REPORT DOCUMENTATION PAGE

AD-A191 648

2. DISTAIBUTION/AVAIIABILITV OF AEPOAT
Approved for prblic release; distribution unilmited

DTIC ELECTE APR C 4 1988
 GD

En OUSTAICUTIOWAVALLABUTV OF AMETRAGT

22. mame Grigronsince inoivioual (n. WodruffiMhj

DO FCRM 1473, 83 APR

Abstract

Sensitivity analysis is an integral part of virtually every study of system reliability. This paper describes a Monte Carlo sampling plan for estimating this sensitivity in system relliabifity tochanges in component reliabilities. The unique feature of the approach is that sarnple data collected on K inder andent replications using a specified component reliability ve:tor p are transformed by an importarce function into unbiased estimates of system reliability for each component reliability vector q in a set of vectore 2 . Moreover, this importance function together with available prior information about the given system exables one to produce estimates that require considerably less computing time to achieve a specified accuracy for all $|2|$ reliability estimates than a set of $|2|$ crude Monte Carlo sampling experiments would require to estimate each of the $|2|$ system reliabilities separately. As the number of components in the system grows, the relative efficiency continues to favor the proposed method.

The paper shows the intimate relationship between the proposal and the method of control variates. It next relates the proposal to the estimation of coefficienis in a reliability polynomial and indicates how this concept can be used to improve computing efficiency in certain cases. It aiso describes a procedure that determines the \mathbf{p} vector, to be used in the sampling experiment, that minimizes a bound on the worst case variance. The paper also derives individual and simultaneous confidence intervals that hold for every fixed sample size K. An examule itlustrates how the proposal works in an s-t connectedness problem.

APCOM．TR．88－0368

IERPARTITENT OF OPERATIONS RESEARCH

Senditivity Anslyis for the System Reliabinty Function

George S. Fishman

Technical Report No. UNC/OR/TR-87/6
December 1987

Department of Operations Research
University of North Carolina at Chapel Hill, Nö'th Carolina 27599

This research was supported by the Air Force Office of Scientific Research under grant AFOSR-84-0140. Reproduction in whole or part is permitted for any purpose of the United Stater Government.

Actrowledsement

'ilise anthor: is grateful to Professors Scott Provan and David Rubin for their helpful mprions and to Mr. Tien Yi Shaw for his programming assistance.

Abstract

Sensitivity analysis is an integral part of virtually every study of system reliability. Tuis pappr deacribes a Monte Carlo sampling plan for eatimating this sensitivity in system rellability to changea in component reliabilities. The unique feature of the approach is that sample data collacted on \mathbf{K} independent replications using a specified component reliability vectore p are tranaformed by an importance function into unbiased estimates of system reliability for each component relisbility vector \mathbf{q} in a set of vectors 2. Moreover, this importance function together with available prior information about the given system eables one to produce estimates that require considerably less computing time to achieve a spectifed accuracy for all $|\&|$ reliability estimates than a set of $|2|$ crude Monte Carlo anmpling expermenta would require to eatimate each of the $|2|$ system reliabilities ecpantely. As the number of components in the system grows, the relative efficiency continuen to fivor the proposed method.

Tre paper ahows the intimate relationship between the proposal and the method of contral narictes. It next relates the proposal to the cotimation of coefficients in a reliability polynomial and indicatcs how this concept can be used to improve computing efficiency in certin cases. It also describes a procedure that determines the \mathbf{p} vector, to be used in the sampling mxperiment, that minimises a bound on the worst case variance. The paper also derives individual and simultaneous confidence intervals that hold for every fixed sample sise K. An example illustrates how the proposal works in al s-t connectedness problem.

Koy Woeds: s-t reliability, system reliability, importance sampling, Monte Carlo method, control variates

Senditivity analysis, which represents an integral part of virtually every study of aystem reliahility, measures variation in this quantity in response to changes in component reliabititios or in system deaign. Replacing old components with new ones with higher reliabilities efects system reliability. As time elapses, system reliability deteriorates when a now replacement policy for component failures is in force. Deleting, adding or rearianging components all affect system reliability. Sampling variation in component reliability estimates induce sampling variation in the corresponding system reiiability estimate. Having accese to a model that accurately predicts these changes in systern behavior allows one to make considerably more well informed decisions for maintaining or enhancing performance.

This paper presents a method for extimating variation in system reliability in response to variation in component reliabilities. It describes a Monte Carlo sampling plan that on each replication provides sample data that contribute to the estimation of system reliability for each of w sets of distinct compcnent reliabilities. The sets may represent alternative components repiacement plans, deteriorating component reliabilities at a succession of time points or extremal points of simultaneous component reliabiiity intervai estimates (Fishman 1987). For purposes of exposition, we focus on $s-t$ reliability but emphasize that the concepts d'scussed bere also apply to other definitions of system reliability. (keuv,ords.')

To understand the significance of this approach, we first discuss the computation of a- reliability at a point. Consider a system representable by an undirected network $\mathrm{C} \Rightarrow$ (Y, δ) where Y denotes the set of nodes all of which function perfectly and δ denotes the set of edges each of which falis randomly and independently. The concept of s-t reliability principally focuses on the probability that at least one path of functioning edges (compronents) connects nodes s and $t \in F$, and it is this quantity that we wish to compute.

Since the exact computation of s-liability from a single set of component reliabilities belongs to the class of NP-hard problems (Valiant 1979), attempts to shed light oal this computation have bed to exploit special structure, rely on bounds or use the

Mente Carlo mathod. The polynomial time agurithm of Agrawai end Satyanarayana (1904) for the cacet reliability computation for serieb-paralled systems exemplifics a highly bereficiol use of special structure. Bounds such as those of Eary and Proschan (1966), Van Sithe and Frank (1972) and Ball and Provan (1983) offer interval approxirnations to the reitabitity. The Monte Cario method also exploits special structure and bounds. In particular, the sampling plans in Van Slyke and Frank (1972), Kumamoto, Tanaka and Inove (1877), Eatcon and Wong (1980), Kumamoto, Tanaks, Inove and Henley (1980), Karp and Luby (1985) and Fishman (1986) deacribe how to derive statistical estimates of reliability that are gencrally more accurate than a crude Monte Carlo sampling experiment would provide heed on the same amount of work.

With rezard to the exact computation of s-t reliability for $w>1$ sets of alternative cumponent reliabilitive, the correupooding tisne compledity has the same form as that for a shage relinbility compentation increaned by the multiplicative factor w. Also, whereas any of the aforementioned Monte Carlo proposals allow oce to satimate s-f reliability for each of the w poirte, regrettably an obecrvation on a trial for one point in no way contributes to entimating ayatem reliability at the remaining $w-1$ points. The present paper overconses this laet inadequacy. It dacribes a Monte Carlo sampling plan that on each trial generates data that conatribute to eatimating all w system reliabilities simultaneously. Most importantly, these eatimates, at all w points, are considerably more accurate than correaponding eatimates that crude sampling can produce for the ame amount of work.

