausal e�et of randomizing to vaine in a subpopulation of persons who would beome

infeted desribed below, in this artile we onsider onditional analyses.

Conditioning on infetion poses a major hallenge to making an unbiased inferene

of the vaine e�et on viral load, beause the analyzed groups are seleted by the post-

randomization event HIV infetion. This post-treatment seletion bias problem is ommon

in biomedial studies (f., Rosenbaum, 1984; Robins and Greenland, 1992), and implies

that a omparison of viral load between infeted subgroups, whih measures the `net

vaine e�et', does not have a ausal interpretation. In partiular, partial eÆay of

the vaine to prevent HIV infetion an bias the viral load omparison. For example,

the vaine may prevent infetions in individuals with strong immune systems, but allow

infetions in individuals with relatively weak immune systems. If a weaker immune system

orrelates with a higher viral load upon infetion, then the viral loads in infeted subjets

will tend to be seletively shifted upwards in vaine relative to plaebo reipients. On the

other hand, seletion bias ould our in the opposite diretion, for example the vaine

ould protet well against highly virulent strains but allow infetions with mild viruses

whih establish low viremia levels. Therefore, a standard two-sample test omparing viral

loads between infeted groups may give a misleading impression that vaination enhanes

or suppresses viral burden. Or, the test may fail to detet a meaningful vaine e�et.

3

http://biostats.bepress.com/uwbiostat/paper208



Frangakis and Rubin (2002) (FR) developed a framework for ausal inferene that an

be used for studying a ausal e�et of vaine on viral load that adjusts for the post-

randomization seletion bias. This framework de�nes ausal estimands using potential

outomes (Rubin, 1974, 1978; Holland, 1986). For the present problem, eah trial partii-

pant has a potential infetion status under eah randomization assignment. Additionally,

subjets who would be infeted under randomization to vaine have a potential viral load

under vaine assignment, and subjets who would be infeted under randomization to

plaebo have a potential viral load under plaebo assignment. Within FR's framework,

a ausal vaine e�et on viral load is de�ned as a omparison of potential viral loads

under the two randomization assignments for a subgroup of subjets with a ommon pair

of potential infetion status outomes; FR referred to suh a group as a prinipal stratum.

Hudgens, Hoering, and Self (2002b) (HHS) developed tests for a ausal vaine e�et

on viral load in the \always infeted" prinipal stratum of subjets who would be infeted

regardless of randomization to vaine or plaebo. Under plausible assumptions desribed

in Setion 2, vaine reipients who beome HIV infeted would also be infeted had they

reeived plaebo. Consequently, inferenes drawn for the always infeted subpopulation

address a pratial question for individuals vainated in a publi health program: If I

aquire HIV despite vaination, what is the viral load ompared to if I had foregone

vaination? We onsider inferene on ausal estimands de�ned for the always infeted

prinipal stratum, whih are de�ned in terms of potential outomes in Setion 2.

The ausal estimands are not identi�ed, beause membership of an infeted plaebo

reipient in the always infeted prinipal stratum is unknown (i.e., the infetion status

had the subjet been randomized to vaine is unknown). This problem an be addressed

by modeling the probability that an infeted plaebo reipient is in the always infeted

stratum as a funtion of the potential viral load under randomization to plaebo. HHS
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impliitly took this approah, by de�ning two seletion models that express bounds for

the maximum plausible levels of seletion bias. Under these models, whih identify the es-

timands, HHS developed testing proedures for assessing di�erenes in the potential viral

load distributions of always infeted subjets under the two randomization assignments.

Testing the null hypothesis presuming an extreme degree of seletion bias is pratially

very useful, beause rejetion implies a signi�ant e�et of vaination above and beyond

any plausible seletive e�ets. However, the atual degree of bias is likely less than that

spei�ed by an extreme model, so that HHS's tests may sari�e power. Ahieving maxi-

mal power is espeially important for key subgroup analyses, suh as by gender (Sterling

et al., 2001), route of exposure, or host genotype, and for analyses of seminal viral load,

given the higher variability of seminal versus plasma viral load (Coombs et al., 1998).

Therefore, it is important to also onsider seletion models that reet intermediate de-

grees of seletion bias, whih may be more realisti and will allow for more powerful

statistial tests. In this artile we develop a method for sensitivity analysis that on-

siders a ontinuous range of possible seletive e�ets spanning from no bias to maximal

plausible bias as onsidered by HHS. In di�erent ontexts, Rosenbaum and Rubin (1983),

Sharfstein, Rotnitzky, and Robins (1999), and Goetghebeur et al. (2000) also developed

methods of ontinuously-indexed sensitivity analysis of inferenes on ausal e�ets.

The artile is organized as follows. Setion 2 de�nes ausal estimands and shows that

they are identi�ed from three assumptions and a biased sampling model that spei�es

the nature and degree of seletion bias. A lass of logisti biased sampling models is de-

sribed, whih is indexed by an interpretable sensitivity parameter � that an be hosen

to represent any magnitude of seletion bias ranging between extreme positive and nega-

tive bias. Given a partiular model in the lass, Setion 3 desribes proedures for testing

the orresponding null hypothesis of no ausal e�et of vaination on viral load. A plot
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of the test statisti (or p-value) versus � provides a sensitivity analysis to help disern if

the data support a ausal e�et that is robust to plausible post-randomization seletive

e�ets. Setion 3 also shows how the sensitivity analysis an be based on estimation

rather than testing. Setion 4 evaluates the proposed testing proedures in simulations,

and Setion 5 illustrates a sensitivity analysis on a simulated vaine trial dataset.

