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Abstract. We investigate the sensitivity of the problem of Non-Orthogonal (matrix) Joint
Diagonalization (NOJD). First, we consider the uniqueness conditions for the problem of Exact Joint
Diagonalization (EJD), which is closely related to the issue of uniqueness in tensor decompositions.
As a by-product, we derive the well-known identifiability conditions for Independent Component
Analysis (ICA), based on an EJD formulation of ICA. We introduce some known cost functions for
NOJD and derive flows based on these cost functions for NOJD. Then we define and investigate the
noise sensitivity of the stationary points of these flows. We show that the condition number of the
joint diagonalizer and uniqueness of the joint diagonalizer as measured by modulus of uniqueness (as
defined in the paper) affect the sensitivity. We also investigate the effect of the number of matrices
on the sensitivity. Our numerical experiments confirm the theoretical results.1
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1. Introduction and a case study. Many interesting recent problems and par-
adigms in blind signal processing can be formulated as the problem of matrix Joint
Diagonalization (JD). This problem in its simplest form can be phrased as: given a
set of N symmetric matrices {Ci}N

i=1 of dimension n×n, find a non-singular matrix B
such that all BCiB

T ’s are “as diagonal as possible,” where BT denotes the transpose
of matrix B. Note that here diagonalization is meant in the sense of congruence.
Matrix joint diagonalization problem is also referred to as simultaneous matrix diago-
nalization. In practice, i.e., when Ci’s are constructed from empirical data we do not
expect a B to exist such that all BCiB

T ’s are diagonal. Therefore, maybe a more
exact name for this problem can be Approximate Joint Diagonalization. Neverthe-
less, we choose to call this problem as joint diagonalization, where approximation is
implicitly assumed and we refer to the problem when exact joint diagonalization is
possible as Exact Joint Diagonalization (EJD).

Historically, the problem of matrix joint diagonalization in the signal processing
community was first considered in the restricted form of Orthogonal Joint Diagonal-
ization (OJD) in [9], where an efficient algorithm for it was proposed. In the OJD
problem the joint diagonalizer is assumed to be orthogonal. This situation can hap-
pen for example when one tries to blindly separate non-Gaussian sources that are
spatially whitened [9]. The orthogonality assumption on B is not justified in many
occasions and one expects that by allowing more freedom in the search space, “more
diagonalization” would be possible. We refer to the problem of joint diagonalization,
when B is only assumed to be non-singular, as the problem of Non-Orthogonal Joint
Diagonalization or NOJD. The focus of this paper is the NOJD problem.
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Non-orthogonal joint diagonalization arises in a variety of problems. As a case
study, we will see that how the problem of Independent Component Analysis (ICA)
can be considered as an NOJD problem. In the problem of blind separation of non-
stationary mixtures [21], one can perform NOJD on a set of correlation matrices to find
the un-mixing matrix. Blind separation of instantaneous mixtures using only second
order statistics, also results in NOJD of a set of covariance matrices [7]. Moreover,
the NOJD problem is closely related to the problem of tensor decomposition and
CNADECOMP/PARAFAC modeling [18, 11]. Since applications or algorithms are
not the focus of this work, we will not cite numerous applications where the NOJD
problem is useful. Instead, we consider the ICA problem, as a case study, to give the
reader a feeling of the recurring situation, where the NOJD problem shows itself in
numerous applications.

1.1. A case study: Independent Component Analysis (ICA). Indepen-
dent Component Analysis (ICA) [10] is one of the major paradigms in which joint
diagonalization and tensorial methods have proven useful. We refer the reader to [17]
for further discussion on this issue. The basic model in ICA is:

~xn×1 = An×n~sn×1 (1.1)

where ~sn×1 is a random vector of dimension n with independent components of zero
mean, and A is an n × n non-singular matrix. We can think of ~sn×1 to represent a
source with independent components whose signals are mixed by the mixing matrix
A and ~xn×1 to represent the observed mixture. The problem is to find the matrix A
or its inverse, assuming that only realizations or the moments of the random mixture
~xn×1 are available . Obviously, we can only hope to find A up to column permutation
and column scaling. The key assumption of independence of the elements of ~s imposes
some specific structure on certain matrices that can be formed from the cumulants
of the observation ~x. The main theme here is that independence implies diagonality.
We investigate this further. First, note that Rxx, the covariance matrix of ~x, satisfies:

Rxx = AΛssA
T , (1.2)

where Λss is the (diagonal) covariance matrix of ~s. We can trace this structure in
higher cumulants of ~x as well. The kth order cumulant of a random vector ~zn×1 is a
tensor Ck

z of order k and dimension n× ...× n. The cumulants are closely related to
the moments, and they give information about the shape of the probability density
function of ~zn×1. In fact, the second order cumulant tensor is the covariance matrix.
Each element of Ck

z can be indexed by k indices i1, ...ik, where 1 ≤ i1, ..., ik ≤ n.
If we fix all but two indices and vary the remaining two indices we obtain a matrix
slice of the tensor. The notation Ck

z (i1, i2, ..., ik−2, :, :) represents such a matrix that
is found by fixing all but the last two indices. An important fact is that, if ~zn×1 is of
independent components, then its cumulant tensors of any order are diagonal. Since
~sn×1 is of independent components, its cumulant tensors are diagonal, i.e. only the
elements Ck

s (i, ..., i) can be non-zero. Based on the multi-linear property of cumulants
we can show that for k ≥ 3:

Ck
x(i1, i2, ..., ik−2, :, :) = AΛi1i2...ik−2A

T , (1.3)

where Λi1i2...ik−2 is a diagonal matrix that depends on elements of A and Ck
s (i, ..., i)’s,

the auto-cumulants of ~s, as:

[Λi1i2...ik−2 ]ii = ai1iai2i...aik−2iCk
s (i, ..., i), 1 ≤ i ≤ n. (1.4)
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Note that (1.2) is also of this form except that the diagonal matrix Λss does not
depend on A. There is a profound difference between cumulant matrix slices of order
higher than two and the covariance matrix of ~xn×1, in that the latter is always positive
definite whereas the former need not be of any definite sign, and their signs depend
both on the signs of the Ck

s (i, ..., i)’s as well as the elements of A. From (1.2) and
(1.3)one can see how NOJD and ICA are related: in order to find A−1 search for a non-
singular matrix B that jointly diagonalizes all the cumulant matrix slices, including
the covariance matrix. In Section 2.2 we show that under certain conditions, which are
basically the uniqueness conditions for the EJD problem, A can be found (up to the
inherent indeterminacies) from the NOJD of the cumulant slices. The interesting point
here is that restoration of diagonality can be equivalent to restoration of independence,
and in this process we do not need to know much about the source~sn×1 or its statistical
distribution.

1.2. Scope and organization of the paper. In [29, 3, 6, 28, 25, 1, 20] and
many other works, different algorithms have been proposed to find the non-orthogonal
joint diagonalizer of a given set of matrices. Although one might think of other ideas,
the NOJD problem has been considered as a minimization problem whose solution
gives the joint diagonalizer. There are not so many cost functions known that can be
used for this purpose. Given a set of matrices:

Ci ≈ AΛiA
T , 1 ≤ i ≤ N, (1.5)

where Λi’s are diagonal; the hope of NOJD is that if a B if found such that all BCiB
T ’s

are “as diagonal as possible”, then B is close to A−1 up to permutation and diagonal
scaling. Therefore, the accuracy or usefulness of an NOJD algorithm depends on the
actual algorithm and on the cost function used, in the sense that how its minimizers
differ from A−1 when we have (1.5) instead of an equality. The focus of this work is on
what factors affect the sensitivity of the NOJD cost functions. Using a perturbation
analysis for the stationary points of certain minimization flows, we will show that this
sensitivity is closely related to the uniqueness properties of the corresponding exact
joint diagonalization problem. Also, non-unexpectedly, we show that if norm of A−1

is large, then again the NOJD will be sensitive. Note that this can happen if norm of
A is small or if A is ill-conditioned. One of our main motivations in considering the
sensitivity issue is to investigate the effect of the number of matrices included in the
NOJD process. Inclusion of more matrices can not only help to reduce the harm of
noise by an averaging effect but also by reducing the sensitivity through improvement
of measures of uniqueness defined in Section 2.

The organization of this paper is as follows: in Section 2 we investigate the
uniqueness conditions for the problem of exact joint diagonalization. We also use this
result to derive the well known identifiability conditions for the ICA problem [10]. In
Section 3 we introduce some of the known cost functions for NOJD and derive the
corresponding flows whose stationary points characterize the joint diagonalizers. In
Section 4 we perform a perturbation analysis on the stationary points of the introduced
flows in order to find the sensitivity properties. We also elaborate on the effect of the
number of matrices in the NOJD process. Numerical simulations in Section 5 confirm
the derived results.