The propoeed method exploits importance sempling, a technique that Kahn (1950) and Kahn and Harsis (1951) first deecribed for reducing the variance of a Monte Carlo estimator of a point. The present account exteads this technique to reliability function estimation and, in particular, shows how one can use knowledge available to the analyst before experimentation to enhance the accuracy of the eatimated function at all w points for a

Stiva ample sise K. Section 1 introduces relevant network nomenclature. Section 2 then dmeribes system reliability cotimation at a point using crude Monta Carlo sampling, as a beclise, and a highly efficient alternative method deacribed in Fishman (1986). Section 3 exteade the alternative method to simultaneous eatimation at all w points, Section 4 shows how to maces the statiatical efficiency of the proposed method and Section 5 shows the inticuate relationship between the proposed importance sampling technique and the method of control varictea.

Section 6 offers an alternative interpretation of the estimation procedure that revanin ite relationship to eatimating coefficients in a reliability polynomial and shows how this reprocentation may save computation time when a small or moderate number of components vary their reliabilities. Section 7 discusses how to perform the importance sampling optimaly given the set of component reliability vectors of interest. Sections 8 and 9 darive individual and simultaneous confidence intervals. Section 10 describes casential stepe for implementation and Section 11 provides a comprehensive example that illumtrates many of the features of the propoeed technique.

1. Probien Setting

Consider a network $\mathbf{G}=(\boldsymbol{T}, \boldsymbol{X})$ with node set \boldsymbol{Y} and edge set δ. Assume that nodes furction perfectly and that edges fail randomly and independently. Let

$$
\begin{aligned}
r & =\text { number of distinct types of edges } \\
q_{i} & =\text { probability that a node of type } i \text { functions } i=1, \ldots, r \\
q & =\left(q_{1}, \ldots, q_{r}\right) \\
f_{i} & =\text { set of edges of type } i \\
\mathbf{k}_{i} & =\left|\varepsilon_{i}\right|=\text { number of edges of type } i \\
k & =\left(k_{1}, \ldots, \mathbf{k}_{\mathbf{r}}\right) \\
e_{i j} & =j \text { th edge of type } i \quad j=1, \ldots, k_{i} ; i=1, \ldots, r \\
x_{i j} & =1 \text { if edse } e_{i j} \text { functions }
\end{aligned}
$$

$$
\begin{aligned}
& =0 \text { atherwise } \\
& x_{i}=\sum_{j=1}^{k} x_{i j}=\text { number of functioning edgee of type } i \\
& x=\left(x_{11}, \ldots, x_{1 k_{1}} ; \ldots ; x_{r 1}, \ldots, x_{r k_{r}}\right) \\
& S=\text { eot of all odev states } x
\end{aligned}
$$

$$
\begin{align*}
& =\text { probability mase function (p.m.f.) of state } x \in S \tag{1}\\
& \psi(x)=1 \text { if the syetem functions when in state } x \\
& =0 \text { ocharwise } \\
& g(Q)=\sum_{x \in S^{\prime}} d(x) P(x, k, q) \tag{2}\\
& =\text { probability that the system functions } \tag{4}
\end{align*}
$$

We aloo aname that \mathbf{G} deacribes a coherent system. A system of components is coherent if its atructure function $\{\phi(x)\}$ is nondecreasing and each component is relevant (Barlow and Procihan 1881, p. 6).

For provent purpoees, the system functions $(\phi(x)=1)$ when at least one minimal s-t path $(a, t \in \eta)$ exdste and fails $(\phi(x)=0)$ when no such path exists. Let 2 denote a set of w component reliability vectors of intereat. Then the nurpose of analysis is to estimate the θ reliability function $\{g(q), q \in S$.

2. Extimation at a Point

Crude Monte Carlo sampling offers a baseline against which potentially more effrient sampling plans can be compared. Let $X^{(1)}, \ldots, X^{(\mathbb{L})}$ denote K independent samples drawn from $\{P(x, k, q), x \in\{y)\}$. Then

$$
\begin{equation*}
\bar{g}_{\mathrm{I}}(q)=\frac{1}{K} \sum_{i=1}^{K} \phi\left(X^{(i)}\right) \tag{3}
\end{equation*}
$$

ib an umbiaved entimator of $g(q)$ with

$$
\begin{equation*}
\operatorname{var} \bar{g}_{q}(q)=g(q)[1-g(q)] / K \tag{4}
\end{equation*}
$$

To compute $\overline{\mathbf{G}}_{\mathbf{I}}(\mathbf{q})$, one performs K trials on each of which sampling X from $\{P(x, k, q)\}$ takee $O(|\boldsymbol{\|}|)$ time and determination of $\phi(X)$ takes $O(\max (|\eta|,|\delta|))$ cime, veing a depth-first search as described in Aho, Hopcroft and Ullman (1974). These are moret cave times. One can also show that the nean total computation time has the form

$$
T\left(\bar{g}_{q}(q)\right)=\alpha_{0}+K\left[\alpha_{1}+a_{2}|\delta|+\alpha_{3}(\boldsymbol{y}, \mathbf{k}, q)\right]
$$

where

$$
a_{3}(x, k, q)=\sum_{x \in S} P(x, k, q) C(x)
$$

and

$$
\mathbf{C}(\mathbf{x})=\text { expected search time given the component state vector } \mathbf{x}
$$

The quantities a_{0}, a_{1}, a_{2} and $a_{3}(x, x, q)$ are machine dependent.
All Monte Carh methods described in the previously cited references improve on the variance (4). In particular, the method described in Kunaamoto, et al. (1977) and Fiahman (1986) schieves this reduction by exploiting bounds on the structure function $\{\phi(x)\}$ and it is this approach that we now describe and later extend in Section 3. We follow the development in Fishman (1986).