2. Causal Estimands and Biased Sampling Models for Sensitivity Analysis

2.1 De�nition and identi�ability of ausal estimands

First we de�ne the potential outomes of the trial partiipants. Let Z be the vetor

of vaination assignments for the N randomized subjets, with ith element Zi (Zi = v;

vaine; Zi = p; plaebo). Let S(Z) be the N -vetor with ith element Si(Z), whih is

the indiator of whether the ith subjet would be infeted given Z. For subjets with

Si(Z) = 1; let Yi(Z;S) be the potential viral load (PVL) given Z and S = S(Z). In order

to limit the possible potential outomes for eah subjet, we adopt Rubin's (1978) Stable

Unit Treatment Value Assumption (SUTVA) throughout. It states that Si(Z) = Si(Z
0)

whenever Zi = Z 0

i, and, Yi(Z;S) = Yi(Z
0;S0) whenever Zi = Z 0

i and Si(Zi) = S 0

i(Zi) = 1:

SUTVA implies that potential outomes for eah subjet i are unrelated to the assignment

Zj of other subjets, and allows Si(Z) and Yi(Z;S) to be written as Si(Zi) and Yi(Zi);

respetively. Therefore, under SUTVA eah subjet has two potential infetion outomes

(Si(v), Si(p)) and at most two PVL outomes (Yi(v); Yi(p)). For eah subjet only one

of Si(v) or Si(p) is observed, denoted Sobs
i � Si(Zi); and in the subgroup with Sobs

i = 1;

Y obs
i � Yi(Zi) is observed. Note that Yi(v)(Yi(p)) is de�ned only if Si(v) = 1(Si(p) = 1):

By Property 2 of FR, a omparison between the ordered sets fYi(v) : Si(v) = Si(p) =

1g and fYi(p) : Si(v) = Si(p) = 1g is a ausal e�et, beause it is made within a prinipal

stratum. For subjets in the always infeted stratum fSi(v) = Si(p) = 1g, suppose the

Yi(v) are identially distributed as F alw:inf
(v) (�); and the Yi(p) are identially distributed as

6
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F alw:inf
(p) (�): Then, any funtional that measures a ontrast of the distributions

F alw:inf
(v) (y) � Pr(Yi(v) � yjSi(v) = Si(p) = 1)

F alw:inf
(p) (y) � Pr(Yi(p) � yjSi(v) = Si(p) = 1) (1)

is a ausal estimand. Based on (1), a null hypothesis for no ausal e�et of vaination

on viral load in the always infeted prinipal stratum an be expressed as:

H0 : F
alw:inf
(v) (y) = F alw:inf

(p) (y) for all y: (2)

Unfortunately, beause neither distribution in (1) is identi�able (sine Si(v) and Si(p)

are not both observed for any subjet), it is not possible to test (2) without introduing

assumptions. Two assumptions are useful for identifying the distributions:

A1: The assignment Zi of eah subjet is independent of his/her potential outomes.

A2: For eah subjet i, Pr(Si(v) = 1; Si(p) = 0) = 0:

Assumption A1 plausibly holds in HIV vaine eÆay trials due to randomization and

blinding. A2 states that no subjet would be infeted if randomized to vaine but unin-

feted if randomized to plaebo, and under A1 will hold if vaination does not inrease

the per-exposure infetion probability for any subjet. The SUTVA assumption may not

hold beause HIV disease is infetious (Halloran and Struhiner, 1995); however if the

study population is a small sample from a large population of suseptible individuals and

there are few infetious ontats between trial partiipants, then it should approximately

hold. SUTVA an be heked through epidemiologi studies and data on mixing of risk

behavior among trial partiipants. Given SUTVA, A1 an be tested based on risk behav-

ior data, and under SUTVA and A1, A2 an be heked by testing if the HIV infetion

rate is higher in the vaine group than in the plaebo group.

Assumption A2 is very useful, beause it implies that infeted vaine reipients

must be in the always infeted prinipal stratum. Together with A1, this implies that
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F alw:inf
(v) (y) = Fv(y) �Pr(Y obs

i � yjSobs
i = 1; Zi = v); where Fv(�) is the distribution of viral

load in infeted vaine reipients; thus F alw:inf
(v) (�) is identi�ed from the observed data.

A2 is similar to Angrist, Imbens, and Rubin's (1996) Monotoniity Assumption 5, whih

is useful for identifying a ausal estimand de�ned for a prinipal stratum of ompliers.

On the other hand, A1 and A2 do not identify F alw:inf
(p) (�); beause they do not determine

whether an infeted plaebo reipient is in the \proteted" fSi(v) = 0; Si(p) = 1g or

always infeted fSi(v) = 1; Si(p) = 1g stratum.

Given the randomization assignment and observed infetion status of a trial parti-

ipant, Table 1 indiates the prinipal stratum or strata to whih the partiipant must

belong, and lists the information available on potential viral loads. The table makes lear

that the always infeted stratum is the natural subpopulation for ausal inferene on viral

load, beause it is the only stratum for whih ausal estimands involve only well-de�ned

potential viral loads. Rubin (2000) made this point through a parallel example in whih

there are two randomized treatments and vital status is observed one year after random-

ization, and the goal of ausal inferene is to assess the treatment e�et on quality of life

within the prinipal stratum of subjets alive under either treatment assignment.

2.2 Logisti seletion bias models that identify the ausal estimands

The set of subjets infeted under randomization to plaebo, fSi(p) = 1g, partitions

into the prinipal strata of proteted and always infeted subjets, with the level of vaine

eÆay (V E) against infetion determining the proportion in eah. Spei�ally, de�ne

V E = 1�RR = 1�Pr(Si(v) = 1)=Pr(Si(p) = 1); V E is a ausal estimand measuring the

relative redution in infetion risk onferred by randomizing to vaine versus plaebo.

A2 implies V E = Pr(Si(v) = 0jSi(p) = 1); whih is the probability that a subjet in

fSi(p) = 1g is in the proteted prinipal stratum (note that A2 is ruial here; Pr(Si(v) =

0jSi(p) = 1) is not identi�ed by randomization alone). The density of Y (p) in subjets

8
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infeted under randomization to plaebo (f(p)(y)) an be written as a mixture of the

densities of Y (p) for the proteted (f prot
(p) (y)) and always infeted (falw:inf

(p) (y)) strata:

f(p)(y) = V E � f prot
(p) (y) + (1� V E) � falw:inf

(p) (y): (3)

With some alulations, the mixture (3) an be re-expressed as a biased sampling model

falw:inf
(p) (y) =W�1w(y)f(p)(y); (4)

where w(y) = Pr(Si(v) = 1jYi(p) = y; Si(p) = 1) and W =
R
1

�1
w(y)f(p)(y)dy is a

normalizing onstant equal to 1 � V E = RR: The weight funtion w(y) = RR(y) =

1 � V E(y) is the probability that a subjet infeted with viral load y if randomized to

plaebo would be infeted if randomized to vaine.

