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Abstract

The paper is focused on the decomposition of mixed partitioned multivariate models
into two seemingly unrelated submodels in order to obtain more efficient estimators. The
multiresponses are independently normally distributed with the same covariance matrix.
The partitioned multivariate model is considered either with, or without an intercept. The
elimination transformation of the intercept that preserves the BLUEs of parameter matri-
ces and the MINQUE of the variance components in multivariate models with and without
an intercept is stated. Procedures on testing the decomposition of the partitioned model
are presented. The properties of plug-in test statistics as functions of variance compo-
nents are investigated by sensitivity analysis and insensitivity regions for the significance
level are proposed. The insensitivity region is a safe region in the parameter space of the
variance components where the approximation of the variance components can be used
without any essential deterioration of the significance level of the plug-in test statistic.
The behavior of plug-in test statistics and insensitivity regions is studied by simulations.

Keywords: multivariate model, decomposition, plug-in statistic, joint test, variance compo-
nents, insensitivity region.

1. Introduction

A multivariate approach to modeling (see, e.g., Anderson 1958; Kshirsagar 1972; Kubáček
2008; Seber 2004) has several advantages in comparison with a series of univariate models.
Specifically, multivariate models respect the association between outcomes, and thus, in gen-
eral, procedures are more efficient. Further, they can evaluate the joint influence of predictors
on all outcomes and avoid the issue of multiple testing. On the other hand, there are situa-
tions when the multivariate model can be decomposed to a series of simpler models, univariate
or multivariate, depending on the issue. Moreover, from a practical point of view, collecting
data is usually easier in decomposed models.

The paper deals with a special case of a decomposition of a partitioned multivariate model with
independent multiresponses with the same covariance matrix into two seemingly unrelated
multivariate submodels (Zellner 1962) in order to obtain more efficient estimators. Namely,
the multiresponse variables in the model are partitioned into two sets Y1 and Y2. Similarly,

http://www.ajs.or.at
http://www.ajs.or.at/
file:www.osg.or.at


168 Decomposition of Mixed Partitioned Multivariate Models

the set of predictors is partitioned into two sets X1 and X2. As an example, let us consider the
nutrigenomic study in the mouse. The response variable might be expressions of chosen genes
(Y 1

i·) and concentrations of hepatic fatty acids (Y 2
i·) measured on subjects. The predictors

might be genotype (X1) and type of diet (X2). The problem is to decide, roughly speaking,
if it is possible to explain separately expressions of genes by genotype and hepatic fatty acids
concentrations by diet or not. Fǐserová and Kubáček (2012) proposed tests for the verification
of the significance of a model decomposition under normality of random errors in the case
when the covariance matrix is known or completely unknown. Further, Fǐserová and Kubáček
(2013) shown that the proposed tests may be used in models without an intercept, as well as
in models with an intercept. These tasks are summarized in Section 2. Here, we will focused
on the situation when the covariance matrix includes unknown variance components.

If variance components can be estimated via the maximum likelihood method, the technique
of Kenward and Roger (1996) is useful for testing hypotheses about the decomposition of
the model. Nevertheless, the maximum likelihood approach is suitable for replicated models
or models with large number of observations. In the paper we consider a model without
replications when the minimum norm quadratic unbiased estimators (MINQUE) based on
Rao’s procedure (Rao and Kleffe 1988) are used instead. This approach is valid even for
models with small number of observations. The MINQU estimators are derived in Section 3.
Estimated values of variance components can be plugged into the test statistic for a known
covariance matrix. The investigation of statistical properties of a plug-in test statistic is
rather difficult and therefore we will study the quality of a plug-in test statistic as a function
of the variance components by sensitivity analysis. The sensitivity approach provides the
so-called insensitivity regions (Kubáček 1996) in the space of variance components where
the approximation of variance components do not cause any essential damage of the chosen
statistical characteristic. Namely, we propose the insensitivity region for the significance
level (Kubáček 2007b) as it is shown in Section 4. If we know that the true value of the
variance components is with sufficiently high probability within the insensitivity region for
the significance level, then the significance level of the plug-in test statistic does not exceed the
chosen tolerable value. The sensitivity approach is investigated mostly in univariate models,
e.g., Kubáček (1996); Fǐserová and Kubáček (2003, 2004, 2006); Kubáček and Fǐserová (2003);
Lešanská (2002a,b). Some results for multivariate models are presented in Kubáček (2006,
2007a,b) and Fǐserová and Kubáček (2009). The behavior of plug-in statistics and insensitivity
regions is studied by simulations in Section 5.