Suppose that there exist $0-1$ binary functions $\left\{\phi_{\mathbf{L}}(\mathbf{x}), \mathbf{x} \in \mathscr{S}\right\}$ and $\left\{\oint_{1}(\mathbf{x}), \mathbf{x} \in \mathscr{D}\right\}$ such that

$$
\phi_{\mathbf{l}}(\mathrm{x}) \leq \phi(\mathrm{x}) \leq \phi_{0}(\mathrm{x}) \quad \forall \mathrm{L} \in \mathscr{I}
$$

Then the system reliability $\mathbf{g}(\mathbf{q})$ has lower and upper bounds $g_{L}(q)$ and $g_{U}(\mathbf{q})$, respectively, where

$$
g_{1}(q)=\sum_{x \in S^{\$}(x) P(x, k, q)} \quad I \in\{L, U\}
$$

Suppoee that one now samples $\mathbf{X}^{(1)}, \ldots, \mathbf{X}^{(\mathbf{I})}$ independently from the alternative probability man function

$$
\begin{equation*}
Q(x, k, q)=\left[\frac{\phi_{0}(x)-\phi_{2}(x)}{\Delta(q)}\right] P(x, k, q) \quad \quad x \in \sim S \tag{5}
\end{equation*}
$$

where

$$
\Delta(q)=g_{\boldsymbol{v}}(q)-g_{L}(q) .
$$

Then

$$
\begin{equation*}
\dot{g}_{L}(q)=g_{L}(q)+\Delta(q){\underset{K}{K}}^{\sum_{i=1}} \phi\left(\gamma^{(i)}\right) \tag{6}
\end{equation*}
$$

is also an unbiased eatimator of $g(q)$, but with variance

$$
\begin{equation*}
\left.\operatorname{var} \dot{g}_{\mathrm{i}}(q)=\left[\varepsilon_{v}(q)-g(q)\right] g(q)-g_{L}(q)\right] / K \leq \Delta^{2}(q) / 4 K \tag{7}
\end{equation*}
$$

Compared to crude Monte Carlo sampling, one has

$$
\begin{equation*}
\frac{\text { var } \bar{g}_{\mathrm{I}}(q)}{\text { var } \dot{g}_{\mathrm{g}}(q)} \geq 1 /\left[\left\{\mathrm{g}_{\mathrm{L}}(q)\left[1-\mathrm{g}_{0}(q)\right]\right\}^{\frac{1}{2}}-\left\{\mathrm{g}_{0}(q)\left[1-\mathrm{g}_{\mathrm{L}}(q)\right]\right\}^{t}\right]^{2} \tag{8}
\end{equation*}
$$

≥ 1,
indicating that $\dot{\mathbf{g}}_{\mathbf{R}}(\mathbf{q})$ always has a variance no larger that var $\overline{\mathrm{g}}_{\mathbf{I}}(\mathbf{q})$.

Chooeing Bounds

The choice of bounds $g_{\mathrm{L}}(\mathbf{q})$ and $\mathbf{g}_{\mathbf{0}}(\mathbf{q})$ depends on the reliability computation under consideration. As an example for the s-t connectedness problem, let $\mathscr{P}_{\mathrm{i}}, \ldots, \mathscr{P}_{\mathrm{I}}$ denote
edge-disjoint minimal g-t paths of G and let $\mathcal{F}_{1}, \ldots, \mathscr{\delta}_{\mathrm{J}}$ denote edge-disjoint minimal $\mathrm{s}-\mathrm{t}$ cutsets of G. Let

$$
\begin{aligned}
& \phi_{L}(x)=1-\prod_{m=1}^{I}\left[1-\prod_{i=1}^{r} \underset{\substack{j=1 \\
e_{i j} \in \mathcal{S}_{i} \cap g_{m}}}{x_{i j}}\right]
\end{aligned}
$$

which are lower and upper bounds, respectively, for $\phi(\mathbf{x})$. Then

$$
g_{L}(q)=1-\prod_{m=1}^{I}\left[1-\prod_{i=1}^{r} q_{i}\left|\delta_{i} \cap \mathscr{P}_{n}\right|\right]
$$

and

$$
\delta_{J}(\mathbf{q})=\prod_{m=1}^{J}\left[1-\prod_{i=1}^{\mathbf{r}}\left(1-q_{i}\right)^{\left|\delta_{i} \cap 8_{i}\right|}\right]
$$

are lower and upper bounds, respectively, on $\mathbf{g}(\mathbf{q})$. One can determine $\mathscr{L}_{1}, \ldots, \mathscr{P}_{\mathrm{I}}$ in $O(I|\mathcal{Z}|)$ time using a network flcw algorithm with unit capacities, as in Wagner (1975, p. 954), and $\mathscr{C}_{1}, \ldots, \mathscr{C}_{\mathrm{J}}$ in $0(|\mathcal{\delta}|)$ time by beginning at node s and appropriately labeling arcs. Note that

$$
\text { I } \leq \text { size of the smallest minımal s-t cutset in } G
$$

and
$\mathrm{J} \leq$ size of the smailest minimal s-t path in G .
Moreover, the resulting form of $\{\mathbf{Q}(\mathbf{x}, \mathbf{k}, \mathbf{q})\}$ in (5) enables one to use Procedure Q in Fishman (1986) to sample x in $0(|\boldsymbol{\gamma}|)$ time.

To comp: ${ }^{-3} \hat{\mathbf{g}}_{\mathbf{q}}(\mathbf{q})$ using precomputed bounds based on edge-disjoint minimal s-t pashs and cutsets, one performs K trials on each of which sampling \mathbf{X} from $\{\mathbf{Q}, \mathbf{x}, \mathbf{k}, \mathbf{q})\}$ occurs in $\mathrm{O}(|\boldsymbol{\delta}|)$ time using Procedure Q in Fishman (1986), and determination of $\phi(\mathbf{X})$ again takes $O(\max (|\eta,|\mathscr{\delta}|))$ time. Also, mean total time assumes the form

$$
T\left(\dot{g}_{\mathbf{1}}(\mathbf{q})\right)=\beta_{0}+K\left[\beta_{1}+\beta_{2}|\delta|+\alpha_{3}\left(\mathcal{S}_{01}, \mathbf{k}, \mathbf{p}\right) / \Delta(\mathbf{q})\right]
$$

where

$$
\mathscr{x}_{11}=\left\{x \in \mathscr{S}: \phi_{L}(x)=0 \text { and } \phi_{0}(x)=1\right\}
$$

and $\beta_{0}, \ldots, \beta_{2}$ denote machine dependent constants.
Observe that

$$
K(q)=K \operatorname{var} \overline{\mathrm{~g}}_{\mathbf{I}}(\mathbf{q}) / \operatorname{var} \hat{\mathbf{g}}_{\mathbf{I}}(\mathbf{q})
$$

denotes the numlier of trials one would have to take with crude Monte Carlo to achieve the same variance that arises in K trials using $\{Q(\mathbf{x}, \mathbf{k}, \mathbf{p})\}$. Then $\Lambda_{1}(\mathbf{q})=$ $\mathbf{T}\left(\overline{\mathbf{g}}_{\mathbf{I}}(\mathbf{q})(\mathbf{q}) / \mathbf{T}\left(\dot{\mathbf{g}}_{\mathbf{I}}(\mathbf{q})\right)\right.$ measures the efficiency of $\hat{\mathbf{g}}_{\mathbf{I}}(\mathbf{q})$ relative to $\overline{\mathbf{g}}_{\mathbf{I}}(\mathbf{q})$ and for large K and | $8 \mid$ has the approximate form