Let Fp(y) and fp(y) be the distribution and density of the observed viral load in in-

feted plaebo reipients, respetively. Under the randomization assumption A1, F(p)(y) =

Fp(y), and the biased sampling model (4) an be re-stated as falw:inf
(p) (y) = (1�V E)�1w(y)

fp(y): Therefore, under A1-A2 the null hypothesis of interest (2) is equivalent to

H0 : Fv(y) = (1� V E)�1
Z y

�1

w(z)dFp(z) for all y: (5)

By A1, V E is identi�ed from the observed data. If w(�) were known, then both

F alw:inf
(v) (�) and F alw:inf

(p) (�) would be identi�ed, and the hypothesis (2) ould be tested.

However, w(�) is unknown, and it is not possible to test whether a partiular w(�) is

orretly spei�ed from the data plus A1-A2. Our approah to this problem assumes w(�)

is known, and tests (5) for a variety of �xed hoies of w(�). For suh an approah to be

fruitful, it is important that the unidenti�ed sensitivity funtion w(�) be interpretable.

Towards this goal, we parameterize w(y) as logisti, indexed by an interpretable sele-

tion bias parameter �, whih allows it to be onstant or smoothly monotone inreasing or

dereasing: w(y) = w(yj�; �) = expf�+�yg=(1+expf�+�yg): The sensitivity parameter

9
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� is a log odds ratio: e� is the odds ratio of infetion under randomization to vaine given

infetion under randomization to plaebo with viral load y versus with viral load y � 1.

This interpretation allows the hoie of � to be guided by beliefs about plausible degrees

of seletion bias. For �xed � 2 [�1;1℄, the logisti seletion bias model is spei�ed by

F alw:inf
(p) (y) = (1� V E)�1

Z y

�1

expf� + �zg

1 + expf�+ �zg
dFp(z) � Fp(yj�): (6)

Given �xed �, the parameter � is determined as the solution to the equation Fp(1j�) = 1:

Figure 1 illustrates �ve seletion models spei�ed by (6) and � �xed at�1;�1; 0; 1;1;

whih represent di�erent ways to distribute V E of the mass of f(p)(y) into the proteted

prinipal stratum via (3). Note that if V E = 0 there is no seletion bias, regardless of

�; and the higher V E; the greater opportunity for bias. Heuristially, � spei�es how

muh bias ours through V E: Fixing � = 0 spei�es a onstant weight w(yj�; � = 0) =

RR; and reets an assumption of no seletion bias. Fixing � > 0 makes w(yj�; �)

monotone inreasing in y and reets \positive" seletion bias, with infetion odds under

randomization to vaine higher for a larger PVL Y (p) = y. In this ase, if the ausal null

hypothesis (2) is true, then the net vaine e�et is that Fv(�) is stohastially larger than

Fp(�): Similarly, � < 0 makes w(yj�; �) monotone dereasing in y and reets \negative"

seletion bias, with infetion odds under randomization to vaine lower for a larger y,

and under (2) the net vaine e�et is that Fv(�) is stohastially smaller than Fp(�):

HHS developed tests for (5), using two models representing maximum plausible posi-

tive and negative bias. HHS's \positive" seletion model is spei�ed by plaing all subjets

in fSi(p) = 1g with Y (p) less than the V Eth-perentile qV E
(p) of its distribution into the

proteted prinipal stratum, and the \negative" seletion model is spei�ed by plaing

all subjets in fSi(p) = 1g with Y (p) greater than the upper V Eth-perentile q1�V E
(p) of

its distribution into the proteted prinipal stratum. These models are limiting members

of the lass of logisti models (6), spei�ed respetively by � = 1 (Figure 1, right-most
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panel) and � = �1 (Figure 1, left-most panel). To see this, note that setting � = ��qV E
(p)

implies lim�!1w(yj�; �) equals Ify > qV E
(p) g for y 6= qV E

(p) and 1=2 for y = qV E
(p) ; and setting

� = ��q1�V E
(p) implies lim�!�1w(yj�; �) = Ify < q1�V E

(p) g for y 6= q1�V E
(p) and 1=2 for

y = q1�V E
(p) . Therefore, based on the logisti weight funtion with � ranging between �1

to 1; the lass of models (6) spans all plausible magnitudes of seletion bias.

If seletion bias is presumed to follow model (6) for some unknown � within a plausible

range �neg to �pos, then a 2-sided null hypothesis representing no ausal vaine e�et in

the always infeted stratum allowing for possible seletion bias is given by

H0�pos;�neg : Fp(�j�pos) � Fv(�) � Fp(�j�neg); �pos 2 [0;1℄; �neg 2 [�1; 0℄: (7)

Under A1-A2, H0�pos;�neg is equivalent to F
alw:inf
(p) (�) � F alw:inf

(v) (�) assuming model (6) with

� = �pos and F alw:inf
(v) (�) � F alw:inf

(p) (�) assuming model (6) with � = �neg. For the speial

ase �pos = �neg = 0, (7) ollapses to the null hypothesis of no net vaine e�et on

viral load, H0 : Fv(�) = Fp(�): Therefore, under the assumption of no seletion bias, a

standard omparison of viral load distributions between infeted subgroups assesses the

ausal e�et of vaine in the always infeted prinipal stratum.