1.3. Notations. Throughout the paper all variables are real valued unless oth-
erwise stated. Boldface small letters denote random variables. A and B both are n×n
non-singular matrices unless otherwise stated. If X is a matrix, xij or Xij or [X]ij
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denotes its entry at position (i, j). ‖X‖F and ‖X‖2 denote the Frobenius norm and
the 2-norm of the matrix X, respectively. XT denotes the transpose of X, and X−T

denotes the transpose of the inverse of X. tr(X) is the trace of the square matrix X.
cond(A) is the 2-norm based condition number of the matrix A. For a square matrix,
diag(X) is the diagonal part of X, i.e., a diagonal matrix whose diagonal is equal to
the diagonal of X. I or In×n denotes the n × n identity matrix. Unless otherwise
stated, letters D and Π denote a non-singular diagonal matrix and a permutation
matrix, respectively. For a vector x, diag(x) is a diagonal matrix with diagonal x. Λi

is a diagonal matrix and we denote the kth diagonal element of Λi by λik. ‖x‖ is the
2-norm of the vector x. We also define X◦ = X − diag(X). GL(n) and SO(n) denote
the Lie groups of non-singular n × n matrices and orthogonal n × n matrices with
+1 determinant, respectively. TpM denotes the tangent space of the manifold M at
point p on the manifold. Notation X ← Y means that: “the new value of X is Y .”

2. Uniqueness conditions for Exact Joint Diagonalization (EJD). Con-
sider matrices:

Ci = AΛiA
T , 1 ≤ i ≤ N, (2.1)

where Λi’s are diagonal matrices, i.e., Λi = diag([λi1, ...λin]). One interesting problem
is: given only {Ci}N

i=1 find A. We call this problem the Exact Joint Diagonalization
or the EJD problem. Note that with the only information that Λi’s are diagonal A
can be determined only up to permutation and diagonal scaling, i.e., if A is a solution
then ADΠ is also a solution, for any D and Π. We say that the EJD has a unique2

solution if the permutation and diagonal scaling are the only ambiguities in finding A.
If the EJD has a unique solution then finding A is equivalent to finding a B ∈ GL(n)
such that all BCiB

T ’s are diagonal, hence the name “joint diagonalization.”
The issue of uniqueness in the EJD problem can be considered as a special case

of uniqueness in the CANDECMOP/PARAFAC model, which has been addressed in
[14]. In order to quantify the uniqueness property, which as will be seen in Section 4 is
closely related to the sensitivity issue of the NOJD problem, we re-phrase the necessary
and sufficient conditions for uniqueness differently from the related literature.

Definition 2.1. For the set of diagonal matrices {Λi}N
i=1 let:

ρkl =
∑N

i=1 λikλil

(
∑N

i=1 λ2
il)

1
2 (

∑N
i=1 λ2

ik)
1
2

, 1 ≤ k 6= l ≤ N, (2.2)

with the convention that ρkl = 1 if λik = 0 for some k and all i. Let ρ be equal to
one of the ρkl’s that have the maximum absolute value among all. The Modulus of
Uniqueness for this set is defined as |ρ|.

Note that |ρ| ≤ 1 and |ρ| = 1 if and only if at least two columns of the matrix
[Λ]ij = λij are collinear, i.e., if there is a real number K and integers p and q such that
λip = Kλiq for 1 ≤ i ≤ N . |ρ| measures the maximum degree of collinearity between
any two columns of the matrix [Λ]ij = λij . This measure to quantify collinearity may
seem to be chosen arbitrarily, but as will be seen later it shows itself naturally in the
analysis of certain cost functions for NOJD. Another measure, which also naturally
appears in the analysis of the log-likelihood based cost (see Section 3.2.3) function is
given as:

2In some works this is referred to as essential uniqueness.
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Definition 2.2. For the set of positive definite diagonal matrices {Λi}N
i=1 let:

µkl =
1

N2
(

N∑

i=1

λik

λil
)(

N∑

i=1

λil

λik
), 1 ≤ k 6= l ≤ N. (2.3)

Let µ be the minimum value of µkl’s. The Modulus of Uniqueness of second type for
this set is defined as µ.

Note that µ ≥ 1 with equality if and only if |ρ| = 1. µ also measures the
maximum collinearity between the columns of Λ, with the assumption that Λi’s are
positive definite.

If N = 1, then |ρ| = 1 and the diagonalizer is not unique. For N > 1, also the
modulus of uniqueness captures the uniqueness property in an exact sense:

Theorem 2.3. Let Ci’s satisfy (2.1). The necessary and sufficient condition to
have unique non-orthogonal joint diagonalizer is that |ρ| < 1.

Proof. First we consider the case n = 2. If |ρ| = 1, then either: (a) there is a real
number K such that: λi2 = Kλi1 for all 1 ≤ i ≤ N , or (b) λi1 = 0 for all 1 ≤ i ≤ N
and λi2 6= 0 for some i, or (c) λi1 = λi2 = 0 for all i, which is a trivial situation. In
case of (a) we have:

Ci = λi1A

[
1 0
0

√
|K|

]

︸ ︷︷ ︸
DK

[
1 0
0 ρ

] [
1 0
0

√
|K|

]
AT . (2.4)

We have denoted the diagonal matrix that includes
√
|K| as DK . Let us first assume

that K 6= 0. Now, if ρ = +1, then let B = Q+1D
−1
K A−1, where:

Q+1 =
[

cos θ − sin θ
sin θ cos θ

]
. (2.5)

This B diagonalizes every Ci for all θ. If ρ = −1, then let B = Q−1D
−1
K A−1, where:

Q−1 =
[

cosh θ sinh θ
sinh θ cosh θ

]
. (2.6)

This B diagonalizes every Ci for all θ. If K = 0 (and hence ρ = 1), then let B =
Q1A

−1 where:

Q1 =
[

1 θ
0 1

]
. (2.7)

This B diagonalizes every Ci for all θ. Also, in case of (b), B = QT
1 A−1 diagonalizes

every Ci for all θ. Therefore for |ρ| = 1 the non-orthogonal joint diagonalizer is not
unique. For n > 2, |ρ| = 1 means that the situation described for n = 2 happens
between two diagonal elements, in the same positions within Λi’s; and we can apply
the previous argument to those elements. Hence, for n > 2 also |ρ| = 1 implies
non-uniqueness of the joint diagonalizer. To see the necessary part, first note that
existence of more than one exact joint diagonalizer means that there exists a C which
differs from a permuted diagonal matrix such that the matrices Di = CΛiC

T are
diagonal. For the moment, assume that one of the Λi’s, say Λ1, is non-singular. Then
DiD

−1
1 = CΛiΛ−1

1 C−1 for 1 < i ≤ N . These are the eigen decompositions of diagonal
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matrices ΛiΛ−1
1 ’s, for 1 < i ≤ N . Non-uniqueness of C happens only when there are

two integers 1 ≤ k 6= l ≤ n, such that λik

λ1k
= λil

λ1l
, 1 < i ≤ N . This means that |ρ| = 1.

If C is not unique and all Λi’s are singular, then two cases can happen. In the first
case, all Λi’s have one zero diagonal element at a common position, i.e., there exists
an integer 1 ≤ k ≤ n such that for all 1 ≤ i ≤ N we have λik = 0, which implies
that ρ = 1. If the first case is not true, then there exists a linear combination of Λi’s
like Λ0, which is non-singular, and D0 = CΛ0C

T is diagonal; then we are back to the
non-singular case. This completes the proof.

This result and more general ones have been referred to in [23] using the concept
of Kruskal’s rank.

2.1. On minimum number of matrices needed for EJD. Let A be an
orthogonal matrix. Then equations in (2.1) are the eigen decompositions of Ci’s.
If C1 or equivalently Λ1 has distinct eigenvalues, then A can be found from eigen
decomposition of C1, uniquely up to permutations. If Λ1 has only two equal diagonal
elements at positions k and l, and if we can find another Λi with distinct values at
those positions, then again A can be found uniquely, from eigen decompositions of C1

and Ci. Therefore, if for each pair of k and l we can find an i for which λil 6= λik,
then A can be determined uniquely. As a result, in the generic case orthogonal joint
diagonalization is in fact a one-matrix problem, and inclusion of more matrices can
be justified by presence of noise. The uniqueness properties of OJD as well as its
sensitivity analysis has been addressed in [8].