$$
\begin{equation*}
\Lambda_{1}(\mathbf{q}) \approx\left[\frac{\alpha_{2}+\alpha_{3}(\mathcal{K}, \mathbf{k}, \mathbf{q}) /|\delta|}{\beta_{2}+\alpha_{3}(\mathscr{K}, \mathbf{q}) / \Delta(\mathbf{q})|\delta|}\right] \frac{\mathrm{g}(\mathbf{q})[1-\mathrm{g}(\mathrm{q})]}{\left[g_{0}(\mathrm{q})-\mathrm{g}(\mathbf{q})\right]\left[\mathrm{g}(\mathbf{q})-\mathrm{g}_{\mathrm{L}}(\mathbf{q})\right]} \tag{9}
\end{equation*}
$$

where $\left.\alpha_{3}(\boldsymbol{S}, \mathbf{k}, \mathbf{q}) /|\boldsymbol{\delta}|\right)$ and $\alpha_{3}\left(\boldsymbol{x}_{01}, \mathbf{k}, \mathbf{q}\right) /|\boldsymbol{\delta}|$ are bounded from above. A ratio greater than unity favors the aiternative sampling plan. Experierce (Fishman 1986a) has shown this usually to be the case by a large margin.

3. Eotimation at a Set of Points

This section extends the technique based on bounds for a single point to estimation at a set of $w=|2|$ points. In particular, it shows that at least two estimators deserve attention and later Section 5 shows how a linear combination of these estimators is, in fact, a control variate estimator. Let $p=\left(p_{1}, \ldots, p_{r}\right) 0<p_{i}<1$ for $i=1, \ldots, r$ and let

$$
\begin{align*}
R(x, k, q, p) & =P(x, k, q) / P(x, k, p) \\
& ={\underset{i=1}{r}\left(q_{i} / p_{i}\right)^{x_{i}}\left[\left(1-q_{i}\right) /\left(1-p_{i}\right)\right]^{k_{i}-x_{i}} .}^{\text {. }} . \tag{10}
\end{align*}
$$

Lemma 1. Let \mathbf{X} be sampled from the p.m.f. $\{Q(x, k, p)\}$ in (5). Then

$$
\begin{equation*}
E[\phi(X) R(X, k, q, p)]=\left[g(q)-g_{\mathrm{L}}(q)\right] / \Delta(p) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
E[\phi(X) R(X, k, q, p)]^{2}=c(q, p)\left[g\left(q^{*}\right)-z_{L}\left(q^{*}\right)\right] / \Delta(p) \tag{12}
\end{equation*}
$$

where

$$
\begin{aligned}
c(q, p) & =\prod_{i=1}^{r} c_{i}^{k_{i}} \\
c_{i} & =c\left(q_{i}, p_{i}\right)=q_{i}^{2} / p_{i}+\left(1-q_{i}\right)^{2} /\left(1-p_{i}\right) \quad i=1, \ldots, r
\end{aligned}
$$

and

$$
q^{*}=\left(q_{1}^{2} / c_{1} p_{1}, \ldots, q_{r}^{2} / c_{r} p_{r}\right) .
$$

The Appendix contains the proof.
Theorem 1 shows how these properties relate to reliability estimation.

Theorem 1. Let \mathbf{X} be sampled from the p.m.f. $\{Q(\mathbf{x}, \mathbf{k}, \mathbf{p})\}$ in (5) and let

$$
\begin{equation*}
\phi_{\mathbf{a}}(\mathbf{x}, \mathbf{q}, \mathbf{p})=\mathrm{g}_{\mathrm{L}}(\mathbf{q})+\Delta(\mathbf{p}) \phi(\mathbf{x}) R(x, \mathbf{k}, \mathbf{q}, \mathbf{p}) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\psi_{b}(\mathbf{x}, \mathbf{q}, \mathbf{p})=g_{\mathbf{v}}(\mathbf{q})-\Delta(\mathbf{p})[1-\phi(\mathbf{x})] R(\mathbf{x}, \mathbf{k}, \mathbf{q}, \mathbf{p})\right] \quad \mathbf{q} \in \mathscr{E} . \tag{14}
\end{equation*}
$$

Then for each $\mathbf{q} \in \mathbb{2}$

$$
\begin{align*}
& E \psi_{\mathbf{a}}(\mathbf{X}, \mathbf{q}, \mathbf{p})=E \psi_{\mathbf{b}}(\mathbf{X}, \mathbf{q}, \mathbf{p})=\mathbf{g}(\mathbf{q}) \tag{15}\\
& \left.\operatorname{var} \psi_{\mathbf{a}}(\mathbf{X}, \mathbf{q}, \mathbf{p})=\mathbf{v}_{\mathrm{a}}(\mathbf{q}, \mathbf{p})=\mathrm{c}(\mathbf{q}, \mathbf{p}) \Delta(\mathbf{p})\left[\mathrm{g}\left(\mathbf{q}^{*}\right)-\mathrm{g}_{\mathrm{L}}\left(\mathbf{q}^{*}\right)\right]-\mathrm{g}(\mathbf{q})-\mathrm{g}_{\mathrm{L}}(\mathbf{q})\right]^{\mathbf{2}} \tag{16}\\
& \left.\operatorname{var} \psi_{b}(\mathbf{X}, \mathbf{q}, \mathbf{p})=\mathbf{v}_{\mathbf{b}}(\mathbf{q}, \mathbf{p})=\mathrm{c}^{(} \mathbf{q} \mathbf{q}\right) \Delta(\mathbf{p})\left[\mathrm{g}_{0}\left(\mathbf{q}^{*}\right)-\mathrm{g}\left(\mathbf{q}^{*}\right)\right]-\left[\mathrm{g}_{0}(\mathbf{q})-\mathrm{g}(\mathbf{q})\right]^{\mathbf{2}} \tag{17}
\end{align*}
$$

and
$\operatorname{cov}\left[\psi_{a}(X, q, p), \psi_{b}(X, q, p)\right]=v_{a b}(\mathbf{q}, \mathbf{p})=\left[g_{0}(\mathbf{q})-\mathrm{g}(\mathbf{q})\right]\left[\mathrm{g}(\mathbf{q})-\mathrm{g}_{\mathrm{l}}(\mathbf{q})\right]$.