2. Tests of the decomposition in case of a known

covariance matrix

Let us consider the multivariate model in a partitioned form

(
Y1

(n×p1)

, Y2

(n×p2)

)
=
(

X1
(n×k1)

, X2
(n×k2)

) B11
(k1×p1)

, B12
(k1×p2)

B21
(k2×p1)

, B22
(k2×p2)

+
(
ε1

(n×p1)

, ε2
(n×p2)

)
. (1)

Here Y = (Y1,Y2) is a random matrix (observation matrix), X = (X1,X2) is a known
design matrix, B11, B12, B21 and B22 are matrices of unknown parameters and ε = (ε1, ε2)
is a random error matrix. We will assume that the matrix X is of full column rank, the
multiresponses are independent with the same positive definite covariance matrix Σ and
the random errors are normally distributed. The covariance matrix Σ of the multiresponse
Y i· = (Yi1, Yi2, . . . , Yip)′ is partitioned in the same way, i.e.,

var
(
Y 1
i·

Y 2
i·

)
=
(

Σ11, Σ12

Σ21, Σ22

)
, i = 1, 2, . . . ,n. (2)
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Further, let us consider a system of two seemingly unrelated (Zellner 1962) multivariate
submodels

Y1

(n×p1)

= X1
(n×k1)

B1
(k1×p1)

+ ε1
(n×p1)

, Y2

(n×p2)

= X2
(n×k2)

B2
(k2×p2)

+ ε2
(n×p2)

(3)

with the covariance matrix Σ of the multiresponse Y i· in the form (2). Note that models in (3)
are seemingly unrelated because there is a link between them described by cov(Y 1

i·,Y
2
i·) = Σ12.

If Σ12 = 0, the models in (3) are independent. The problem is to decide which of the models
(1) and (3) should be chosen for modeling in order to obtain more efficient estimators.

The issue with a decomposition of model (1) into (3) leads to testing the hypothesis that “the
system of two seemingly unrelated multivariate submodels (3) is a true model”, i.e., to test
B12 = 0 and B21 = 0 simultaneously. If the covariance matrix Σ is known, Fǐserová and
Kubáček (2012) proposed the test statistics

T21 = Tr
[
(Y1)′MX1X2(X′2MX1X2)−1X′2MX1Y

1Σ−1
11

]
∼ χ2

p1k2
under B21 = 0, (4)

T12 = Tr
[
(Y2)′MX2X1(X′1MX2X1)−1X′1MX2Y

2Σ−1
22

]
∼ χ2

p2k1
under B12 = 0. (5)

The symbol Tr(Σ) denotes trace of the matrix Σ and MXi = In −Xi(X′iXi)−1X′i, i = 1, 2.
To test the hypotheses B21 = 0 and B12 = 0 simultaneously, one can use, e.g., the Bonferroni
correction in order to preserve the type I error rate α. More precisely, if T21 ≤ χ2

p1k2
(1−α/2)

and T12 ≤ χ2
p2k1

(1 − α/2), where χ2
p1k2

(1 − α/2) denotes the (1 − α/2)-quantile of a χ2
p1k2

distribution, neither of the hypotheses B21 = 0, B12 = 0 can be rejected on the significance
level α.

Note that the decomposition of model (1) leads to two seemingly unrelated submodels. If
the decomposition is significant, the prediction of Y1 conditional on X1 is not improved also
by regressing on X2. However the predictors X2 are necessary for the calculation of the
prediction of Y1. Analogous conclusions hold for the prediction of Y2.

Until now we have considered only the model without an intercept. A partitioned form of the
model with the intercept can be written as

(
Y1

(n×p1)

, Y2

(n×p2)

)
=
(

1
(n×1)

, X1
(n×k1)

, X2
(n×k2)

)


b1
(1×p1)

, b2
(1×p2)

B11
(k1×p1)

, B12
(k1×p2)

B21
(k2×p1)

, B22
(k2×p2)

+
(
ε1

(n×p1)

, ε2
(n×p2)

)
, (6)

where 1 is a vector of ones. We will assume that the design matrix (1,X1,X2) is of full column
rank, and therefore all regression parameters are unbiasedly estimable. If the model includes
also an intercept, then the question is, where the intercept should go in the decomposed
model, in X1, in X2, or in both X1 and X2. Naturally, all cases are possible and results
depend on particular tasks. To avoid this situation, Fǐserová and Kubáček (2013) proposed
the transformation for an elimination of the intercept that leads to the identical BLUEs of
parameter matrices B11, B12, B21 and B22 in model (6) with the intercept and model without
the intercept in the form(

M1Y1,M1Y2
)

=
(
M1X1,M1X2

)(B11, B12

B21, B22

)
+
(
M1ε1,M1ε2

)
. (7)