There is a huge difference between the uniqueness properties of the orthogonal
and non-orthogonal joint diagonalization problems. From the proof of Theorem (2.3)
it should be evident that N = 1 matrix is not enough to find a unique non-orthogonal
(joint) diagonalizer. NOJD allows more degrees of freedom in finding the diagonalizer.
Let us count the degrees of freedom in both sides of the equations in (2.1). Recall that
a symmetric n×n matrix has n(n+1)

2 degrees of freedom, and A has n2−n degrees of
freedom (as far as the NOJD problem is concerned). Hence, the left hand side of (2.1)
has total N n(n+1)

2 degrees of freedom, and its right hand side has n2−n+Nn degrees
of freedom. Equating the degrees of freedom from both sides and solving for N gives
N = 2. Therefore, the minimum number of matrices to give enough equations to find
a unique non-orthogonal joint diagonalizer is N = 2; and hence, the NOJD problem,
in the generic case, is a two-matrix problem. For two arbitrary and generic matrices
{C1, C2} whether the equations in (2.1) yield a real valued solution for {A,Λ1,Λ2}
depends on the matrices3. It is well known that if one of the two matrices is positive
definite, then they admit a (real) exact jointly diagonalizer [13, pp. 461-462]. As
we will show in Section 4.4.1, for only two matrices, if their dimension is moderately
large (n > 20, for example), the modulus of uniqueness is close to unity. This in
turn, as will be shown in Section 4, means that the NOJD of the two matrices is an
ill-conditioned problem; and hence, it is better to include more matrices in the NOJD
process.

2.2. Identifiability of the ICA problem. Now we would like to apply the
previous theorem to the case of the ICA problem. It is obvious that if we can find
two cumulant matrix slices of ~xn×1 for which |ρ| is not unity, then the matrix A in
(1.1) can be found uniquely. From (1.3) and (1.4), one can show that for the set

3Assuming C1 is invertible (which is true for a generic matrix), in order for (2.1) to hold, we
should have that C2C−1

1 = AΛ2Λ
−1
1 A−1, which is an eigen decomposition. Again in a generic case,

this would give a unique and (in general) complex valued {A, Λ1, Λ2}.
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{Ck
x(i1, i2, ..., ik−2, :, :)}1≤i1,...,ik−2≤n with k > 2 we have |ρ| 6= 1, if and only if none

of Ck
s (i, ..., i)’s are zero. To see this, first note that if Ck

s (i, ..., i) = 0 for some i then
|ρ| = 1. Now assume that none of Ck

s (i, ..., i)’s are zero, and |ρ| = 1. Since |ρ| = 1,
there are two columns of A like j and l and a real number K such that:

ai1jai2j ...aik−2jCk
s (j, ..., j) = Kai1lai2l...aik−2lCk

s (l, ..., l), (2.8)

for all 1 ≤ i1, ..., ik−2 ≤ n. Because none of the Ck
s (i, ..., i)’s are zero, and since

there is at least one non-zero element like apj in the jth column of A, by setting
i2 = ... = ik−2 = p we have that there is another real number K ′ such that:

ai1j = K ′ai1l, (2.9)

for all 1 ≤ i1 ≤ n. This contradicts the invertibility of A. Hence, with an invertible
A, |ρ| can not be unity unless at least one of Ck

s (i, ..., i)’s is zero.
Now assume that the covariance matrix of ~sn×1 is non-singular, i.e., there is

no source component with zero variance. Then by inclusion of the covariance ma-
trix of ~xn×1 in the above set we can weaken the uniqueness condition, i.e., for
{Rxx, Ck

x(i1, i2, ..., ik−2, :, :)}1≤i1,...,ik−2≤n with k > 2, we have |ρ| 6= 1 if and only
if at most one of Ck

s (i, ..., i)’s is zero. Therefore, if we start with the covariance ma-
trix of ~xn×1 and then include its third order cumulant slices, and if at most one of
the skewness’ C3

s (i, ..., i) is zero, then A can be determined uniquely. If at least two
C3
s (i, ..., i)’s are zero then we can go to the cumulants of higher orders and check the

same condition. Note that this process fails if and only if there are at least two source
elements sp and sq for which Ck

s (p, ..., p) = Ck
s (q, ..., q) = 0 for all k ≥ 3. It is well

known that such random variables have Gaussian distribution. As a result, exact
non-orthogonal joint diagonalization of the set of all cumulant matrix slices of ~xn×1

gives A uniquely, unless ~sn×1 has at least two Gaussian components. To summarize
we state this theorem (cf. Corollary 13 in [10]):

Theorem 2.4. (Identifiability of ICA- EJD formulation) Consider the model
(1.1). About ~sn×1 assume that its covariance matrix is non-singular, its kth order
cumulants (for some k > 2) exist and at most one of them is zero. Then exact joint
diagonalization of the set {Rxx, Ck

x(i1, i2, ..., ik−2, :, :)}1≤i1,...,ik−2≤n results in finding
A up to column permutation and scaling. For a source vector with finite cumulants
of all orders, this process fails to identify A if only if the source vector has more than
one Gaussian component.

This result suggests that exact joint diagonalization can be used as a basis to
define a contrast function [10] for ICA. Note that, this identifiability condition is
derived solely based on the algebraic structure of the ICA model, and we have not
used the Skitovich-Darmois Theorem [10, 16]. OJD or NOJD of cumulant matrix
slices of order three, four or even higher have been suggested in many works, e.g.
[9, 28, 29, 19, 17, 2]. The OJD scenario arises when one assumes that the mixture is
already uncorrelated or whitened.

3. Cost functions for joint diagonalization. The joint diagonalization prob-
lem has been posed, in the literature, mostly as an optimization problem [9, 28, 25, 20].
We mention that in [28, 25] the joint diagonalization problem has been addressed with
a different formulation than ours. As mentioned before, generically, in the OJD prob-
lem one matrix (N = 1), and in the NOJD problem two matrices (N = 2) are enough
to find a unique joint diagonalizer. However, it is believed that inclusion of more
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matrices is useful in making the solution less vulnerable to noise. Therefore, the pro-
posed cost functions for joint diagonalization are designed to mitigate the effect of
noise via averaging.

3.1. A cost function for orthogonal joint diagonalization. The OJD prob-
lem was introduced earlier than the NOJD problem. In [9] a natural cost func-
tion together with an efficient algorithm for OJD was introduced. The cost function
J1 : SO(n) → R for OJD, introduced in [9], is:

J1(Θ) =
n∑

i=1

∥∥ΘCiΘT − diag(ΘCiΘT )
∥∥2

F
, (3.1)

where {Ci}N
i=1 is the set of symmetric matrices to be diagonalized. If Θ minimizes J1,

then we call Θ an orthogonal joint diagonalizer of {Ci}N
i=1. Note that, since SO(n)

is a compact manifold, a priori we know that a minimizer exists for J1. Whether,
generically, this cost function has only global minimum on SO(n), and whether the
minimizers are unique up to permutation are not known.

3.2. Cost functions for non-orthogonal joint diagonalization. Introduc-
ing a cost function for NOJD has been a challenge. First, note that a simple extension
of J1 from SO(n) to GL(n) is not effective. We remind that the NOJD problem in
the exact case is a scale-invariant problem, i.e., if B ∈ GL(n) is an EJD for a set of
matrices, then DB also should be a joint diagonalizer for any non-singular diagonal
D. However, J1(DB) 6= J1(B). In fact, we can reduce J1(B) just by reducing the
norm of B; and J1(B) has a global infimum at B = 0.