The proof follows from Lemma 1.
Observe that the importance function R corrects the expectations (15) to the desired value, thereby inducing the variances in (16) and (17). The implication is immediate. Let $\mathbf{X}^{(\mathbf{i})}$ now denote the ith sample drawn from $\{Q(x, k, p)\}$ and observe that one now has two potential estimators of $\mathbf{g}(\mathbf{q})$, namely

$$
\begin{equation*}
\hat{\mathrm{g}}_{\mathrm{j} \mathbf{I}}(\mathbf{q}, \mathrm{p})=\frac{1}{\mathrm{~K}} \sum_{\mathrm{i}=1}^{\mathbf{R}} \psi_{\mathrm{j}}\left(\mathbf{X}^{(\mathbf{i})}, \mathbf{q}, \mathbf{p}\right) \tag{19}
\end{equation*}
$$

with

$$
\begin{equation*}
\operatorname{var} \hat{g}_{\mathbf{j} \mathbf{r}}(\mathbf{q}, \mathbf{p})=\operatorname{var} \psi_{j}(\mathbf{X}, \mathbf{q}, \mathbf{p}) / \mathrm{K} \quad \mathrm{j} \in\{\mathrm{a}, \mathrm{~b}\} \tag{20}
\end{equation*}
$$

Most importantly, note that merely sampling with edge reliabilities \mathbf{p} enables one to generate two unbiased estimators of the entire reliability function $\{\mathbf{g}(\mathbf{q}), \mathbf{q} \in 2\}$. By contrast, all Monte Cailn sampling plans cited in the introduction require | $2 \mid$ separate experiments to estimate $\{\mathbf{g}(\mathbf{q}), \mathbf{q} \in \mathcal{Z}\}$.

4. Efficiency

Measuring the statistical efficiency of $\left\{\hat{\mathrm{g}}_{\mathbf{a k}}(\mathbf{q}, \mathbf{p}), \mathbf{q} \in q\right\}$ and $\left\{\hat{\mathrm{g}}_{\mathrm{bs}}(\mathbf{q}, \mathbf{p}), \mathbf{q} \in 2\right\}$ as
 mange point. In particular, the sobering obeervation that $\mathbf{c}(\mathbf{q} ; \mathbf{p})$ in (16) and (17) increases exposeativilly with $|3|$ makes one circumspect ahout the benefit of the proposed method as the she of G grews. We now ahow that this benefit is assured for finite $|\ell|$ and number of edee types r , provided that PE 2 .

Lat $\&=\left\{q_{1}, \ldots, q_{v}\right\}$ where $q_{j}=\left(q_{1 j}, \ldots, q_{r j}\right)$ and $q_{i j}$ is the reliability assigned to compomats of type i in the j th component reliability vector for $j=1, \ldots, w$. Let $\boldsymbol{\theta}=$ $\{1, \ldots, r\}$ and

$$
\boldsymbol{d}^{*}=\left\{i \in \boldsymbol{N}: \mathrm{p}_{\mathrm{i}} \not \not q_{i j} \text { for at least one } j ; \quad j=1, \ldots,|2|\right\}
$$

so that $\left|\boldsymbol{N}^{*}\right|$ composeat reliebility types vary in 2. Algorithm A describes ihe steps for computing the eatimates and provides the basis for mossuring efficiency. In addition to
 unbineod atimators of $\left\{\operatorname{var} \dot{g}_{a r}(q, p), \operatorname{var} \hat{g}_{b x}(q, p) ; q \in\{4\}\right.$. Obeerve that preprocessing in step 1 takes $O(|\boldsymbol{*} \|||2|)$ time, postprocessing in step 3 takes $O(|2|)$ time and, on each zeplication, sampling in step 2 a tales $\mathrm{O}(|\delta|)$ time, summation in step 2 c takes $O\left(\sum_{i \in \delta \mathbf{N}^{*}} \mathbf{k}_{\mathrm{i}}\right) \leq \boldsymbol{O}(|\boldsymbol{\delta}|)$ time, determination of $\phi(X)$ in step 2 b takes $\mathrm{O}(\max |\boldsymbol{\eta},|\boldsymbol{\delta}|)$) and step 2d takee $\mathrm{O}\left(\left|\boldsymbol{\delta}^{*}\right| \mid \boldsymbol{2 |}\right)$ time. One can also show that the mean total time for K replications using Algorithm A has the form

$$
\begin{aligned}
\mathrm{T}\left(\left\{\hat{\mathrm{~g}}_{\mathrm{ar}}(\mathbf{q}, \mathrm{p}), \dot{\mathrm{g}}_{\mathrm{bx}}(\mathbf{q}, \mathrm{p})\right\}\right)= & \omega_{0}+\omega_{1}|\mathscr{*}||2|+\omega_{2}|2|+\mathrm{K}\left[\omega_{3}+\beta_{2}|\delta|+\alpha_{3}\left(\mathscr{\delta}_{01}, \mathbf{k}, \mathrm{p}\right) / \Delta(\mathbf{p})\right. \\
& \left.+\omega_{4}|\delta * *||2|+\omega_{5} \underset{\mathrm{i} \in \delta^{*}}{\boldsymbol{E}} \mathbf{k}_{\mathrm{i}}\right]
\end{aligned}
$$

time where $\omega_{0}, \ldots, \omega_{5}$ denote machine dependent constants and β_{2} is identical with β_{2} in $\mathrm{T}\left(\hat{g}_{\mathrm{I}}(\mathrm{q})\right.$). To reduce numerical error, all computation in step 3 should be performed in double precision arithmetic.

Alurithe 1

 an accher of indupendent replicatione E .

Hental:

1. Initialisation

a. $\Delta(p)+\varepsilon_{V}(p)-\varepsilon_{L}(p)$.
b. Por each ex \& :

$$
s(q)=s_{1}(a)=V(q)=\eta_{1}(q)+0 .
$$

Por ach ied ${ }^{\text {P* }}$:

$$
e_{i}(q)-\ln \left[q_{i}\left(1-p_{i}\right) / p_{i}\left(1-q_{i}\right)\right] \operatorname{and} \beta_{i}(q)+\ln \left[\left(1-q_{i}\right) /\left(1-p_{i}\right)\right] .
$$

2. An aeck of I indopedent triale:

b. Deteraine $\phi(\mathbf{I})$.

d. For \mathbb{E} :

$$
T(\mathbb{T}) \leftarrow 0 .
$$

For aech ic $\mathcal{D H}^{*}: ~ T(q)+T(q)+k_{i} \beta_{i}\left(\dot{q}+I_{i} \alpha_{i}(q)\right.$.
$\mathbf{T}(\mathbf{q})+\exp [\mathbf{T}(\mathbf{q})] ; \mathbf{S}(\mathbf{q})+\mathbf{S}(\mathbf{q})+\mathbf{T}(\mathbf{q}) ; \mathbf{V}(\mathbf{q})+\mathbf{V}(\mathbf{q})+\phi(\mathbf{I}) \mathbf{T}(\mathbf{q}) ;$
$S_{1}(q)+S_{1}(q)+T(q) T(\Phi) ; Y_{1}(q)+W_{1}(q)+\phi(\mathbf{X}) T(q) T(q)$.
3. Compratation of axmary statistics

For each qe 2 :

$$
\begin{aligned}
& \hat{g}_{\mathrm{LI}}(\boldsymbol{q}, \mathrm{p})+\mathrm{g}_{\mathrm{L}}(\boldsymbol{q})+\Delta(\mathrm{p}) \boldsymbol{V}(\boldsymbol{q}) / \mathbf{L} .
\end{aligned}
$$