One-sided null hypotheses representing no ausal vaine e�et are given by

H0�pos : Fp(�j�pos) � Fv(�); �pos 2 [0;1℄; (8)

H0�neg : Fv(�) � Fp(�j�neg); �neg 2 [�1; 0℄: (9)

If (8) is rejeted, then always infeted individuals have signi�antly higher viral loads

under randomization to vaine than plaebo when ontrolling for seletion bias. In

sum, A1-A2 and model (6) an be used to speify a 1- or 2-sided null hypothesis for no

ausal e�et of vaine in the always infeted stratum that an be tested, and a sensitivity

analysis an be performed by testing the hypothesis for a range of �xed values of �pos; �neg:

3. Statistial Hypothesis Tests and Estimation
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Let Yv1; � � � ; Yvnv and Yp1; � � � ; Ypnp denote the samples of observed viral loads from in-

feted vaine and plaebo reipients. Y ould be the average of 2 or more viral load

measurements taken from an infeted subjet, or another ontinuous outome suh as the

area under the longitudinal viral load urve. We assume eah sample is independently,

identially distributed, and the two samples are independent of one another. Setions 3.1

and 3.2 onsider nonparametri tests of the null hypotheses (7), (8), and (9), and Setion

3.3 onsiders nonparametri estimation of an average ausal e�et parameter.

3.1 Nonparametri Test Statistis

Fix �pos � 0 and �neg � 0. Using the empirial distributions bFv and bFp alulated from

the two observed samples, and an estimate of V E; nonparametri tests of H0�pos; H0�neg ;

and H0�pos;�neg an be based on omparisons of bFv(�) with bFp(�j�pos); bFp(�j�neg); and both

estimates, respetively. The V E parameter an be estimated by dV E = 1� nv
Nv
= np
Np

, with

Nv(Np) the number of subjets randomized to vaine (plaebo). Under A1 dV E is unbi-

ased for V E if the vaine protets by an \all-or-none" mehanism, and is approximately

unbiased if it protets by another mehanism, sine HIV infetion is a rare event (Hal-

loran, Haber, and Longini, 1992). We onsider three riterion funtions for summarizing

the omparisons, based on means, suprema, and integrated squared di�erenes.

The statisti TM� for omparing means, appropriate for testing (8) or (9), is given by

TM� =
Z
1

�1

y
n
d bFv(y)� d bFp(yj�)

o
; (10)

where
R
1

�1
yd bFv(y) = n�1v

Pnv
i=1 Yvi and

bFp(yj�) is the nonparametri maximum likelihood

estimator of Fp(yj�) under model (6), alulated as

bFp(yj�) =
�
1� dV E��1 1

np

npX
i=1

I fYpi � ygw(Ypijb�; �):
Here, b� is omputed by solving the equation bFp(1j�) = 1 for �; i.e., � solves

1� dV E =
Z
1

�1

expf� + �yg

1 + expf�+ �yg
d bFp(y): (11)
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A solution to (11) an be found rapidly using a numerial one-dimensional line searh.

The null hypothesis H0�pos is rejeted if TM�pos is large. For large positive �pos and

b� = ��posbqV Ep ; with bqV Ep the (np(1 � dV E))th largest value of Yp1; � � � ; Ypnp as used by

HHS, TM�pos redues to HHS's nonparametri statisti TM that tests (8) with �pos = 1:

Similarly, H0�neg is rejeted if TM�neg is negative and large, and for large negative �neg and

b� = ��neg bq1�V Ep ; TM�neg redues to HHS's statisti TM that tests (9) with �neg = �1:

The maximum of jTM�posj and jTM�neg j an be used for a 2-sided test of (7).

Seond, a 1-sided Kolmogorov-Smirnov-type statisti for testing (8) is de�ned by

TKS�pos = m1=2sup
�1<y<1

���n bFp(yj�pos)� bFv(y)o _ 0
��� ; (12)

with n = nv + np; m = (nvnp)=n; and an Anderson-Darling-type statisti is de�ned by

TAD�pos = m
Z
1

�1

hn bFp(yj�pos)� bFv(y)o _ 0
i2

Hn(yj�pos)
�
1� Hn(yj�pos)

�dHn(yj�pos); (13)

where Hn(yj�pos) = (np=n) bFp(yj�pos) + (nv=n) bFv(y): One-sided statistis for testing (9)

are given by (12) and (13) with �pos replaed by �neg and _ replaed by ^: Two-sided

statistis for testing (7) an be de�ned similarly. When � = �pos = �neg = 0; the 2-sided

statistis redue to the lassial Kolmogorov-Smirnov and Anderson-Darling test statistis

for omparing two distribution funtions (D'Agostino and Stephens, 1986).

3.2 Computing Critial Values for the Tests

We use a modi�ation of the `Controls Only' bootstrap proedure developed by HHS

for omputing ritial values for the test statistis. The modi�ation is that one the

bootstrap estimate of vaine eÆay dV E?
is omputed as in HHS, a bootstrap estimate

b�? is omputed as the solution to equation (11) with dV E replaed by dV E?
: Estimating

V E and � within eah bootstrap iteration appropriately aounts for the unertainty in

the vaine eÆay estimate.

13
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In general, the nonparametri bootstrap tends to approximate smooth distributions

better than distributions with disontinuities. For � �nite, the use of a smooth logisti

seletion weight funtion in the test statistis suggests that the nonparametri bootstrap

should perform well. For j�j in�nite (the extreme ases), the distributions Fp(�j�pos) and

Fp(�j�neg) have disontinuities at the trunation point, whih ould abrogate bootstrap

performane. The simulation study on�rms that tests of H0�pos with �pos = 1 have

poorer size and power harateristis than tests of H0�pos with �pos = 1:

3.3 Nonparametri Estimation

Under A1-A2 and a model (6) with � �xed, b�ACE(�) � �TM� is a onsistent es-

timate of the average ausal e�et (ACE) parameter �ACE(�) =
R
1

�1
yfdF alw:inf

(p) (y) �

dF alw:inf
(v) (y)g: By bootstrap re-sampling from bFv(y) and bFp(yj�), 95% bootstrap perentile

on�dene intervals about �ACE(�) an be onstruted. An estimation-based sensitivity

analysis an be arried out by plotting point and interval estimates of �ACE(�) versus �.