3.2.1. A non-holonomic flow for NOJD based on J1. For the derivations
in this subsection we refer the reader to [2]. We also refer the reader to [15] for
more comprehensive treatment of gradient flows for optimization on manifolds. On
the Lie group of non-singular matrices, we can define a right-invariant Riemannian
metric4that matches the group structure as:

〈., .〉B : TBGL(n)× TBGL(n) → R

〈ξ1, ξ2〉B = tr((ξ1B
−1)T ξ2B

−1),
(3.2)

where TBGL(n) is the tangent space to GL(n) at B. In general, a tangent vector ξ at
a point B on GL(n) (and any Lie group) can be written as ξ = ζB where ζ belongs
to the tangent space at the identity. Also, the tangent spaces at B and the identity
are isomorphic. Let s 7→ B̃(s) be any smooth curve with B̃(0) = B. With respect to
the Riemannian metric in (3.2), the gradient of J1 : GL(n) → R is defined as a vector
field ∇J1 that satisfies:

J̇1 = 〈∇J1, Ḃ〉B , (3.3)

where J̇1 = dJ1(B̃(s))
ds

∣∣
s=0

and Ḃ = dB̃(s)
ds

∣∣
s=0

. From this, it is easy to verify that up
to a scaler factor:

∇J1(B) = Ω1B, (3.4)

4The significance of the right-invariant metric is that it matches the invariance property of the
NOJD problem, which as mentioned is that the joint diagonalizer does not change by left multiplica-
tion by non-singular diagonal matrices. A discretization of a right-invariant flow such as dB

ds
= ΩB

has the form Bk+1 = (I + Ωk)Bk.
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−∇J1(B)⊥

GL(n)

TBOB

TBGL(n)

B

OB

−∇J1(B)

Fig. 3.1. The group of non-singular diagonal matrices acts on the manifold GL(n) at B via
left multiplication. OB is the orbit of this action. The liberalization of this orbit (i.e., the tangent
space to it) at B is TBOB ⊂ TBGL(n). This figure shows how −∇J1(B) should be projected onto
the orthogonal complement of TBOB in order to have a flow for NOJD based on J1 which is not a
scale-invariant cost function for NOJD.

where:

Ω1 =
N∑

i=1

(BCiB
T )◦BCiB

T . (3.5)

We can show that the stationary points of J1, i.e., values of B for which∇J1(B) =
0 and hence Ω1 = 0 satisfy, BCiB

T = diag(BCiB
T ). Therefore, if Ci’s do not have an

exact joint diagonalizer, then J1 will have no stationary points on GL(n). A gradient
flow for minimization of J1 has the form dB

ds = −∇J1(B) = −Ω1B. As we mentioned
before, the problem with minimizing J1 as a cost function for NOJD is that it can
be reduced by diagonal matrices. At each point B ∈ GL(n), we can project the
gradient of J1 (or more accurately the negative of the gradient) to directions that do
not correspond to diagonal scaling. The group of non-singular diagonal matrices of
dimension n can act on the group GL(n) via left multiplication. At B the orbit of
this action is simply: OB = {DB|D = non-signgular and diagonal} and it is in fact a
sub-manifold which we would like our NOJD flow to avoid. The linearization or the
tangent space to the orbit at B is TBOB = {DB|D = diagonal}, which is a linear
subspace of TBGL(n). The orthogonal complement of TBOB in the tangent space
TBGL(n), with respect to the defined Riemannian metric, is (TBOB)⊥ = {ΞB|Ξ ∈
Rn×n, diag(Ξ) = 0}. Therefore, the projection of ∇J1 onto (TBOB)⊥ is ∇J⊥1 = Ω◦1B.
Figure (3.1) shows the process of constraining the negative of the gradient to directions
along (TBOB)⊥, at each point B. The corresponding non-holonomic5 flow for NOJD
is:

dB

ds
= −∇J⊥1 = −Ω◦1B. (3.6)

5A Non-holonomic flow is a flow whose velocity vector field is constrained by non-integrable
constraints.
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The stationary points or equilibria of this flow are defined by Ω◦1 = 0, or

N∑

i=1

(
(BCiB

T )◦BCiB
T
)◦ = 0. (3.7)

Hence, if a non-orthogonal joint diagonalizer of {Ci}N
i=1 based on the above non-

holonomic flow exists, it should satisfy (3.7). In [3, 29] and many other works min-
imization schemes for J1 are proposed, which try to find the stationary points in
(3.7).

3.2.2. A Frobenius norm scale-invariant cost function. Note that J1 :
SO(n) → R in (3.1) can also be written as:

J1(Θ) =
n∑

i=1

∥∥Ci −Θ−1diag(ΘCiΘT )Θ−T
∥∥2

F
. (3.8)

Let J2 : GL(n) → R be the extension of this form of J1 to GL(n) defined by:

J2(B) =
n∑

i=1

∥∥Ci −B−1diag(BCiB
T )B−T

∥∥2

F
. (3.9)

Then it is easy to check that J2(ΠDB) = J2(B) for any non-singular diagonal D and
permutation Π. Therefore, J2 is a scale and permutation invariant cost function for
NOJD. Note that J1 and J2 are scaled versions of each other in the sense that:

J1(B)
n2‖B‖42

≤ J2(B) ≤ n2‖B−1‖42J1(B). (3.10)

Also, note that we can reduce J2 without changing norm of B. This means that
reducing J2, if norm of B is not changed can, result in reduction of the upper bound
of J1. This cost function has been introduced in [5, 3].

3.2.3. Log-likelihood function for NOJD. In [20], another cost function for
NOJD of a set of positive definite matrices {Ci}N

i=1 has been introduced. This cost
function has the form:

J3(B) =
N∑

i=1

log
(det diag(BCiB

T )
detBCiBT

)
. (3.11)

A matrix B ∈ GL(n) that minimizes J3 is the joint diagonalizer of {Ci}N
i=1. It can be

shown that J3(B) ≥ 0, and equality holds if and only if all BCiB
T ’s are diagonal. It

is easy to check that J3 is scale and permutation invariant, i.e., J3(ΠDB) = J3(B),
for any Π and D. The specific form of this cost function is imposed by the log-
likelihood function of correlation matrices of Gaussian non-stationary sources [20].
Let us consider the same right-invariant Riemannian metric as in 3.2.1. Using the
well known identity ∂

∂B log det B = (BT )−1 we can show (see (3.3) also):

J̇3 = 2
N∑

i=1

tr
(

(ḂB−1)T
(
(diag(BCiB

T ))−1BCiB
T − I

))
. (3.12)
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As a result, with respect to the above Riemannian metric, the gradient vector field of
J3 up to a scalar factor is:

∇J3(B) =
1
N

N∑

i=1

(
diag((BCiB

T ))−1BCiB
T − I

)
B := Ω3B. (3.13)

It is interesting to note that diag(Ω3) = 0 (cf. (3.5) and (3.6)). A gradient flow for
NOJD based on minimization of J3 is: dB

ds = −Ω3B. The stationary points for this
flow are characterized by Ω3 = 0; and if B is a joint diagonalizer it should satisfy

1
N

N∑

i=1

BCiB
T
(
diag(BCiB

T )
)−1 = I. (3.14)

4. Sensitivity analysis. An interesting question to ask is: “which set of ma-
trices are hard to be jointly diagonalized?” In other words, which factors affect the
condition or sensitivity of the joint diagonalization problem? Consider the matrices
Ci = AΛiA

T , 1 ≤ i ≤ N , where Λi’s are diagonal. Obviously, {Ci}N
i=1 have a joint

diagonalizer B = A−1. Note that, here equality is understood up to permutation and
diagonal scaling. Now, we add noise to the matrices as:

Ci = AΛiA
T + tNi, t ∈ [−δ, δ], δ > 0, (4.1)

where {Ni}N
i=1 are symmetric error or noise matrices, and t shows the noise gain or

contribution. The joint diagonalizer of this noisy set will deviate from A−1 as t devi-
ates from zero. If the sensitivity is high, then the deviation from A−1 will be large. In
this case, we say that the NOJD problem is very sensitive or ill-conditioned. Note that
the true goal of NOJD is to find A and not just diagonalizing the matrices {Ci}N

i=1.
It is in this context that the sensitivity of the problem is defined. If the modulus of
uniqueness for {Λi}N

i=1 is unity, then {Ci}N
i=1 has already infinite sensitivity; since the

joint diagonalizer can change even in absence of noise. Hence, one should expect the
sensitivity for joint diagonalization to be closely related to the issue of uniqueness. To
quantify this relation, we will perform a perturbation analysis of the stationary points
of the NOJD cost functions or flows defined in Section 3. The results for different
cost functions are very much similar.