Lat now compare this approach to eatimating $\{B(q), q \in 2\}$ with the alternative
 the sample stres $\{\mathrm{K}(\mathrm{g}, \mathrm{p}), \Phi \in \mathcal{A}$ to achieve equal variances. That is,

$$
\begin{equation*}
\operatorname{var}_{\mathrm{g}(\mathrm{~m})}(q)=\mathrm{g}(\Phi)[1-\mathrm{g}(\mathrm{q})] / \mathrm{K}(q, \mathrm{p}) \tag{21}
\end{equation*}
$$

where

$$
K(\Phi, P)=K \lambda(\phi, p)
$$

and

$$
\lambda(q, p)=\frac{g(q)[1-g(q)]}{\min _{j \in\{a, b\}}^{\operatorname{var} \psi_{j}(q, p)} .}
$$

Obeerve that

$$
\lambda(p, p)=g(p)[1-g(p)] /\left[g_{0}(p)-g(p)\right]\left[g(p)-g_{L}(p)\right]
$$

and, except in apecial cases, for any odge type iso\%*

$$
\lim _{\mathbf{k}_{i} \rightarrow \infty} \lambda(\mathbf{q}, \mathbf{p})=0 \quad \text { for } \mathbf{q} \neq \mathbf{p}
$$

This last limit follows from the growth of $c(q, p)$ with \mathbf{k}_{i}.
Let

$$
\begin{equation*}
\lambda(\mathbf{p})=\sum_{\mathbf{q} \in \mathcal{E}} \lambda(\mathbf{q}, \mathbf{p}) \tag{22}
\end{equation*}
$$

and observe thini

$$
\begin{equation*}
\lim _{\mathbf{k}_{\mathbf{i}} \rightarrow \infty} \lambda(\mathbf{p})=\lambda(\mathbf{p}, \mathbf{p}) . \tag{23}
\end{equation*}
$$

Observe that the time ratio

$$
\begin{equation*}
\Lambda_{1}(\mathcal{L}, \mathrm{p})=\frac{\left.T\left(\bar{\delta}_{\mathbf{B}_{(q, p)}}(q)\right\}\right)}{T\left(\left\{\dot{g}_{a I}(q, p), \dot{g}_{b I}(q, p)\right\}\right)} \tag{24}
\end{equation*}
$$

where

$$
\left.T\left(\bar{G}_{\mathcal{(q , p)}}(q)\right\}\right)=\sum_{q \in 2} T\left(\bar{g}_{(q, p)}(q)\right)
$$

meesures the efficiency of the proposed method relative to using crude Monte Carlo sampling with (3) \mid in times to obtain eetimates with equal variances var $\overline{\mathrm{g}}_{\mathbf{I}(\mathrm{q}, \mathrm{p})}(\mathbf{q})=$ $\min _{j \in\{, 0, b\}} \operatorname{var} \dot{\varepsilon}_{j \leq}(q, p)$ for $q \in 2$. As k_{i} increases, (24) assumes the form

Practice indicates that $\omega_{5} \ll \beta_{2}$. Then provided $p \in \mathcal{L}$, (25) generally satisfies $\Lambda_{1}(\mathcal{2}, p) \geq$ $\Lambda_{i}(p)$ for lerge \mathbf{k}_{i} ($i \in \delta^{*}$), implying thai Algorithm A is at least as efficient as (6) at a single point. As the example in Section 11 shows, the realized efficiency can be considerably greater.

5. The Optimal Betimator

The repreventations of $\dot{g}_{\mathbf{a x}}(\mathbf{q}, \mathrm{p})$ and $\dot{\mathrm{g}}_{\mathrm{br}}(\mathbf{q}, \mathrm{p})$ in (19) suggest that these quantities conceptually are alternative forms of a more comprehensive estimator. Theorem 2 confirms this obeervation.

Thoorem 2. Let X denote a sample from $\{Q(x, k, p)\}$ and define

$$
\begin{equation*}
\phi(x, q, p, \theta)=\theta \phi_{a}(x, q, p)+(1-\theta) \psi_{b}(x, q, p) \quad-\infty<\theta<\infty . \tag{26}
\end{equation*}
$$

Then for thad ind

i. $\quad E(X, \&, p, \theta)=g(\boldsymbol{q})$
i1. $\quad \theta^{\prime \prime}(q, p)=\left[v_{b}(q, p)-w_{a b}(q, p)\right] /\left[v_{n}(q, p)+v_{b}(q, p)-2 v_{s b}(q, p)\right]$

$$
=1 /\left\{1+\left[v_{\mathrm{a}}(q, p) \rightarrow_{\Delta b}(q, p)\right] /\left[v_{b}(q, p) v_{c b}(q, p)\right]\right\}
$$

minimisen vat $\boldsymbol{\psi}(\mathbf{X}, \mathbf{q}, \mathbf{p}, \boldsymbol{\theta})$
iii. $\left.\quad \operatorname{var} \nVdash X, q, p, \theta^{*}(q, p)\right)=\left[v_{a}(q, p) v_{b}(q, p)-v_{a b}^{2}(q, p)\right] /\left[c(q, p) \Delta(p) \Delta\left(\mathbf{q}^{*}\right)-\Delta^{2}(q)\right]$.

The proof follow directly from the minimisation of $\operatorname{var} \boldsymbol{\psi}(\mathbf{X}, \mathbf{q}, \mathbf{p}, \boldsymbol{\theta})$ with respect to $\boldsymbol{\theta}$. Theefore, among eatimetors of the form

$$
\begin{equation*}
\dot{g}_{\mathrm{I}}(\mathrm{q}, \mathrm{p}, \theta)=\theta \dot{g}_{\mathrm{ax}}(\mathrm{q}, \mathrm{p})+(1-\theta) \dot{g}_{\mathrm{bx}}(\mathrm{q}, \mathrm{p}), \tag{27}
\end{equation*}
$$