Here M1 = I − 1(1′1)−11′. Therefore testing the decomposition of the partitioned model
with the intercept can be done similarly as for the model without the intercept. The process
is the following. First we transform model (6) to (7). Next we test hypotheses B12 = 0 and
B21 = 0 simultaneously via test statistics T12, T21 using the substitution

Yj →M1Yj , Xj →M1Xj , Σ→M1ΣM1, j = 1, 2.
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Obviously, test statistics T12 and T21 have the same degrees of freedom in the case of the
model without the intercept since the assumptions on full column rank of the design matrices
imply that the ranks of the transformed design matrices M1Xj are equal to kj , j = 1, 2, as
well.

3. Tests of the decomposition in case of a covariance matrix
with unknown variance components

Now we will consider the covariance matrix Σ of the structure Σ =
∑s

i=1 ϑiVi, where
V1, . . . ,Vs are known (p1 + p2) × (p1 + p2) symmetric and positive semidefinite matri-
ces and ϑi > 0, i = 1, . . . , s, are unknown parameters (variance components). Denote
Σ0 =

∑s
i=1 ϑ0,iVi, where ϑ0 = (ϑ0,1, . . . , ϑ0,s)′ is an approximate value of the vector pa-

rameter ϑ. The ϑ0-locally minimum norm quadratic unbiased estimator (ϑ0-LMINQUE) of
ϑ based on Rao’s procedure (Rao and Kleffe 1988) is stated in the following lemma.

Lemma 1 The ϑ0-locally MINQUE of ϑ in the model (1) is

ϑ̂ =
1

n− k1 − k2
S−1

Σ−1
0

γ̂,

where the ith component of the vector γ̂ = (γ̂1, . . . , γ̂s)′ is

γ̂i = Tr
[(

(Y1)′

(Y2)′

)
M(X1,X2)(Y

1,Y2)Σ−1
0 ViΣ−1

0

]
and the (i, j)th element of (s× s) matrix SΣ−1

0
is{

SΣ−1
0

}
i,j

= Tr(Σ−1
0 ViΣ−1

0 Vj).

Under normality, the covariance matrix of the estimator ϑ̂ at the point ϑ0 is

varϑ0(ϑ̂) =
2

n− k1 − k2
S−1

Σ−1
0

. (8)

Proof. For simplicity, the proof proceeds for the univariate form of model (1) which can be
expressed as

vec(Y1,Y2) ∼ Nn(p1+p2)

{[
Ip1+p2 ⊗ (X1,X2)

]
vec
(

B11, B12

B21, B22

)
,
s∑
i=1

ϑiVi ⊗ In

}
. (9)

Here, the symbol vec(Y1) denotes the column vector composed of the columns of Y1. The
notation ⊗ means the Kronecker multiplication of matrices (Rao and Mitra 1988). Then,
according to Rao and Kleffe (1988), the ϑ0-locally MINQUE of the vector parameter ϑ in
model (9) is

ϑ̂ = S−1
D γ̂, D = [M[I⊗(X1,X2)](Σ0 ⊗ I)M[I⊗(X1,X2)]]

+,

where the ith component of the vector γ̂ is given as

γ̂i =
[
vec(Y1,Y2)

]′D(Vi ⊗ I)Dvec(Y1,Y2), i = 1, . . . , s.

Now it is sufficient to take into account the equality D = Σ−1
0 ⊗M(X1,X2), which is substituted

into the previous formulas, and to simplify each of the expressions. 2

The estimator of the variance components and its covariance matrix depends on approximate
values ϑ0. To eliminate this dependency, it is necessary to use an iterative procedure. The
calculated estimated values of the variance components are used in the next iteration as
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approximate ones. The iterative procedure is very robust. It usually stops after two iterations
for any initial value of the variance components even for distributions different from the
Gaussian (Bognárová, Kubáček, and Volaufová 1996).

Note that the iterated MINQUE is practically the same as the maximum likelihood estimator
in the case of Gaussian distribution. Moreover, the MINQUE procedure can be used even for
negative variance components and symmetric matrices Vi for errors with normal distribution.
The formulas for the estimators are the same as under the assumption of positive variance
components and p.s.d. matrices Vi.

If model (1) can be decomposed into (3), the variance components can be estimated on the
basis of either Y1 or Y2 in model (3). The explicit formulas for ϑ0-LMINQUE in the submod-
els follows directly from Lemma 1. Particularly, using the notation Σjj,0 for an approximate
value of matrix Σjj , j = 1, 2, the expressions for ϑ0-LMINQUE of ϑ in submodels (3) are
equal to

ϑ̂ =
1

n− kj
S−1

Σ−1
jj,0

γ̂, varϑ0(ϑ̂) =
2

n− kj
S−1

Σ−1
jj,0

, j = 1, 2.