4. Simulation Study

Through simulations of an HIV vaine trial we evaluate the three 1-sided tests of the

null hypothesis H0�pos in (8). Rejeting (8) implies that individuals infeted under ei-

ther assignment have signi�antly higher viral load if assigned vaine than if assigned

plaebo when ontrolling for seletion bias spei�ed by �pos and model (6). We onsider

an intermediate-sized eÆay trial with 45 infetions expeted in the plaebo group (Rida

et al., 1997), and suppose the true V E equals 30% or 50%. The true amount of seletion

bias is determined by the parameter � = �pos in model (6), with � = 0; 1, or 1: Thus,

data are generated under three kinds of null models, whih assume no seletion bias, an

intermediate amount of seletion bias (supposing the infetion odds under vaine of a

subjet who would be infeted under plaebo inreases e1 = 2:72-fold per one unit higher

PVL Y (p)), and maximal plausible positive seletion bias. We assume two independent

14
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measures of viral load are available per person. The sample Yp1; � � � ; Ypnp is generated from

a normal distribution with mean 4.50 and variane 0.36. These parameter values equal

those used by HHS, seleted based on a ohort of reently HIV infeted persons. The

sample Yv1; � � � ; Yvnv is generated from Fp(�j�) in model (6) with true � = 0; 1; or 1: For

eah true �; three vaine e�ets on viral load in the always infeted are evaluated: mean

shifts of � = 0; 1=3; or 1=2 log10 over and above any seletion bias indued by the true �;

i.e., the samples are drawn suh that F alw:inf
(p) (y) = Fp(yj�) and F

alw:inf
(v) (y) = Fp(y��j�).

For eah of 500 datasets simulated under eah parameter on�guration, the three 1-

sided test statistis are alulated, with presumed seletion bias levels � = 0, 1, or 1.

Critial values for the tests are determined using 500 bootstrap repliations.

Using a nominal 5% Type I error level, Table 2 shows estimated sizes and powers of the

tests. The sizes are judged by the bolded rows, for whih the orret amount of seletion

bias is presumed (true � = presumed �). All tests have empirial size lose to nominal,

exept when V E = 30% and � = 1 the size is inated to 8-12%. The elevated size is

aused by the simulated trials with estimated V E less than zero; this ourred 18 times

and of these the nonparametri mean-based test rejeted the null hypothesis 16 times. If

the 18 trials with dV E < 0 are disarded, then the rejetion rate is 5.8%. A similar pattern

was seen for the other test statistis. When dV E < 0; the testing proedure operates under

the assumption of no seletion bias, and simply tests H0 : Fv(�) = Fp(�). However, in fat

Fv(�) < Fp(�) due to positive seletion bias (true � = 1), whih explains the inated

probability of rejetion. Note that when V E = 50% the sizes are not elevated, beause

the estimated V E is rarely negative. In summary, the tests generally have nominal size,

exept that when V E is low and the sample size is moderate, underestimation of V E an

lead to an inreased risk of false rejetion. This phenomenon was also found by HHS.

When the orret seletion bias model is assumed, the three tests have omparable
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power, with that of the Kolmogorov-Smirnov proedure slightly less. In addition, power

diminishes as the true � inreases. Next we onsider power when an inorret amount of

seletion bias is presumed (Table 2, unbolded rows). If zero bias is presumed (� = 0), but

in truth there is moderate bias (� = 1), power is high, but at the expense of an inated

false rejetion rate, at 15% when V E = 30% and 26% when V E = 50%. If zero bias

is presumed and there is atually extreme bias (� = 1), then power is extremely high

and the sizes are extremely inated. This illustrates the importane of aounting for

the possibility of seletion bias to avoid being misled. Next, suppose there is no seletion

bias, but one onservatively presumes � = 1: Then power drops severely, e.g., to 10%

for deteting a 1/2 log10 mean shift when V E = 50%; ompared to 93% if the orret

� = 0 is assumed. For the more moderate assumption � = 1; a muh smaller prie is

paid, with power dropping to 64%. Thus, making a highly onservative assumption of

maximal seletion bias an ause great power loss. This �nding supports the use of a

ontinuously-indexed sensitivity analysis as proposed here.

The Kolmogorov-Smirnov-type and Anderson-Darling-type tests are expeted to have

greater power than the mean-based test for deteting non-mean-shift alternatives. We

briey studied this onjeture by generating plaebo group viral loads from a normal

mixture distribution 0:5N(3:50; 0:36) + 0:5N(5:50; 0:36) (e.g., infetion with a mild or

virulent virus), and vaine group viral loads from a mixture of trunated normal dis-

tributions 0:5TrunN(3:50; 0:36) + 0:5TrunN(5:50; 0:81), with trunation point of eah

distribution at the 70th perentile. With alternative hypothesis no hange in the �rst

omponent and a 1.5 log10 mean shift in the seond omponent, assuming � = 1; the

Kolmogorov-Smirnov-type test had 78% power while the other tests had between 13%

and 20% power. Thus, if the viral load distributions are expeted to di�er in respets

other than a mean-shift, then the Kolmogorov-Smirnov-type test may be preferable.
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5. Example

To illustrate how a sensitivity analysis ould be arried out on a forthoming vaine trial

dataset, we analyze a single dataset, simulated using Gaussian distributions assuming

np = 45 infetions in the plaebo group, dV E = 40% (and thus nv = 27 infetions in the

vaine group), a true ausal vaine e�et to redue the mean viral load in the always

infeted by 0:33 log10, and true � = �neg = �1, i.e., moderate negative seletion bias

that leads to lower viral loads in infeted vaine reipients. The true ausal and biasing

vaine e�ets on viral load imply that the net vaine e�et on mean viral load is 0.49

log10. For �neg ranging in [�1; 0℄, we onsider testing H0�neg in (9) versus the alternative

hypothesis that vaination lowers viral load in the always infeted.