$\delta_{1}\left(s p, \theta^{*}(s p)\right)$ has minimal variance.
Obeerve that

$$
\begin{aligned}
\theta^{*}(q, p) & =1 & & \text { if } v_{a}(q, p)=v_{s b}(q, p) \neq v_{b}(q, p) \\
& =0 & & \text { if } v_{b}(q, p)=v_{a b}(q, p) \neq v_{a}(q, p),
\end{aligned}
$$

revealing that $\hat{\mathbf{g}}_{\mathbf{a r}}(\mathbf{q}, \mathbf{p})$ is optimal if

$$
\operatorname{var} \dot{g}_{\mathbf{a x}}(q, p)=\operatorname{var} \dot{g}_{\mathbf{\Sigma}}(q)
$$

and $\hat{\mathrm{g}}_{\mathrm{bx}}(\mathbf{q}, \mathrm{p})$ is optimal if

$$
\operatorname{var} \dot{g}_{b \mathbf{x}}(\mathbf{q}, \mathbf{p})=\operatorname{var} \dot{\mathrm{g}}_{\mathbf{I}}(q)
$$

whece $i_{8}(\varphi)$ and var $g_{9}(\varphi)$ are defined in (6) and (7) reupectively.
Writing (28) in the alternative form

$$
\begin{equation*}
\omega(x, q, p, \theta)=\phi(x, q, p)+\theta[R(x, k, q p))-\Delta(q)] \tag{28}
\end{equation*}
$$

revele that $\mathbf{R}\left(\mathbf{X}^{(1)}, k, 4, p\right), \ldots, R\left(X^{(\mathbf{Z})}, k, q, p\right)$ act as control veriates with known mean $\Delta(\mathbf{q})$ aed, by appropecate subetitution, that

$$
\operatorname{var} \notin\left(X, q, p, \theta^{*}(q, p)\right)=\operatorname{var} \psi_{b}(X, q, p)\left\{1-\operatorname{corr}^{2}\left[\psi_{b}(X, q, p), R(X, k, q, p)\right]\right\},
$$

where $\operatorname{cocr}(A, B)$ decoter the coefficient of correlation between A and B. Note that this variance diminithee as the correlation between $\phi_{b}(\mathbf{X}, \mathbf{q}, \mathbf{p})$ and $\mathbf{R}(\mathbf{X}, \mathbf{k}, \mathbf{q}, \mathbf{p})$ increases in maguitude.

In practise, $\left\{\Theta^{*}(q, p), q \in\{ \}\right.$ is unknown but can be estimated unbiasedly for $q \neq p$ by

$$
\begin{equation*}
\dot{\theta}^{*}\left(\varepsilon_{,} p\right)=K\left\{V\left[\hat{\varepsilon}_{* x}(q, p)\right]-Z_{q}(q, p)\right\} /\left[c(q, p) \Delta(p) \Delta\left(q^{*}\right)-\Delta^{2}(q)\right] \tag{29}
\end{equation*}
$$

n bere

$$
\left.\left.Z_{I}(q, p)=\dot{\varepsilon}_{q}(q)-\dot{\delta}_{b x}(q, p)\right] \dot{\delta}_{a I}(q, p)-g_{q}(q)\right] /(K-1)
$$

and $V\left[\hat{\delta}_{x x}(q, p)\right]$ is computed in step 3 of Algorithm A. Although one may incline to use the extmator
for $g(q)$, one cuickly sees that

$$
\begin{aligned}
& \operatorname{Er}\left(\sin ^{\circ} \theta^{*}(\varepsilon p)\right)=g(q)+\operatorname{cov}\left[\theta^{*}(q, p), \hat{g}_{\mathrm{ar}}(q, p)\right] \\
& -\operatorname{cov}\left[\hat{\theta}^{*}(q, p), \hat{g}_{b x}(q, p)\right] .
\end{aligned}
$$

Tharciore, $\dot{\varepsilon}_{2}$ (\&p $\left.\Theta^{*}(\&, \mathrm{p})\right)$ generally is biased. While this bias diminishes as K increases, the rate of dimipation depends on the perticular system under study. As a result, no genaral statement is poodible regarding bow large K must he in order to treat bias as incideatal. Becance of this limitation, the remainder of this paper focuses on choosing between $\hat{\mathbf{g}}_{\mathrm{a}}(4, \mathrm{p})$ and $\dot{\mathrm{g}}_{\mathrm{tg}}(\mathbf{q}, \mathrm{p})$. We return to the issue of choosing a point estimator for $g(9)$ in the example of Section 11.

6. An Alternative Repreventation

This rection describes an alternative representation for $\mathbf{g}(\mathbf{q})$ that offers coasiderable conceptual value for function eatimation. Let

$$
\begin{equation*}
S\left(\varepsilon_{1}, \ldots, \varepsilon_{i}\right)=\left\{x \in S \mid \sum_{j=1}^{k} x_{i j}=\varepsilon_{i}, i=1, \ldots, r\right\} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
M\left(\varepsilon_{1}, \ldots, \mathbf{z}_{r}\right)={\underset{x \in S}{ }}^{\left.z_{1}, \ldots, z_{r}\right)} \phi(x) \tag{32}
\end{equation*}
$$

$=$ the number of possible ways that the system can function ($\phi(x)=1$) when z_{1}, \ldots, z_{r} components of types $1, \ldots, r$, respectively, function and $k_{1}-\mathbf{z}_{1}, \ldots, k_{r}-\mathbf{z}_{\mathbf{r}}$ components of types $1, \ldots, r$, respectively, fail.

Then ose can write

$$
\begin{equation*}
g(q)=\sum_{\sum_{1}=0}^{k} f_{1}\left(k_{1}, q_{1}\right) \ldots \sum_{z_{r}=0}^{k} r_{r}\left(k_{r}, q_{r}\right) u\left(z_{1}, \ldots, z_{r}\right) \tag{33}
\end{equation*}
$$

wher

$$
f_{s}(k, q)=\binom{k}{z} q^{2}(1-q)^{k-} \quad \varepsilon=0,1, \ldots, k ; \quad 0 \leq q \leq 1, \quad k=1,2, \ldots
$$

nd

$$
u\left(\varepsilon_{1}, \cdots, s_{r}\right)=M\left(z_{1}, \cdots, s_{r}\right) / \prod_{i=1}^{r}\left(\mathbf{z}_{i}\right) .
$$

Otemerve that since we are working with a coherent system

$$
\begin{aligned}
u(0, \ldots, 0) & =0 \\
u\left(z_{1}, \ldots, z_{j}, \ldots, z_{r}\right) & \leq u\left(z_{1}, \ldots, z_{j}+1, \ldots, z_{r}\right) \quad j=1, \ldots, r \\
u\left(k_{1}, \ldots, k_{r}\right) & =1,
\end{aligned}
$$

00 that $\left\{u\left(\mathbf{z}_{1}, \ldots, \mathbf{s}_{\mathbf{r}}\right) ; 0 \leq \mathbf{s}_{\mathbf{i}} \leq \mathbf{k}_{\mathbf{i}}, \mathbf{i}=1, \ldots, r\right\}$ is a muitivariate distribution function.
If ooe were to perform crude Monte Carlo sampling, then the eatimation of $\mathbf{g}(\mathbf{q})$ would be equivalent to eotimating the coefficients $\left\{u\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{\mathbf{r}}\right)\right\}$. In the case of $\mathrm{r}=1, \mathrm{M}\left(\mathbf{z}_{1}\right)$ denotes the number of connecting cutsets of G when z_{1} arcs function and $k_{1}-z_{1}$ arcs fail. Fiahman (1987) describes a method of eetimating $M\left(z_{1}\right)$ in this special case. As we now stow, the present proposal corresponds to the implicit estimation of analogous quantities.