The ith component of the vector γ̂ and the (p, q)th element of the matrix SΣ−1
jj,0

are given as

γ̂i = Tr
[
(Yj)′MXjY

jΣ−1
jj,0ViΣ−1

jj,0

]
,
{

SΣ−1
jj,0

}
p,q

= Tr(Σ−1
jj,0VpΣ−1

jj,0Vq).

If the mixed partitioned model includes also an intercept, the elimination transformation (7)
can be used. This transformation preserves not only the BLUEs of the regression parameters
matrices, but also the estimates of the variance components, as it will be shown in the following
theorem.

Theorem 1. The ϑ0-locally MINQUE of ϑ in models (6) and (7) are the same.

Proof. For the sake of simplicity, the proof proceeds for the univariate form of model (6).
Let us denote

ε =
(

vec(ε1)
vec(ε2)

)
,Y =

(
vec(Y1)
vec(Y2)

)
, Σ⊗ I =

(
Σ11 ⊗ I, Σ12 ⊗ I
Σ21 ⊗ I, Σ22 ⊗ I

)
,

A1 =
(

I⊗ 1, 0
0, I⊗ 1

)
, A2 =

(
I⊗X1, 0, I⊗X2, 0

0, I⊗X2, 0, I⊗X1

)
β1 = (b1,b2)′ , β2 =

(
vec(B11)′, vec(B22)′, vec(B21)′, vec(B12)′

)′
.

Then the model (6) can be rewritten as

Y = (A1,A2)
(
β1

β2

)
+ ε. (10)

By Rao and Kleffe (1988), the ϑ0-locally MINQUE of ϑ in model (10) is given as

ϑ̂ = S−1
G γ̂, G = [M(A1,A2)(Σ0 ⊗ I)M(A1,A2)]

+,

where γ̂i = Y′G(Vi ⊗ I)GY, i = 1, . . . , s. Further, using the relationships

PA1 = A1(A′1A1)−1A′1, P(A1,A2) = PA1 + PMA1
A2 ,

P(A1,A2)PA1 = PA1 , M(A1,A2) = MA1 −PMA1
A2 ,

we obtain
M(A1,A2)MA1 = M(A1,A2), M(A1,A2)MMA1

A2 = MA1MMA1
A2 .

Thus, the matrix G can be rewritten as

G = [M(A1,A2)(Σ0 ⊗ I)M(A1,A2)]
+ = [MMA1

A2(MA1(Σ0 ⊗ I)MA1)MMA1
A2 ]+ = G̃.
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Therefore, the equalities

G(Vi ⊗ I)G = G̃MA1(Vi ⊗ I)MA1G̃,

γ̂i = Y′G(Vi ⊗ I)GY = Y′MA1G̃MA1(Vi ⊗ I)MA1G̃MA1Y = γ̃i,

also holds. Summarizing the above results we obtain ϑ̂ = S−1
G γ̂ = S−1eG γ̃, i.e., the ϑ0-

LMINQUE of ϑ in model (10) and in the model MA1Y = MA1A2β2 + MA1ε are the same.
Using the relationship MA1 = diag{I ⊗M1, I ⊗M1} (diagonal matrix), the last model can
be rewritten into multivariate form (7), and thus the proof is finished. 2

If the variance components are estimated, the hypothesis about the decomposition of model
(1) can be tested by the plug-in statistics T21 and T12, when the matrices Σ̂jj =

∑s
i=1 ϑ̂iVi,(jj),

where Vi,(jj) is the corresponding part of Vi, j = 1, 2, are plugged into formulas (4). Testing
the decomposition of the model with the intercept (6) can be done by the plug-in statistics T21

and T12 for the transformed model (7), since the transformation affects neither the BLUEs of
the regression parameter matrices nor the MINQUE of the variance components.

Obviously, the substitution of the true values of the variance components by their estimated
values influences the optimum quality of the estimators B̂21, B̂12 and, consequently, the
significance level and the power of the test. The investigation of statistical properties of the
plug-in test statistics T21 and T12 is rather difficult and therefore we will study the quality of
the plug-in test statistic as a function of the variance components by sensitivity analysis as
it is shown in the next section.