The �rst step is to produe desriptive plots and summary measures omparing the

observed viral load distributions between the infeted subgroups. The average viral loads

are 3.96 and 4.48 in the infeted vaine and plaebo groups, respetively. The seond step

is to alulate a test statisti for values of � = �neg ranging between 0 and a negative value

that makes the seletion bias odds ratio OR = e�� large (e.g., � = �5 yields e�� = 148),

and for the extreme model (� = �1): The third step is to plot the p-value of the test

statisti versus OR, whih will always be monotone exept for stohasti variations in the

bootstrap. This provides a graphial sensitivity analysis (Figure 2). Fourth, alulation

of the value of � at whih the test statisti is exatly statistially signi�ant at the 0.025

level allows one to assess the extent of seletion bias needed to lose the signi�ane of the

result. A 0.025 signi�ane level is hosen beause the test is 1-sided. In this example

the ritial � value for the TM� test statisti is -1.83, whih implies the seletion odds

ratio must be at least e1:83 = 6:23 before the signi�ane of the test result is lost. The

sensitivity analyses based on the other two test statistis give similar results (Figure 2).

Fifth, an estimation-based sensitivity analysis an be arried out (Figure 3). Suppose

17

http://biostats.bepress.com/uwbiostat/paper208



vaination must lower mean viral load in the always infeted by at least 0.2 log10 to be

onsidered linially signi�ant. The value of � at whih the lower 95% on�dene limit

for �ACE(�) rosses 0.2 is -0.50, orresponding to a \ritial" odds ratio of e0:50 = 1:65.

Sixth, the analyses ould be repeated for important subgroups of infeted partiipants.

Seventh, interpretations are made. In this example, a study team might onlude that it

is unlikely that seletion bias ould fully explain the observed lower viral loads in infeted

vaine reipients, and therefore a genuine viral suppressing e�et of vaine in the always

infeted is inferred. However, whether the e�et is linially signi�ant is inonlusive.

These onlusions would be based on beliefs that a seletion bias e�et with odds ratio

6:23 or higher is implausible, but a seletion odds ratio of 1.65 is not unexpeted.

Note that if only the hypothesis H0�neg with extreme seletion bias �neg = �1 had

been tested, then the team would likely not be able to onlude that vaination redued

viral load in the always infeted (p-value > 0:20, Figure 2). This illustrates the added

value of a ontinuously-indexed sensitivity analysis.

6. Disussion

Appropriate interpretation of analyses of vaine e�ets on viral load is hallenging. Two

main reasons are the lak of validation of viral load measures as aurate surrogates for

seondary transmission and disease progression, and the potential for seletive e�ets of

the vaine to bias inferenes. Like HHS, we address the seond problem, and extend

their work to provide a method of sensitivity analysis over a ontinuous range of levels

of putative seletive e�ets. Sine the true amount of seletion bias may be onsiderably

less than the worst-ase amounts onsidered by HHS, the methods developed here may

provide for more powerful assessments.

As illustrated in the Example, an observation of lower viral loads in infeted vaine

reipients ompared to infeted plaebo reipients ould be aused partly by a ausal
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viral suppressing e�et of vaine in the always infeted prinipal stratum and partly by

seletive vaine protetion against viruses that produe higher viral loads. Both e�ets

are bene�ial, and the assessment of the net vaine e�et (in the infeted subgroups)

usefully informs about the overall bene�t of vaination, and this result should be reported

together with the ausal inferene for the always infeted prinipal stratum. On the other

hand, for assessing a possible vaine e�et to inrease viral load, the inferene on the

net vaine e�et ould dangerously mislead. Seletion bias ould reate higher viral

loads in infeted vaine reipients ompared to infeted plaebo reipients, i.e., produe

a negative net vaine e�et, even though the vaine has no adverse ausal e�et on viral

load and has bene�ial V E > 0: Therefore, it is ruial to build robustness to seletion

bias into assessments of vaine harm, to protet against a spurious onlusion that ould

prevent use of or slow development of a safe and partially eÆaious vaine.

Within the framework of FR, this artile develops tehniques for ausal inferene in

the always infeted prinipal stratum. Alternatively, ausal inferene ould be made using

a missing data framework that assumes all randomized subjets will eventually beome

HIV infeted, and thus at some point will have a viral load value. In suh an approah, the

viral load is missing in subjets who have not yet been infeted by the time of the analysis,

and ausal estimands an be de�ned based on funtionals of ontrasts of the viral load

distributions for the vaine and plaebo groups. The goal of assessing suh estimands is

to ompare the viral load distribution between the randomized groups had (ontrary to

fat) all subjets been infeted during the trial. Rotnitzky and Robins (1997) developed an

inverse probability of ensoring weighted estimating equations method that ould be used

for ausal inferene on a mean-di�erene version of this estimand. This tehnique would

model the viral load by a semiparametri onditional mean model with unspei�ed error

distribution and the infetion probability (i.e., the response probability) by a parametri

19

http://biostats.bepress.com/uwbiostat/paper208



model. If the hazard rate of infetion rather than the binary infetion probability was

modeled, then Sharfstein, Rotnitzky, and Robins' (1999) method would apply for making

inferene on the same estimand. The advantages of these approahes inlude that they

minimize modeling assumptions, they an inorporate preditors of the infetion risk, and

they an be used for sensitivity analysis of the e�et of misspei�ation of the model for

infetion risk. The drawbak of any suh missing data approah for the present appliation

is that the ausal estimand may not be relevant or interpretable, beause it is unrealisti

to suppose that all subjets would eventually be HIV infeted. FR ritiize use of suh a

ausal estimand beause it uses nonexistent \a priori" ounterfatuals. Inferenes for the

always infeted subpopulation provide interpretable and pratial information for vaine

reipients who beome HIV infeted despite vaination.

In addition to HIV vaine trials, the methods developed here apply to general random-

ized linial trials, for sensitivity analyses of ausal treatment e�ets in the subpopulation

of subjets who would experiene a post-randomization event under either assignment.

Aknowledgements

The authors thank Andrea Rotnitzky, Steve Self, the Assoiate Editor and referees for

helpful omments. This work was supported by NIH grants AI46703-01 and AI38855.

Referenes

Angrist, J., Imbens, G.W., and Rubin, D.B. (1996). Identi�ation of ausal e�ets using

instrumental variables (with disussion). Journal of the Amerian Statistial Assoi-

ation 91, 444-472.