4.1. Sensitivity for NOJD based on J1. The non-orthogonal joint diagonal-
izer of {Ci}N

i=1, B based on J1 is defined by equation (3.7). As t deviates from zero
in (4.1), B(t), the joint diagonalizer, varies smoothly. For small enough δ, from the
implicit function theorem and basic properties of Lie groups, we have:

B(t) = (I + t∆)A−1 + o(t), t ∈ [−δ, δ], (4.2)

where ∆ ∈ Rn×n with diag(∆) = 0 and ‖o(t)‖
t → 0 as t → 0. The restriction

diag(∆) = 0 matches the structure the non-holonomic flow for NOJD derived in
Section 3.2.1. Note that ‖∆‖ measures the sensitivity of the NOJD problem to noise.
Our goal is to calculate ∆. Using B(0) = A−1 and dB

dt (0) = ∆A−1, and after plugging
(4.1) into (3.7), and then differentiating with respect to t, we can easily verify that:

N∑

i=1

(
∆Λi + Λi∆T

)
Λi = −

N∑

i=1

(
A−1Ni(A−1)T

)◦Λi. (4.3)
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The right hand side of above equation manifests the possible noise amplification that
can happen due to large ‖A−1‖, i.e., when A is small in norm or more importantly
when A is ill-conditioned. Equation (4.3) is a linear equation in terms of ∆. Let us
define:

T =
N∑

i=1

(A−1Ni(A−1)T )◦Λi. (4.4)

Now, it is easy to check that the two entries ∆kl and ∆lk decouple from the rest of
the entries of ∆ and we have:

[ ∑N
i=1 λ2

il

∑N
i=1 λikλil∑N

i=1 λikλil

∑N
i=1 λ2

ik

] [
∆kl

∆lk

]
= −

[ Tkl

Tlk

]
, 1 ≤ k < l ≤ n. (4.5)

Recall definition of ρkl (Definition 2.1). Also, let

γkl = (
N∑

i=1

λ2
ik)

1
2 (

N∑

i=1

λ2
il)

1
2 , ηkl =

(
∑N

i=1 λ2
ik)

1
2

(
∑N

i=1 λ2
il)

1
2

. (4.6)

We denote the coefficients matrix in (4.5) by Mkl:

Mkl = γkl

[
η−1

kl ρkl

ρkl ηkl

]
, 1 ≤ k < l ≤ n. (4.7)

Then Equation (4.5) is equivalent to:
[

∆kl

∆lk

]
= −M−1

kl

[ Tkl

Tlk

]
=

−1
γkl(1− ρ2

kl)

[
ηkl −ρkl

−ρkl η−1
kl

] [ Tkl

Tlk

]
, 1 ≤ k < l ≤ n.

(4.8)
Note that λmax ≥ λmin, the eigenvalues of M−1

kl , are

λmax, λmax =
ηkl + η−1

kl ±
√

(ηkl + η−1
kl )2 − 4(1− ρ2

kl)

2γkl(1− ρ2
kl)

. (4.9)

Also, it is easy to check that:

ηkl + η−1
kl − 1

γkl(1− ρ2
kl)

≤ λmax <
ηkl + η−1

kl

γkl(1− ρ2
kl)

, (4.10)

and

1
γkl(ηkl + η−1

kl )
≤ λmin ≤ 1

γkl
. (4.11)

Therefore, we also can establish the bounds:

1
γkl(ηkl + η−1

kl )

∥∥
[

∆kl

∆lk

] ∥∥ ≤
∥∥

[
∆kl

∆lk

] ∥∥ <
ηkl + η−1

kl

γkl(1− ρ2
kl)

∥∥
[ Tkl

Tlk

] ∥∥. (4.12)

Because γkl is not scale-invariant, γkl ≈ 0 by itself does not imply a high sensitivity.
The definitions of the parameters reveal that γkl plays more a scaling role, whereas
ρkl plays a structural role. Hence, as far as sensitivity to noise is concerned, the
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interesting situation (approximate singularity) happens when |ρkl| ≈ 1. Note that
as |ρkl| → 1, λmax and λmin approach their upper and lower bounds, respectively.
Moreover, in that case λmax grows unboundedly, and λmin remains bounded. Since

T depends on random noise, there always will be a component of
[ Tkl

Tlk

]
along the

direction of the eigenvector of M−1
kl corresponding to λmax. Therefore, when |ρkl|

approaches unity, ‖
[

∆kl

∆lk

]
‖ tends towards the upper bound in (4.12). Hence, the

upper bound is the more interesting one, and it is not a loose bound in the sense that
it can be achieved very closely when |ρkl| ≈ 16. One can easily check that:

‖∆‖F <
α

(1− ρ2)
‖T ‖F ≤ nα‖A−1‖22

(1− ρ2)

N∑

i=1

‖Ni‖2‖Λi‖2, (4.13)

where α = maxk 6=l

ηkl+
1

ηkl

γkl
, and |ρ| is the modulus of uniqueness for the set {Λi}N

i=1

as defined before. Since an approximate non-uniqueness of the joint diagonalizer
can happen when only one of |ρkl|’s is close to unity, the above bound might seem
exaggerative. Again one can imagine a worse case scenario in which all |ρkl|’s are
close to unity, and the bound would not be very loose. In summary, we have:

Theorem 4.1. Let Ci = AΛiA
T + tNi, 1 ≤ i ≤ N (t ∈ [−δ, δ]). Let us define

B(t) the non-orthogonal joint diagonalizer for {Ci}N
i=1 as the minimizer of J1 under

the non-holonomic flow with equilibria defined in (3.7). Then for small enough δ,
the joint diagonalizer can be written as: B(t) = (I + t∆)A−1 + o(t), where ∆ (with
diag(∆) = 0) satisfies (4.8) as well as (4.13).

The bound in (4.13) confirms the intuition that if the joint diagonalizer is close to
non-uniqueness, as measured by the modulus of uniqueness, or if it is ill-conditioned,
then the sensitivity of the NOJD problem will be high. Note that our derivations
suggest that there is another scenario that can result in high sensitivity, which is
when A and Λi (i.e., γkl’s) are small in norm. Of course, this is not an interesting
scenario. We could have avoided this by imposing a constraint on the norm of the
noise in (4.1). For example, we could assume that ‖Ni‖2 ≤ ‖A‖22‖Λi‖2. This choice
makes the bound (4.13) such that it is unchanged if A or Λi’s all are scaled by a
scaler. Hence, one might be tempted to define cond(A)2

1−ρ2 as the condition number for
the NOJD problem based on J1.

4.2. Sensitivity for NOJD based on J2. We can follow the same path as in
the previous subsection and perform a perturbation analysis for the stationary points
of J2 in presence of noise. In [5], it is shown that the stationary points of J2 satisfy:

{ ∑N
i=1

(
Ψidiag

(
BCiB

T
)− diag

(
Ψi

)
BCiB

T
)

= 0
Ψi = (BBT )−1

(
BCiB

T − diag(BCiB
T )

)
(BBT )−1 (4.14)

B(t), the minimizer of J2 with Ci’s defined in (4.1, can be written as (4.2). Our goal
is to find ∆, when B(t) satisfies (4.14). Similar to previous subsection, we can show
that ∆ satisfies:

N∑

i=1

(
AT A(∆Λi + Λi∆T )AT AΛi

)◦
= −

N∑

i=1

(
AT A

(
A−1Ni(A−1)T

)◦
AT AΛi

)◦
.

(4.15)

6It is common in matrix perturbation theory to have bounds that only handle the worse cases
well. For a discussion on this issue see [22, p. 124].
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Presence of the terms AT A in (4.15) makes the decoupling that we saw in (4.3) not
possible here. Note that in (4.3) the effect of A and Λi are separated very much, but
in (4.15) this is not the case. This is because J2 is not congruence preserving, i.e., it
is not expressed in terms of only the BCiB

T ’s. Note that if A is close to a diagonal
multiple of an orthogonal matrix, i.e., if A ≈ QD, where D is a non-singular diagonal
matrix and Q is orthogonal, then AT A ≈ DT D; and as a result, we have that (4.15)
reduces to

N∑

i=1

(
∆Λi + Λi∆T

)
Λi ≈ −

N∑

i=1

(
A−1Ni(A−1)T

)◦Λi, (4.16)

which is the approximated version of (4.3). This case is of practical interest. Many
algorithms for NOJD try to iteratively reduce the data matrices Ci’s, by congruence
transforms, to diagonal matrices, i.e., Ci ← BkCiB

T
k , where Bk is the local joint

diagonalizer found at step k. After a number of iterations, and when the matri-
ces under transformation become close to diagonal we have Ci = BAΛi(BA)T +
tBNiB

T , where B is the product of the local joint diagonalizers. In this case,
the new A (A ← BA) is close to diagonal, so is AT A. Also, in another case if
one of the Ci’s, say C1, is positive definite, then we can apply the transformation
Ci ← C

− 1
2

1 Ci(C
− 1

2
1 )T = C

− 1
2

1 AΛi(C
− 1

2
1 A)T + tC

− 1
2

1 Ni(C
− 1

2
1 )T , where C

1
2
1 is a square

root of C1, i.e., C
1
2
1 (C

1
2
1 )T = C1. Again, we can show that if the noise is not too

strong, for the new A (A ← C
−1/2
1 A), we have A ≈ QD, for some orthogonal Q

and non-singular diagonal D. This case can, for example, correspond to the so-called
pre-whitening step in the ICA problem, where C1 is a covariance matrix. We can
maintain that the sensitivity properties of NOJD based on J2 are very similar to
those of NOJD based on J1.