4. Sensitivity analysis for the significance level

The main idea of the sensitivity approach (Kubáček 1996) is to consider the plug-in statistic
as a function of the variance components and to find a safe region in the parameter space of
the variance components where the approximation of the variance components does not cause
any essential damage of the significance level of the plug-in test statistic (Kubáček 2007b).
The plug-in test statistic can have a higher significance level. Let ε > 0 be the maximum
admissible increase of the significance level. The goal is to find a region in the parameter space
of the variance components such that shifts δϑ around the true value ϑ∗ within this region
cause the significance level of the plug-in test statistic T21 to be not greater than α/2 + ε/2.
(We consider the significance level α/2+ε/2 since the Bonferroni correction for multiple tests
on B21 = 0 and B12 = 0 is used.) Such a region is called an insensitivity region for the
significance level and will be denoted by Nε,T21 . More precisely, Nε,T21 is a neighborhood of
the vector ϑ∗ with the property

ϑ ∈ Nε,T21 ⇒ P
{
T21(ϑ) ≤ χ2

k2p1(1− α/2)
}
≥ 1− α/2− ε/2.

The derivation of the insensitivity region for the significance level is based on an approximation
of the plug-in test statistic T21 by T12(ϑ) = T21(ϑ∗) + δT21. The variable δT21 = δϑ′ ∂T21

∂ϑ
characterizes the change of the statistic T21(ϑ∗) caused by the shift δϑ around ϑ∗. Obviously,
the significance level of T21 increases with increasing δT21 and vice versa. Hence the problem
is to find the upper limit for δT21 so that the significance level increased by a maximum
tolerated value. Using the Chebyshev inequality it holds that

P
{
|δT21 − E(δT21)| ≥ t

√
var(δT21)

}
≤ 1
t2
, t > 0. (11)

The inequality (11) together with the probability statement for the tolerated significance level

P
{
T21 + δT21 ≥ χ2

k2p1(1− α/2)
}
≤ α/2 + ε/2,



Austrian Journal of Statistics 173

implies that for a sufficiently large t > 0 such that

P{δT21 < E(δT21) + t
√

var(δT21)} ≈ 1, (12)

the inequality E(δT21) + t
√

var(δT21) ≤ δε,T21 , where

δε,T21 = χ2
k2p1(1− α/2)− χ2

k2p1(1− α/2− ε/2), (13)

is a sufficient condition for the upper limit for δT21. The explicit form of the insensitivity
region Nε,T21 is stated in Theorem 2.

Theorem 2 The insensitivity region Nε,T21 for the significance level of the statistic T21 is

Nε,T21 =
{
ϑ∗ + δϑ :

(
δϑ− δε,T21A

−1a
)′A (δϑ− δε,T21A

−1a
)
≤ δ2

ε,T21

(
1 + a′A−1a

)}
,

where δε,T21 is given by (13),

a = k2

[
Tr(Σ−1

11 V1,(11)), . . . ,Tr(Σ−1
11 Vs,(11))

]′
, A = 2t2k2SΣ−1

11
− aa′,

and t > 0 is a sufficiently large number such that the probability statement (12) holds.

Proof. It is necessary to determine the mean value and the variance of variable δT21 which
characterizes a change of the statistic T21(ϑ∗) caused by the shift δϑ. Let

ξi =
∂T21(ϑ)
∂ϑi

∣∣∣
ϑ=ϑ∗

= −Tr
[
Y′1PMX1

X2Y1Σ
−1
11 (ϑ∗)Vi,(11)Σ

−1
11 (ϑ∗)

]
, i = 1, . . . , s.

The mean value of the variable ξi is

Eϑ∗(ξi) = −Tr
({[

Σ−1
11 (ϑ∗)Vi,(11)Σ

−1
11 (ϑ∗)

]
⊗PMX1

X2

}
[Σ11(ϑ∗)⊗ I]

)
= −Tr(PMX1

X2)Tr
[
Σ−1

11 (ϑ∗)Vi,(11)

]
= −k2Tr

[
Σ−1

11 (ϑ∗)Vi,(11)

]
.

Further we calculate the covariance between the variables ξi and ξj :

covϑ∗(ξi, ξj) = 2Tr
({[

Σ−1
11 (ϑ∗)Vi,(11)Σ

−1
11 (ϑ∗)

]
⊗PMX1

X2

}
[Σ11(ϑ∗)⊗ I]

×
{[

Σ−1
11 (ϑ∗)Vj,(11)Σ

−1
11 (ϑ∗)

]
⊗PMX1

X2

}
[Σ11(ϑ∗)⊗ I]

)
= 2Tr(PMX1

X2)Tr
[
Σ−1

11 (ϑ∗)Vi,(11)Σ
−1
11 (ϑ∗)Vj,(11)

]
= 2k2

{
SΣ−1

11 (ϑ∗)

}
i,j
.