Barouh, D.H., Kunstman, J., Kuroda, M.J., et al. (2002). Eventual AIDS vaine

failure in a rhesus monkey by viral esape from ytotoxi T lymphoytes. Nature

415, 335-339.

20

Hosted by The Berkeley Electronic Press



Burke, D.S. (1992). Human HIV vaine trials: Does antibody-dependent enhanement

pose a genuine risk? Perspetives in Biology and Mediine 35, 511-530.

Coombs, R.W., Spek, C.E., Hughes, J.P., et al. (1998). Assoiation between ulturable

human immunode�ieny virus type 1 (HIV-1) in semen and HIV-1 RNA levels in

semen and blood: evidene for ompartmentalization of HIV-1 between semen and

blood. Journal of Infetious Diseases 177, 320-330.

D'Agostino, R.B. and Stephens, M.A. (1986). Goodness-of-�t tehniques. Marel Dekker,

New York.

Franis, D.P., Gregory, T., MElrath, M.J., et al. (1998). Advaning AIDSVAX to

phase 3: safety, immunogeniity, and plans for phase 3. AIDS Researh and Human

Retroviruses 14 Suppl 3, S325-S331.

Frangakis, C.E. and Rubin D.B. (2002). Prinipal strati�ation in ausal inferene. Bio-

metris 58, 21-29.

Goetghebeur, E., Kenward, M., Molenberghs, G., and Vansteelandt, S. (2000). Inferential

tools for sensitivity analysis and nonompliane in linial trials. Proeedings of the

Annual Meeting. Indianapolis, Indiana: Amerian Statistial Assoiation.

Halloran, M.E., Haber M.J., and Longini I.M. (1992). Interpretation and estimation of

vaine eÆay under heterogeneity. Amerian Journal of Epidemiology 136, 328-343.

Halloran, M.E. and Struhiner, C.J. (1995). Causal inferene in infetious diseases. Epi-

demiology 6, 142-151.

Holland, P. (1986). Statistis and ausal inferene. Journal of the Amerian Statistial

Assoiation 81, 945-961.

Hudgens, M.G., Hoering, A., and Self, S.G. (2002a). On the analysis of viral load end-

21

http://biostats.bepress.com/uwbiostat/paper208



points in HIV vaine trials. In: Abstrats of the Fourteenth International AIDS

Conferene 2002, Barelona, Spain, July 2002.

Hudgens, M.G., Hoering, A., and Self, S.G. (2002b). On the analysis of viral load end-

points in HIV vaine trials. Statistis in Mediine: in press

Masola, J.R., Mathieson, B.J., Zak, P.M., Walker, M.C., Halstead, S.B., and Burke,

D.S. (1993). Summary report: workshop on the potential risks of antibody-dependent

enhanement in human HIV vaine trials. AIDS Researh and Human Retroviruses

9, 1175-1184.

Mellors, J.W., Munoz, A., Giorgi, J.V., et al. (1997). Plasma viral load and CD4+

lymphoytes as prognosti markers of HIV-1 infetion. Annals of Internal Mediine

126, 946-954.

Nabel, G.J. (2001). Challenges and opportunities for development of an AIDS vaine.

Nature 410, 1002-1007.

Quinn, T.C., Wawer, M.J., Sewankambo, N., et al. (2000). Viral load and heterosex-

ual transmission of human immunode�ieny virus type 1. New England Journal of

Mediine 342, 921-929.

Rida, W., Fast, P., Ho�, R., and Fleming, T.R. (1997). Intermediate-sized trials for the

evaluation of HIV vaine andidates: a workshop summary. Journal of Aquired

Immune De�ieny Syndrome 16, 195-203.

Rida, W.N. and Lawrene, D.L. (1995). Prophylati HIV vaine trials. In: Finkelstein

DM, Shoenfeld DA, eds. AIDS linial trials: Guidelines for design and analysis.

Wiley-Liss, New York, 319-348.

Robins, J.M. and Greenland, S. (1992). Identi�ability and exhangeability of diret and

22

Hosted by The Berkeley Electronic Press



indiret e�ets. Epidemiology 3, 143-155.

Rosenbaum, P.R. (1984). The onsequenes of adjustment for a onomitant variable

that has been a�eted by the treatment. The Journal of the Royal Statistial Soiety,

Series A 147, 656-666.

Rosenbaum, P.R. and Rubin, D.B. (1983). Assessing sensitivity to an unobserved binary

ovariate in an observational study with binary outome. The Journal of the Royal

Statistial Soiety, Series B 45, 212-218.

Rotnitzky, A. and Robins, J. (1997). Analysis of semi-parametri regression models with

non-ignorable non-response. Biometris 16, 81-102.

Rubin, D.B. (1974). Estimating ausal e�ets of treatments in randomized and nonran-

domized studies. Journal of Eduational Psyhology 66, 688-701.

Rubin, D.B. (1978). Bayesian inferene for ausal e�ets. Annals of Statistis 6, 34-58.

Rubin, D.B. (2000). Comment on \Causal inferene without ounterfatuals," by A.P.

Dawid. Journal of the Amerian Statistial Assoiation 95, 435-437.

Sharfstein, D.O., Rotnitzky, A., and Robins, J.M. (1999). Adjusting for nonignorable

drop-out using semiparametri nonresponse models. Journal of the Amerian Statis-

tial Assoiation 94, 1096-1146.

Shiver, J.W., Fu, T.-M., Chen, L., et al. (2002). Repliation-inompetent adenoviral

vaine vetor eliits e�etive anti-immunode�ieny virus immunity. Nature 415,

331-335.

Sterling, T.R., Vlahov, D., Astemborski, J., Hoover, D.R., Margolik, J.B., and Quinn,

T.C. (2001). Initial plasma HIV-1 RNA levels and progression to AIDS in women and

men. New England Journal of Mediine 344, 720-725.