4.3. Sensitivity for NOJD based on J3. A stationary point B(t) of J3, when
Ci’s are of the form (4.1) and Λi’s are positive definite, satisfies equation (3.14). Sim-
ilar to previous derivations, by differentiating (3.14) with respect to t and considering
(4.1) and (4.2), we have that ∆, with diag(∆) = 0, satisfies:

N∑

i=1

∆ + Λi∆T Λ−1
i = −

N∑

i=1

(
A−1Ni(A−1)T

)◦Λ−1
i . (4.17)

We have used the fact d
dtX

−1 = −X−1( d
dtX)X−1, where X is a non-singular differ-

entiable matrix function of t. Let us define:

τkl =
1
N

N∑

i=1

λik

λil
, µkl = τklτlk =

1
N2

(
N∑

i=1

λik

λil
)(

N∑

i=1

λil

λik
). (4.18)

Also let:

S =
∑N

i=1

(
A−1Ni(A−1)T

)◦Λ−1
i Hkl = N

[
1 τkl

τlk 1

]
. (4.19)

Here S is very similar to T and represents possible noise amplification due to small
norm or ill-conditioning of A. The structure of S also shows that if Λi’s are close
to singularity, then noise amplification can happen. Note that the cost function J3

requires Λi’s to be positive definite, and as this condition is close to violation (by
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one of Λi’s being almost singular), then J3 becomes very sensitive to noise. Equation
(4.17) decouples as:

Hkl

[
∆kl

∆lk

]
= −

[ Skl

Slk

]
, 1 ≤ k < l ≤ n, (4.20)

or equivalently:
[

∆kl

∆lk

]
=

1
N(µkl − 1)

[
1 −τkl

−τlk 1

] [ Skl

Slk

]
, 1 ≤ k < l ≤ n. (4.21)

It is easy to see that ‖H−1
kl ‖2F = 2+τ2

kl+τ2
lk(

N(µkl−1)
)2 , and hence σmax, the larger singular

value of H−1
kl , satisfies:

1√
2

√
τ2
kl + τ2

lk + 2
N(µkl − 1)

≤ σmax <

√
τ2
kl + τ2

lk + 2
N(µkl − 1)

. (4.22)

From (4.21) and the previous bound we have:

∥∥
[

∆kl

∆lk

] ∥∥ ≤ σmax

∥∥
[ Skl

Slk

] ∥∥ <

√
τ2
kl + τ2

lk + 2
N(µkl − 1)

∥∥
[ Skl

Slk

] ∥∥. (4.23)

It is also easy to establish this bound:

‖∆‖F <
β

N(µ− 1)
‖S‖F ≤ nβ‖A−1‖22

N(µ− 1)

N∑

i=1

‖Ni‖2‖Λ−1
i ‖2, (4.24)

where β = maxk 6=l

√
τ2
kl + τ2

lk + 2 and µ = mink 6=l µkl. In summary we have:
Theorem 4.2. Let Ci = AΛiA

T + tNi, 1 ≤ i ≤ N (t ∈ [−δ, δ]) with Λi’s positive
definite. Let us define B(t), the non-orthogonal joint diagonalizer for {Ci}N

i=1, as the
minimizer of J3. Then for small enough δ the joint diagonalizer can be written as:
B(t) = (I + t∆)A−1 + o(t), where ∆ (with diag(∆) = 0) satisfies (4.20) as well as
(4.24).

Note that here, similar to the case of NOJD based on J1, the modulus of unique-
ness (µ) and the condition number of A affect the sensitivity. If one of Λi’s is close
to singularity i.e., if ‖Λ−1

i ‖ is large, then the NOJD problem can be ill-conditioned.
Therefore, almost similar to Section 4.1, we might impose the constraint ‖Ni‖2 ≤
‖A‖22‖Λ−1

i ‖−1
2 and define the condition number for the NOJD problem based on J3

as cond(A)2

µ−1 . The imposed condition simply means that if ‖Λ−1
i ‖2 is large, then ‖Ni‖2

must be small or ‖A‖2 should be large.

4.4. Effect of the number of matrices. One of our motivations in performing
sensitivity analysis for the problem of NOJD has been to consider the effect of the
number of matrices on the accuracy of the solution. N = 2 matrices are enough to
find a unique non-orthogonal joint diagonalizer if |ρ| < 1. However, to combat noise,
we may want to include more matrices. Inclusion of more matrices can have two
effects: one on how T in (4.13) or S in (4.24) changes and the other one on how ρ, γ
and α in (4.13) or on how µ and α in (4.24) may change. The first effect is related to
noise cancelation through averaging; and the second one is related to improvement of
uniqueness measures. Both, of course, depend on how Ni’s and Λi’s are statistically
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distributed. Let us consider a J1-based-NOJD problem. Assume that the elements
of Ni’s are i.i.d with zero mean, and that the elements of Λi’s are i.i.d with mean
m and variance σ2. Also, assume that matrices are independent from each other.
Then, by the strong law of large numbers, we have that ‖ TN ‖ → 0, ρ → m2

σ2+m2 and
Nα → 2

σ2+m2 < ∞ as N → ∞ with probability one. Hence, ‖∆‖ → 0 as N → ∞
with probability one. Note that this might not happen if Ni’s and Λi’s are of non-zero
mean. For small values of N such as N = 2, 3 or 4, and especially when n is large, |ρ|
can be very close to unity (for N = 1, |ρ| = 1). Moreover the cancelation or averaging
effect that we expect to happen for large values of N in T is not likely to happen for
small N . Hence, for small N the NOJD problem can be very sensitive.

4.4.1. More on the number of matrices and modulus of uniqueness.
Our claim that for small N the modulus of uniqueness |ρ| can be close to unity
deserves more elaboration. From Definition 2.1, we can interpret ρkl as the cosine
of the angle between two N dimensional vectors (λ1k, ...., λNk)T and (λ1l, ...., λNl)T .
Without loss of generality, we can assume that the vectors are of unit length, i.e., they
represent points on the unit sphere in RN . Now |ρ| is the maximum of the absolute
value of the cosine of the angles between n points on the unit sphere in RN . Since
|ρ| is independent of the direction of the vectors, we can assume that all the points
lie on the same hemisphere on the unit sphere in RN . The fact that |ρ| can be large
when n is much larger than N , is related to the fact that among n points on the unit
hemisphere in RN at least two of them can not be very far apart from each other.
In other words, there are at least two of the points which are closer to each other
than a deterministic distance, which depends on n and N . As n increases and the
points become denser this deterministic distance decreases and |ρ| approaches unity.
Note that |ρ| can become large if there is a large obtuse angle (an angle with negative
cosine) between two of the points as well. However, we can only argue that as the
number of points increases, they should become denser at some region, and hence,
the upper bound on the minimum angular distance between them should decrease.
We can not account for a lower bound on the maximum obtuse angles between the
points unless we know a specific distribution for the points.

Unfortunately, finding the mentioned deterministic bound is difficult for arbitrary
N . However, for N = 2 it is surprisingly easy to find. Assume that we have n ≥ 3
points on the unit semicircle. Then we can divide the circumference of the semicircle
into n − 1 arcs each of length π

n−1 . Then by putting n points on the unit semicircle
at least two of them will lie on the same arc. Hence, for N = 2 we should have
|ρ| ≥ cos π

n−1 , for n ≥ 3. This implies that for two 20 × 20 matrices |ρ| > 0.98.
Of course, for typical matrices this can be worse, since the bound we found is a
lower bound. Again, note that this bound is solely based on an upper bound on the
minimum of angular distances between the points. In fact, the configuration that
achieves the bound π

n−1 has two antipodal points for which ρ = −1. Therefore, the
bound is conservative. With more information about the points, we can find better
lower bounds. For example, if the matrices are positive definite (i.e., λik > 0 and
hence ρ > 0), then we can consider points on a quarter of a circle, and hence have
a lower bound of cos π

2(n−1) on ρ. As a result, for two positive definite matrices of
dimension only n = 10 we have that ρ > 0.98. Maybe the most interesting finding
of this paper is that, the NOJD of two matrices, if their dimension is fairly large, is
ill-conditioned. Although, as explained before we might be able to find an exact non-
orthogonal joint diagonalizer for the two matrices. Therefore, in general it is better
to use more matrices not only to combat noise but also to improve the sensitivity.
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The problem of finding an upper bound for the minimum distance between n
points on the unit sphere in RN is an old problem in the set of problems known as
sphere packing problems. Tight bounds for these problems are in general very difficult
to find. This specific problem is known as Tammes’ problem or “dictators on a planet
problem ”[12]. One well-known result about it, is a bound for N = 3. According
to this result [24], for n ≥ 3 points on the unit sphere in R3, there are at least two
points whose spherical (angular) distance is smaller than dn = cos−1 cot2 ωn−1