Now we are able to determine the upper limit for δT21 = δϑ′ξ. Let t > 0 be a sufficiently
large number such that (12) holds, i.e., with probability sufficiently near to one it is true that

δϑ′ξ < Eϑ∗(ξ′)δϑ+ t
√
δϑ′varϑ∗(ξ)δϑ ≤ δε,T21 .

Substituting the mean value and the covariance matrix of the vector ξ, and by a simple
calculation we obtain the inequality

δϑ′(2t2k2SΣ−1
11 (ϑ∗) − aa′)δϑ− 2a′δϑ ≤ δ2

ε,T21
,

which is equivalent with[
δϑ− δε,T21(2t2k2SΣ−1

11 (ϑ∗) − aa′)−1a
]′(2t2k2SΣ−1

11 (ϑ∗) − aa′)

×
[
δϑ− δε,T21(2t2k2SΣ−1

11 (ϑ∗) − aa′)−1a
]
≤ δ2

ε,T21
+ δ2

ε,T21
a′(2t2k2SΣ−1

11 (ϑ∗) − aa′)−1a,

thereby the statement is proved. 2
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Analogous considerations can be made for the plug-in test statistic T12. In this case the
explicit formula for the insensitivity region for the significance level results in

Nε,T12 =
{
ϑ∗ + δϑ :

(
δϑ− δε,T12B

−1b
)′B (δϑ− δε,T12B

−1b
)
≤ δ2

ε,T12

(
1 + b′B−1b

)}
,

where

δε,T12 = χ2
k1p2(1− α/2)− χ2

k1p2(1− α/2− ε/2),

b = k1

[
Tr(Σ−1

22 V1,(22)), . . . ,Tr(Σ−1
22 Vp,(22))

]′
, B = 2t2k1SΣ−1

22
− bb′.

The size of the insensitivity region depends on the parameters ε and t chosen by the user.
The parameter ε is related to the user’s opinion that ε causes a tolerable increase of the
significance level. The larger ε, the larger the insensitivity region, but also a higher significance
level follows. The parameter t corresponds to the approximation of the plug-in test statistic,
namely with the upper limit for the variable δT21 that describes the change of the statistic
T21(ϑ∗) caused by the shift δϑ. For t = 5, from the Chebyshev inequality (11) it follows that
at least 96% of the data values of δT21 must be within 5 standard deviations of the mean
or, equivalently, no more than 4% of the data values can be more than 5 standard deviations
away from the mean. If δT21 is approximately normally distributed, at least 99.7% of the
data values of δT21 must be within 3 standard deviations of the mean. Hence it is reasonable
to choose the parameter t in the interval 〈3, 5〉. The smaller t, the larger the insensitivity
region but also cases a higher tail probability. The procedure for the optimal choice of the
parameter t that maximizes the size of the insensitivity region is derived in Lešanská (2002a).

Both insensitivity regions Nε,T12 and Nε,T21 are suitable for a justification of the utilization
of plug-in joint tests T12, T21 for a decomposition of model (1) into two seemingly unrelated
submodels (3). The process is as follows. First, we determine estimates of the variance
components. Then we compute the insensitivity regions Nε,T12 and Nε,T21 for the estimated
values of the variance components and chosen values ε and t. Finally, we set the confidence
domain for the variance components for a sufficiently high confidence level and check whether
this confidence domain is embedded into the insensitivity regions. If this confidence domain
is included into both insensitivity regions, plug-in joint tests are admissible and, moreover,
the significance level of plug-in joint tests does not exceed the value of α+ε. If the confidence
domain is not embedded into both insensitivity regions, the experiment requires better design,
other measurement devices, or more observations to be sure that the approximation of the
variance components by their estimates do not cause an increase in significance level by more
than a tolerable ε. The criterion is very demanding, in some cases the confidence domain
is not embedded into the insensitivity regions, however, the estimated values of the variance
components lie in the insensitivity regions what implies that the increase of the significance
level is almost a tolerable one (see Section 5).

The determination of an exact confidence domain for the variance components is difficult
since the distribution of the estimator ϑ̂ is unknown even for a normally distributed vec-
tor vec(Y). Some approximation can be derived using the Bonferroni inequality and the
Chebyshev inequality which imply that

P

{
∀i = 1, . . . , s : |ϑ̂i − E(ϑ̂i)| ≤

√
s

α

√
var(ϑ̂i)

}
≥ 1− α.

Hence at least a (1 − α)100%-confidence domain for the variance components is a set given
by the Cartesian product

I1−α(ϑ) = Xs
i=1

{
u : |u− ϑ̂i| ≤

√
s

α

√
var(ϑ̂i)

}
.