23

http://biostats.bepress.com/uwbiostat/paper208



Table 1. For the two randomization assignments Zi = v; p and infetion outomes

Sobs
i � Si(Zi) = 0; 1, the table indiates the basi prinipal stratum or strata to whih

the subjets belong, and the information available on the potential viral loads Yi(v) and

Yi(p). Note that Yi(Z) is de�ned if and only if Si(Z) = 1; Z = v; p; and the prinipal

strata of uninfeted plaebo reipients and of infeted vaine reipients are known by

assumption A2.

Randomiz. Observed
Assignm. Infetion Prinipal Stratum fSi(v); Si(p)g and

Zi Status Sobs
i Information on Potential Viral Loads Yi(v); Yi(p)

vaine uninfeted Proteted or Never-infeted

fSi(v) = 0; Si(p) = 1g fSi(v) = 0; Si(p) = 0g
Yi(v) unde�ned Yi(v) unde�ned
Yi(p) unobserved Yi(p) unde�ned

plaebo uninfeted Never-infeted

fSi(v) = 1; Si(p) = 0g fSi(v) = 0; Si(p) = 0g
(empty set by A2) Yi(v) unde�ned

Yi(p) unde�ned

vaine infeted Always-infeted

fSi(v) = 1; Si(p) = 0g fSi(v) = 1; Si(p) = 1g
(empty set by A2) Yi(v) observed

Yi(p) unobserved

plaebo infeted Proteted or Always-infeted

fSi(v) = 0; Si(p) = 1g fSi(v) = 1; Si(p) = 1g
Yi(v) unde�ned Yi(v) unobserved
Yi(p) observed Yi(p) observed
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Table 2. Power � 100% for deteting a 0, 1/3, and 1/2 log10 mean-shift alternative, over

and above any seletion bias indued by the true �; based on a 1-sided 5% level test

Nonparametri Kolmogorov- Anderson-
True Presumed Mean Smirnov Darling
� � 0 1/3 1/2 0 1/3 1/2 0 1/3 1/2

V E = 30%
0 0 4.8 73.8 96.8 5.4 69.0 91.2 4.0 72.0 94.4

0 1 3.2 49.8 82.0 3.0 44.8 78.2 2.4 46.8 79.6
0 1 0.2 15.8 36.0 0.8 16.8 37.6 0.2 15.4 33.6
1 0 14.6 91.8 99.8 15.6 85.4 97.8 14.4 90.2 99.2
1 1 5.8 67.6 94.6 7.2 63.4 90.8 5.4 65.4 94.0

1 1 1.8 26.0 52.2 1.4 27.6 51.8 1.6 25.8 48.8
1 0 69.6 100 100 76.2 100 100 79.8 100 100
1 1 37.4 95.8 100 42.6 97.0 100 45.8 97.4 100
1 1 8.8 55.0 83.2 12.0 55.2 82.4 10.8 57.2 86.2

V E = 50%
0 0 6.6 70.0 93.2 5.8 63.8 89.8 5.8 66.4 92.6

0 1 1.0 30.6 64.2 0.4 25.8 58.0 0.2 26.6 61.2
0 1 0.2 3.4 10.2 0.4 3.6 9.0 0.2 2.8 7.4
1 0 25.8 92.2 99.0 24.8 87.4 99.0 24.0 91.0 99.2
1 1 5.0 62.4 88.2 5.8 57.2 84.2 4.2 60.6 87.8

1 1 0.4 9.8 30.6 0.2 8.6 25.0 0.2 8.2 24.6
1 0 94.8 100 100 97.2 100 100 97.6 100 100
1 1 56.8 99.2 100 72.6 99.8 100 69.0 99.6 100
1 1 5.2 59.2 84.2 6.0 55.6 79.4 6.4 57.8 82.0
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Figure Legends

Figure 1. The upper panel shows plots of the density of Yi(p) for subjets infeted under

randomization to plaebo fSi(p) = 1g (total area) partitioned into the subdensity for

\proteted" subjets not infeted under randomization to vaine fSi(v) = 0; Si(p) = 1g

(hathmarked area = V E) and the subdensity for subjets \always infeted" under ran-

domization to either vaine or plaebo fSi(v) = 1; Si(p) = 1g (unshaded area = 1�V E).

Using model (6) with � = �1;�1; 0; 1; or 1; the 5 panels reet di�erent assumptions

about how the vaine relative risk w(yj�; �) = RR(y) = Pr(Si(v) = 1jYi(p) = y; Si(p) =

1) depends on the potential viral load (PVL) Yi(p) = y for subjets infeted under ran-

domization to plaebo. The lower panel shows orresponding plots of the logisti weight

funtion w(yj�; �). The hathmarked areas equal V E = 0:30; and � was alulated from

1� V E =
R
1

�1
w(zj�; �)dF(p)(z) with F(p)(�) given a normal distribution.

Figure 2. Based on the nonparametri mean-based, Anderson-Darling-type, and Kolmogorov-

Smirnov-type test statistis, the �gure shows the 1-sided bootstrap p-value plotted as a

funtion of the seletion bias odds ratio OR = e�� = e��neg ; e� is the odds ratio of infe-

tion under randomization to vaine given infetion under randomization to plaebo with

viral load y versus with viral load y � 1. If the magnitude of seletion bias is believed

to be less than OR = e1:83 = 6:23; then a signi�ant ausal e�et of vaination to lower

viral load in the always infeted prinipal stratum an be inferred.

Figure 3. Point estimates b�ACE(�) = �TM� (bold line) and bootstrap 95% on�dene in-

tervals (dotted lines) for the average ausal e�et of vaine �ACE(�) =
R
1

�1
yfdF alw:inf

(p) (y)�

dF alw:inf
(v) (y)g in the always infeted prinipal stratum as a funtion of the seletion bias

odds ratio OR = e��pos (left side of 0) and of OR = e��neg (right side of 0); e� is the odds
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ratio of infetion under randomization to vaine given infetion under randomization to

plaebo with viral load y versus with viral load y�1. If the magnitude of seletion bias is

believed to be less than OR = e0:50 = 1:65; then a signi�ant ausal e�et of vaination

to lower the mean viral load by at least 0.2 log10 in the always infeted prinipal stratum

an be inferred.
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