2 , where
ωn = n

n−2
π
6 . Unfortunately, the proof for this result does not allow an extension

to a parallel result for points on the hemisphere. However, we might argue, via
homogeneity, that an approximate bound for n points on the hemisphere can be
obtained by setting 2n points on the sphere and using d2n. Hence, we have cot2 ω2n−1

2
as an approximate lower bound for |ρ| with N = 3. If we ignore the effect of the edge
of the hemisphere, this scaling argument sounds quite plausible. Note that the scaling
argument becomes more plausible for dense points. We expect the lower bound on
|ρ| to be smaller for N = 3 than that for N = 2, with equal n; and this is exactly
what we observe. In Figure (4.1) we have plotted four curves. The lower two curves
show the deterministic lower bounds on |ρ| for N = 2 and N = 3 in terms of n. As
can be seen, the bound for N = 2 is higher than the one for N = 3. The upper
two curves show the average |ρ| in terms of n, this time, for the uniform distribution
of points on the circle and sphere. By uniform distribution on the sphere we mean
that if 0 ≤ φ < 2π and 0 ≤ θ ≤ π are the spherical coordinates of a point on the
sphere, then these two random variables are uniformly distributed on their domains.
Therefore, we generate n points (on the circle or the sphere), find the |ρ| for them,
and repeat this experiment 10, 000 times, and find the average |ρ|. As can be seen
these values of |ρ| are much higher than the bounds.

How about for other values of N? Let us pretend that we could extend the simple
argument for the circle to higher dimensions. This helps us unveil the main dynamics
between n and N in affecting |ρ|. Denote the surface area of the unit sphere in RN

by SN . Assume we could divide the surface of the hemisphere into n − 1 congruent
hyper-spherical regular polygons. This, of course, is a very difficult assumption to
make. Let the angular diameter of each polygon be θ. If n is large, then we can
approximate the area of the polygon by VN−1( θ

2 )N−1, where VN−1 is the volume of
the unit hyper-sphere in RN−1. Hence, we have (n − 1) × VN−1( θ

2 )N−1 ≈ SN

2 , or
θ ≈ 2( 1

n−1 )
1

N−1 ( SN

2VN−1
)

1
N−1 . One can see (for example from the explicit formulae for

the surface and volume of the hyper-sphere in [27] and the formulae related to the
Gamma function in [26]) that ( SN

2VN−1
)

1
N−1 is of order O(1) for large N ; and in fact,

it converges to 1. Here O(.) is the big O notation. Now, θ ≈ 2( 1
n )

1
N for large n and

N , which in turn implies:

|ρ| ≥ cos(θ) ≈ 1− 2(
1
n

)
2
N . (4.25)

This is in agreement, at least in its form, with a much more rigorous bound given
in [12, p. 28 Equation (66)]. To be accurate, the result in [12] states that: if n is
the maximum number of spherical caps of angular diameter 0 < θ < 63◦ that can be
placed on the surface of the unit sphere in RN without overlapping, then for large N

cos θ & 1− (
1
4
)0.099(

1
n

)
2
N ≈ 1− 0.87(

1
n

)
2
N . (4.26)

We can replace n with 2n to have a similar (approximate) result for the hyper-



18 Bijan Afsari

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

|ρ
|

Deterministic lower bounds on |ρ| and average of |ρ| for points uniformly distributed (N=2,3)

N=2, uniform points

N=3, uniform points

N=2, lower bound

N=3, lower bound

Fig. 4.1. This graph shows two forms of variation of |ρ| in terms of n for N = 2 and N = 3.
The higher two curves show the average |ρ| for points that are uniformly distributed on the circle and
sphere. Here uniform means that the angular coordinates of the points in the spherical coordinate
are uniformly distributed over the appropriate ranges. The lower two curves are the deterministic
lower bounds described in the text. The deterministic bound for N = 2 is higher than the one for
N = 3, as expected.

hemisphere, which essentially does not change the asymptotic bound. Either bounds
suggests that in order to control |ρ|, as n increases, it suffices to have N = O(log n),
which is encouraging! As a result, we do not need to have too many matrices in
order to avoid the ill-conditioning that happens due to a small number of matrices
being used. Note that if there is a structural cause of ill-conditioning within Λi’s
then this recipe is irrelevant. Also, note that in (4.26) for fixed n as N increases |ρ|
does not decrease indefinitely; and there is an asymptotic non-zero lower bound of
0.13. Unfortunately, our approximate bound in (4.25) does not give an interesting
answer in this case. The mentioned behavior is observed in our simulations. Figure
(4.2) shows the experimental and fitted behavior of ρ in terms of N for n = 20. The
experimental ρ comes from generating λik’s independently from uniform distribution
on [0, 1]. Each value of ρ is an average over 1000 runs. The graph also shows the
curve ρ̃ = 1 − 0.20( 1

n )
5.59
N (with n = 20), which is fitted to the experimental data.

These two curves obviously demonstrate the predicted dynamics between n and N
in determining ρ. The mentioned asymptotic lower bound for ρ as N → ∞ in this
case is 0.8. The interesting point is that, for small N improvement of ρ is dramatic
as N increases, whereas for larger N and better ρ increasing N does not improve the
sensitivity significantly. Recall that the important quantity in the sensitivity is 1

1−ρ2
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which drops rapidly at first few N ’s. In fact for the experimental data it drops from
104 at N = 2 to 8.6 at N = 10. In this case the NOJD of only ten 20 × 20 matrices
is well-conditioned or safe. Of course, use of more matrices improves the answer via
averaging out the noise.

0 50 100 150 200
0.75

0.8

0.85

0.9

0.95

1

N

ρ

Behavior of ρ in terms of N with fixed n=20 for randomly generated matrices

experimental data
fitted curve

Fig. 4.2. A typical behavior of |ρ| in terms of N for fixed n. Here n = 20 and the λik’s are
generated from a uniform distribution on [0, 1]. The dashed curve shows the experimental ρ. Each

point is an average over 1000 runs. The solid curve shows the curve: ρ̃ = 1 − 0.20( 1
n

)
5.59
N (with

n = 20), which is fitted to the data.

The preceding discussion concerned the behavior of |ρ| in terms of N and n. Un-
fortunately, a similar framework and analysis for µ do not seem obvious. Nevertheless,
simulations show that, expectedly, whenever ρ ≈ 1, µ is also close to unity. Therefore,
our conclusion that “for small N and large n, the NOJD problem is ill-conditioned”
stays valid when J3 is used, as well.

5. Numerical experiments. In this section we perform some experiments to
examine the derived results. The first example is just a toy example; the second one
is a more realistic one in the context of Blind Source Separation(BSS).

5.1. Example 1. We investigate the effect of ρ, N and the condition number of
A, cond(A), on the sensitivity of NOJD for matrices generated as in (4.1). We generate
{Λi}N

i=1 with elements that are i.i.d exponential random variables with mean 1. We
choose n = 10. We also generate An×n randomly. Note that with probability one the
joint diagonalizer for {Ci}N

i=1 is unique. The noise matrices are with standard normal
elements.