Recall that the covariance matrix of the variance components estimator is given by (8).
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It can be easily proved, similarly as in Lešanská (2002b), that a k2-multiple of ϑ∗ makes a
homothetic change of the boundary of the insensitivity region for the significance level with
the coefficient k2 and the centre at the point 0.

5. Simulation study

By simulations we will study the behavior of the plug-in test statistics T12, T21 for the decom-
position of model (1) and the insensitivity regions for the significance level. We will consider
different choices of the covariance matrix, parameter matrices, number of observations and
the true model (model (1) or the system of seemingly unrelated submodels (3)).

We considered n = 40 and n = 400 observations, a multiresponse Yj
i·, j = 1, 2, with dimen-

sions p1 = 3 and p2 = 4, and the number of regressors equal to k1 = 2 and k2 = 2. The
parameter matrices were chosen as

B1 = B11 =
(

3, 2, 2
2, 3, 3

)
, B2 = B22 =

(
2, 4, 4, 1.5
4, 2, 4, 4

)
, (14)

B12 =
(

1, 3, 1, 15
2, 7, 8, 3

)
, B21 =

(
4, 4, 1
2, 8, 3

)
. (15)

The design matrices were considered in the form of X = 110⊗T and X = 1100⊗T, with the
matrix T

T =


1, 0, 0, 0
1, 1, 0, 0
1, 1, 1, 0
1, 0, 1, 1

 .

The symbol 110 denotes the vector of 10 ones. Similar designs of experiments were used in
the simulation study in Fǐserová and Kubáček (2012).

The observation matrices Y1 and Y2 were generated in a natural way, a normally dis-
tributed error term was added to the true mean. The multiresponses were considered to
be independent with the same covariance matrix Σ chosen in the following two forms: either
V1 = diag{1, 1, 1, 0, 0, 0, 0} and V2 = diag{0, 0, 0, 1, 1, 1, 1} (the corresponding covariance
matrix is denoted by Σ1), or V1 = diag{1, 1, 0, 0, 0, 0, 1} and V2 = diag{0, 0, 1, 1, 1, 1, 0} (co-
variance matrix Σ2). The variance components were chosen either ϑ1 = 5 and ϑ2 = 3, or
ϑ1 = 0.05 and ϑ2 = 0.03.

Table 1: Empirical probabilities (in %) of rejecting the hypothesis “the true model is the
system of two seemingly unrelated models (3)” on the significance level α. Data are simulated
from model (3).

ϑ1 = 5 and ϑ2 = 3 ϑ1 = 0.05 and ϑ2 = 0.03
n = 400 n = 40 n = 400 n = 40

parameter matrices α Σ1 Σ2 Σ1 Σ2 Σ1 Σ2 Σ1 Σ2

(14) 5 5.2 4.9 6.1 5.9 5.2 5.1 5.7 5.6
(14) 1 0.9 1.1 1.5 1.2 0.9 1.1 1.3 1.3

100*(14) 5 5.1 5.1 5.6 5.6 4.6 5.0 6.2 5.6
100*(14) 1 1.1 1.1 1.5 1.1 1.0 1.2 1.3 1.3

10 000 simulations were done for all cases. First, the data were simulated from the system
of two seemingly unrelated submodels (3), i.e., for matrices B1, B2 given by (14) and for
zero matrices B12, B21. The empirical probabilities of rejecting the hypothesis B12 = 0 and
B21 = 0 simultaneously are presented in Table 1. We can see that the obtained empirical
significance levels for plug-in test statistics T12 and T21 are essentially equal to the nominal
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Figure 1: Insensitivity regions for the significance level α = 1% together with 95%-confidence
domain for the variance components for different sample sizes (left: n = 400; right: n = 40).
N5,T21 by solid line, N5,T12 by dashed line. Data are simulated from model (3) for Σ2, ϑ1 = 5,
ϑ2 = 3.

levels. Fǐserová and Kubáček (2012) have shown in a simulation study that the joint test
by T12 and T21 is conservative in case of a known covariance matrix, the obtained empirical
significance level was equal to half of the nominal one. For data simulated from the model
(1), i.e., for matrices B11, B22 and B12, B21 given by (14) and (15), respectively, the plug-in
test statistics T21 and T12 rejected the decomposition of model (1) in all cases.

Finally we will investigate the insensitivity regions for the significance level. Let us assume a
tolerable increase of the significance level α = 1% or α = 5% equal to ε = 5%. It means, we
are satisfied if the true type I error rate is α/2 + ε/2 = 5% (3%) for a nominal significance
level α = 5% (α = 1%) for each of the plug-in test statistic T21 and T12. Further, we assume
that the parameter t equals 3, i.e., at least 89% of data values of δT21 and δT12 must be within
3 standard errors of the mean.