We consider the quality of joint diagonalization in terms of noise level t, ρ, and
the condition number of A. We only consider J1 and J2 based methods. We use the
QRJ2D algorithm7 , introduced in [3], to find B and measure the error by:

Index(P ) =
n∑

i=1

(
n∑

j=1

|pij |
maxk |pik| − 1) +

n∑

j=1

(
n∑

i=1

|pij |
maxk |pkj | − 1) (5.1)

7Matlab code for this algorithm is available at http://www.isr.umd.edu/Labs/ISL/ICA2006/.

http://www.isr.umd.edu/Labs/ISL/ICA2006/�
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Table 5.1
(Left): Sensitivity of Index(BA) with respect to noise level t as N and hence ρ changes in

Example 1. cond(A) = 25.11. (Right): Sensitivity of Index(BA) with respect to noise level t as
cond(A) increases and ‖A‖F = 1. (ρ = .68)

Index(BA) t = 0 t = 0.01
N = 2, ρ = 0.9999 3.9 17.0
N = 4, ρ = 0.9959 0.00 3.46
N = 10, ρ = 0.9662 0.00 1.46
N = 100, ρ = 0.6903 0.00 0.29
N = 200, ρ = 0.60 0.00 0.19

Index(BA) t=0 t=0.0001
(N = 100, ρ = .68)
cond(A) = 1 0.00 0.01
cond(A) = 2 0.00 0.01
cond(A) = 10 0.00 0.12
cond(A) = 50 0.00 3.02
cond(A) = 100 0.00 28.51

with P = BA. Index(BA) ≥ 0 and equality happens only when BA = ΠD (and
hence B = ΠDA−1) for some Π and D. The smaller the Index is, the better joint
diagonalization is, in the sense that B is closer to A−1. We try different values of
N (and hence ρ). We also investigate the effect of cond(A), by keeping the Λi’s the
same, and increasing cond(A) while ‖A‖F is constant. Table (5.1) gives the results.
The left sub-table shows the Index for different values of N (hence ρ) for two different
noise levels t = 0 and t = 0.01. By increasing the number of matrices and hence
improving the modulus of uniqueness, the sensitivity improves. Note that for N = 2,
sensitivity is so high that the QRJ2D algorithm does not give a good answer even at
zero noise. The right sub-table also shows the sensitivity degradation that happens
because of increasing cond(A). In this experiment ‖A‖F = 1, N = 100, t = 0, and
0.0001. Sensitivity increases as conditioning of A degrades. Although the actual error
values depend on the specific algorithm used, the trend of the error values as the
parameters change gives an insight as to what factors affect the sensitivity.

5.2. Example 2: separation of non-stationary sources. Now we consider
a more realistic situation, which is separation of non-stationary sources using NOJD
of correlation matrices. This example also allows us to compare NOJD based on J1

and J3. The idea of using non-stationarity to separate sources has been described in
[21]. Consider model (1.1) where the source vector is a Gaussian vector of independent
components. Also, assume that the sources are non-stationary with varying variances.
Rxx(ti) the correlation matrix of the mixture at time ti is:

Rxx(ti) = AΛs(ti)AT , (5.2)

where Λs(ti) is the (diagonal) correlation matrix of the source at time ti. Suppose
that we gather the correlation matrices at times t1, ..., tN , and form the set {R(ti)}N

i=1.
If Λs(ti) changes enough such that the modulus of uniqueness for this set is smaller
than one, then NOJD of this set yields an estimation for A−1; and hence it can result
in separation of the mixture.

We have n = 10 sources. First we generate a random matrix An×n. The condi-
tion number for this matrix is 75.11. Then we generate the sources as follows. We
assume that the sources are stationary on short periods of T = 100 samples, and that
they change their variances randomly at the end of each period. We consider N = 20
periods. During the ith stationary period, the jth source has Gaussian distribution
with zero mean and a random variance λij . We draw each random standard deviation√

λij from a uniform distribution on [0, 1]. Also, during the stationary periods each
source generates independent samples. The sources are mixed through A. In each
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stationary period, we use the observed 100 samples of the mixture to estimate the
correlation matrix for the mixture in that period. After the first stationary period, at
the end of each stationary period, we perform an NOJD of the estimated correlation
matrices gathered up to that time, in order to estimate A−1. Also, as time passes, we
compute ρ and µ for the set of true correlation matrices based on λij ’s. We use three
different methods for NOJD of the estimated correlation matrices: (i) Pham’s algo-
rithm [20] which uses J3 and requires positive definite matrices, (ii) QRJ2D algorithm,
which is based on J2, and (iii) FFDIAG [29] which is based on J1. As we mentioned
before, J1 and J2 based NOJD have similar sensitivity properties. We use QRJ2D
and FFDIAG, since we want to have more evidence for comparing J1-based-NOJD
and J3-based-NOJD. The output of each of these algorithms is an un-mixing matrix
B. In order to measure the performance we use two measures. One is Index(BA),
which we introduced before. The other one is the mean-squared Interference to Signal
Ratio (ISR), which measures that at each restored source how much other sources are
present. Note that from (4.2) for the recovered source vector ~y we have:

~y = B(t)~x = B(t)A~s ≈ ~s + t∆~s. (5.3)

Here again, we have ignored the possible scaling and permutation ambiguity in the
restored vector. In practice, of course, we compute ∆ from P = BA, after re-ordering
and normalizing the rows of P . As above equation suggests, ‖∆‖F also measures the
mean-squared ISR 8, i.e., how much interference from other sources is present in each
recovered source. We use:

ISR = 10 log
‖∆‖2F

n
(5.4)

as a measure of the interference. Note that in this example we have no noise and the
source of error is the estimation error due to finite number of data samples. Another
point that we want to examine is the sensitivity of NOJD based on J3, in the case
when one of the matrices becomes almost singular. For that purpose, in the last
(i = 20) interval we set the standard deviation of six of the sources to 10−10.

Figure (5.1) shows the results of the experiment. The top graph shows the
Index(BA) in terms of i (which is the number of correlation matrices used) for dif-
ferent methods. The middle graph gives the ISR in terms of i. Note that the ISR
measures for QRJ2D and FFDIAG are very close; however, the Index measure for
these two methods differ. The bottom graph shows 1

1−ρ2 and 1
µ−1 in terms of i for the

correlation matrices involved. As explained before, these two numbers, in fact, can be
considered as condition numbers for NOJD based on J1 and J3, respectively (we have
omitted the effect of A, i.e., cond(A)2, which is common in both condition numbers,
see the last paragraphs of Sections 4.1 and 4.3). For i = 2, 3 the numbers are very
high for both the cases. One can see that after the first few i, the condition numbers
do not improve much. Note that the the condition number for the J1-based-NOJD
is higher than that of the J3-based-NOJD; and at the same time the J3-based-NOJD
yields better separation except for i = 2 and i = 20. From our theoretical results this
is certainly what we expect. However, we can not relate these two facts immediately,
since the actual numbers depend on many factors. Note that NOJD for i = 2, 3 is
not so effective, since the ISR measure is really poor (around or above −7dB). As a
comparison, the best ISR that Pham’s method achieves is −32dB, and the best one

8The author is thankful to one of the anonymous reviewers for reminding this observation.



22 Bijan Afsari

that QRJ2D or FFDIAG achieve is about −23dB. The jumps at i = 20 in Index(BA)
and in ISR for Pham’s method are due to the fact that the last correlation matrix is
almost non-singular. As we can see, the NOJD based on J1 gives better separation
in this case. Recall that J1 does not require non-singular matrices, and the condition
number we assigned for J3-based-NOJD was based on the assumption that ‖Λ−1

i ‖2’s
are not too large. At i = 20 this condition is violated and that is why despite the fact
that 1

µ−1 < 1
1−ρ2 , the J1-based-NOJD performs better. For the curious reader, we

mention that despite some evidence in this example, for a given {Λi}N
i=1 the conjecture

that 1
µkl−1 ≤ 1

1−ρ2
kl

or 1
µ−1 ≤ 1

1−ρ2 is not true. However, note that for 1
µ−1 ≤ 1

1−ρ2 to
hold it is sufficient to have µ ≥ 2, which can be achieved since the range for µ is the
long half-line [1, +∞). This may explain why in most simulations and in this example

1
µ−1 < 1

1−ρ2 .
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Fig. 5.1. This figure shows the performance of source separation for non-stationary sources
based on NOJD of correlation matrices at different times. As time passes more correlation matrices
are used. Three different methods for NOJD are employed: Pham’a algorithm which is based on
J3, QRJ2D algorithm, which uses J2 and FFDIAG which uses J1. Top: Index(BA) in terms of
number of correlation matrices used. Middle: ISR in terms of number of correlation matrices used.
Bottom: 1

1−ρ2 and 1
µ−1

in terms of number of correlation matrices used. The jump seen at i = 20

in the graphs for J3-based-NOJD is because in the last period some of the sources become extremely
weak and the correlation matrix for that period becomes almost singular.

6. Conclusions. We introduced the NOJD problem and the related EJD prob-
lem. We derived the uniqueness conditions for the EJD problem. We gave a joint
diagonalization based formulation of ICA. Factors that affect the sensitivity of the
NOJD problem were investigated. Modulus of uniqueness captures the uniqueness
of the exact joint diagonalization problem and it affects the sensitivity of the NOJD
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problem that arises from adding noise to clean matrices. Also we showed that if the
sought joint diagonalizer is ill-conditioned, then sensitivity will be high. We tried to
quantitatively show how dimension of the matrices and the number of matrices can
affect the modulus of uniqueness. In particular, we showed that the NOJD problem
can be very ill-conditioned if the number of matrices is small and they are fairly
large. Sensitivity of the NOJD problem depends on the cost function used; and in
one example we gave a comparison of the behaviors of two different cost functions for
NOJD.
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