For α = 1%, the resulting insensitivity regions are displayed together with 95%-confidence
domain for the variance components in Figure 1. The data were simulated from model (3) for
the covariance matrix Σ2 and ϑ1 = 5, ϑ2 = 3. We can see that the insensitivity regions N5,T21

and N5,T12 are large enough. The statistic T12 allows greater shifts in direction of ϑ1, and T21

in direction of ϑ2. It means, the statistic T12 is more sensitive to changes in ϑ2, and T21 in
ϑ1. Furthermore, we can notice, that the confidence domain for the variance components is
embedded in both insensitivity regions for sample size n = 400 (left figure). For smaller sample
size, the confidence domain increases more than the insensitivity ones (enlarged only slightly)
and thus the confidence domain is not embedded into the insensitivity regions. Nevertheless,
almost all variance components estimates lie within the insensitivity regions. Unfortunately,
this is not generally true. The observed relative frequencies of the variance components
estimates within the insensitivity regions are indicated in Table 2. The results are averages
of a hundred times repeated 10 000 simulations. Obviously, the confidence region for the
variance components is smaller for greater sample size and thus the relative frequencies are
essentially 100%. However, for smaller sample size and significance level α = 5%, the relative
frequencies are only 55-70%. Nevertheless, in this case the plug-in test is sufficiently good
as it is shown in Table 1. Large differences between the relative frequencies are due to large
differences in size of the insensitivity regions for significance levels α = 5% and α = 1%. For
example, in the case ϑ1 = 5 and ϑ2 = 3, the semiaxes of insensitivity region N5,T21 are 1.75
and 1.28 for α = 5%, and 4.35 and 2.98 for α = 1%. This effect is related to the construction
of the insensitivity regions, namely with the fact that a tolerable increase ε of the significance
level α leads to larger δε,T21 , δε,T12 for smaller α.

Note that the insensitivity regions for the significance level are shown as ellipses in Figure 1,
although, in general, they should be open sets to the right hand corner. This relates to the fact
that the p-values becomes less extreme with increasing variances. However, the construction
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Table 2: Relative frequency (in %) of the variance components estimates within insensitivity
regions for the significance level. Data are simulated from model (3) for Σ2.

ϑ1 = 5 and ϑ2 = 3
n = 400 n = 40

parameters α N5,T21 ∩N5,T12 N5,T21 N5,T12 N5,T21 ∩N5,T12 N5,T21 N5,T12

(14) 5 98.9 99.8 99.6 56.7 66.7 67.6
(14) 1 100 100 100 96.7 98.3 97.9

100*(14) 5 98.8 99.8 99.7 55.1 67.3 64.5
100*(14) 1 100 100 100 96.9 98.5 98.0

ϑ1 = 0.05 and ϑ2 = 0.03
n = 400 n = 40

parameters α N5,T21 ∩N5,T12 N5,T21 N5,T12 N5,T21 ∩N5,T12 N5,T21 N5,T12

(14) 5 98.68 99.35 99.22 54.79 65.61 65.54
(14) 1 100 100 100 97.04 98.47 98.17

100*(14) 5 98.91 99.84 99.78 58.35 68.85 68.30
100*(14) 1 100 100 100 95.94 98.22 97.21

of the insensitivity regions for estimators or the confidence level is different, and thus we
proposed closed regions due to a uniform methodology and for easier handling.

The insensitivity regions for the significance level and the confidence domain for variance
components result in intervals for the covariance matrix Σ1 since in this case the statistic T21

is a function of the parameter ϑ1 only, and T12 is a function of ϑ2. The obtained results are
similar as in the case of the covariance matrix Σ2 and therefore they are omitted.

6. Conclusion

The proposed plug-in joint test seems to be a proper method for a decomposition of a mixed
multivariate model (with independent responses with the same covariance matrix) into two
seemingly unrelated submodels. The decomposition is advantageous at least from two view-
points. The estimators of the regression parameters are more efficient, and data collection
can be easier. The sensitivity approach is an appropriate technique for a justification that the
estimated values of the variance components can be plugged in without any essential deteri-
oration of the regression coefficients estimates and the inference. This is based on identifying
safe regions in the space of the variance components where plug-in estimators cause only
negligible changes of the optimum quality of estimators and test statistics. In particular, the
proposed insensitivity region for the significance level guarantees that the true type I error
rate does not exceed the chosen tolerable value.

The used methodology is general and suitable for more complex (mixed) models, e.g. models
with restrictions on the regression parameters, singular models, and other statistical inference
such as a confidence level or power of a test as well.
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