Let

$$
\begin{aligned}
K_{a}\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{r}\right)= & \text { number of replications on which the system } \\
& \text { functions when } \mathbf{z}_{1}, \ldots, \mathbf{z}_{r} \text { components of types } 1, \ldots, r, \\
& \text { respectively, function and } \mathbf{k}_{1}-z_{1}, \ldots, k_{r}-z_{r} \text { components } \\
& \text { of types } 1, \ldots, r, \text { respectively, fail }
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{K}_{\mathrm{b}}\left(\mathrm{z}_{1}, \ldots, \mathbf{z}_{\mathrm{r}}\right)= & \text { number of replications on which the system } \\
& \text { fuils when } z_{1}, \ldots, z_{r} \text { components of types } 1, \ldots, r, \\
& \text { reapectively, function and } \mathrm{k}_{1}-z_{1}, \ldots, k_{r}-z_{r} \text { components } \\
& \text { of types } 1, \ldots, r, \text { respectively, fail. }
\end{aligned}
$$

Then $\dot{g}_{\mathrm{ax}}\left(\boldsymbol{q}, \mathrm{P}\right.$) and $\dot{g}_{\mathrm{br}}(\mathbf{q}, \mathrm{p})$ in (6) have the equivalent forms

$$
\begin{equation*}
\dot{g}_{a}(q, p)=g_{L}(q)+\Delta(p) \sum_{z_{1}=0}^{\sum_{1}^{1} \ldots \sum_{z_{r}}^{k} r^{a}(x, k, q, p) K_{a}\left(z_{1}, \ldots, z_{r}\right) / K} \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{g}_{b x}(q, p)=g_{V}(q)-\Delta(p) \sum_{z_{1}=0}^{\sum_{z_{r}}^{1} \ldots} \sum_{z_{i}}^{\frac{k}{r}} R^{*}(z, k, q, p) K_{b}\left(z_{1} \ldots, z_{r}\right) / K \tag{38}
\end{equation*}
$$

where

$$
\begin{aligned}
& \operatorname{EK}_{\mathrm{a}}\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{\mathrm{r}}\right) / K=u_{\mathrm{a}}\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{\mathbf{r}}\right)=u\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{\mathrm{r}}\right)-u_{\mathrm{L}}\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{\mathrm{r}}\right)
\end{aligned}
$$

and

$$
E K_{b}\left(z_{1}, \ldots, z_{r}\right) / K=u_{b}\left(z_{1}, \ldots, z_{r}\right)=u_{v}\left(z_{1}, \ldots, z_{r}\right)-u\left(z_{1}, \ldots, z_{r}\right) .
$$

Therefore, using $\hat{g}_{a}(q, p)$ is equivalent to eatimating the coefficients $\left\{u_{a}\left(z_{1}, \ldots, z_{r}\right)\right\}$ implicitly and using $\dot{\mathbf{g}}_{\mathrm{bx}}(\mathbf{q} \cdot \mathbf{p})$ is equivalent to estimating the coefficients $\left\{u_{\mathrm{b}}\left(\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{r}}\right)\right\}$ implicitly.

Expressions (19), on the one hand, and (37) and (38), on the other, have beneficial and limiting features. If one uses Algorithm A, then the sample reliability functions $\left\{\hat{\mathbf{g}}_{\mathrm{ar}}(\mathbf{q}, \mathbf{p}), \hat{\mathrm{g}}_{\mathbf{b x}}(\mathbf{q}, \mathbf{p}) ; \mathbf{q} \in \mathcal{2}\right\}$ available for study have ordinates only at the points in \mathcal{Q} specified in the sampling experiment. However, if one alternatively records $\left\{\mathrm{K}_{\mathrm{a}}\left(z_{1}, \ldots, z_{\mathrm{r}}\right)\right.$,
$\left.K_{b}\left(\varepsilon_{1}, \ldots, r_{r}\right)\right\}$, then (37) and (38) enable one to construct the sample functions for any q in $[0,1]^{\mathbf{r}}$ which may be of interest at any time after the sampling experiment terminates. Also, a Section 9 shows shortly, for a given network G, the widths of confidence intervals for
 whereas confidence intervals based on $\left\{K_{a}\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{\mathbf{r}}\right), K_{b}\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{r}\right)\right\}$ have widths independent of |여.

This alternative approach requires a space of $\prod_{i \in ~ o f *} \mathbf{k}_{\mathbf{i}}$ counters to accumulate $\left\{\mathrm{K}_{\mathrm{a}}(\cdot)\right\}$ and \& like space to accumulate $\left\{\mathrm{K}_{\mathrm{b}}(\cdot)\right\}$. Moreover, a modified Algorithm A based
 $T\left(\left\{\dot{\delta}_{\mathrm{ax}}(q, p), \dot{\mathrm{g}}_{\mathrm{bx}}(q, p)\right\}\right)$ by $\left.O\left(|2| \prod_{i \in \mathcal{X}^{*}} k_{i}\right) \leq O\left(|\delta| /\left|\boldsymbol{x}^{*}\right|\right)^{\left|\boldsymbol{x}^{*}\right|}\right)$ thus eliminating their dependence on the sample size K. If $\prod_{i \in \mathcal{F}} k_{i}$ is large, this may limit the extent to which one can store the sample sums $\left\{\mathrm{K}_{\mathbf{a}}(\cdot), \mathrm{K}_{\mathrm{b}}(\cdot)\right\}$. However, when they are storable, their availability offers considerable post-experimental discretion for computing quantities of interest.

7. Chooding the Sampling Vector \mathbf{p}

The forms of the variances (16) and (17) clenily indicate that the choice of p affects the statistical accuracies of $\hat{\mathbf{g}}_{a x}(\mathbf{q}, \mathbf{p})$ and $\dot{\mathbf{g}}_{b \mathbf{y}}(\mathbf{q}, \mathrm{p})$. While no unequivocal rule exists for choosing p, minimizing $\max _{q \in \mathbb{Z}}\left[\min _{j \in\{a, b\}}\right.$ var $\left.\dot{\mathbf{g}}_{j \mathbf{I}}(q, p)\right]$ is one reasonable objective. Unfortunately, the unknown variances render this minimization impossible. An immediate alternative uses the upper bound

$$
c(q, p) \Delta(p) \Delta\left(q^{*}\right) \geq \max _{j \in\{a, b\}} \operatorname{var} \dot{g}_{j K}(q, p)
$$

and finds, by grid search, the p that minimizes $\Delta(p) \max _{q \in \mathcal{Z}} c(q, p) \Delta\left(\mathbf{q}^{*}\right)$. However, a
considerably better bound $\mathbf{h}(\mathbf{q}, \mathbf{p})$ exists when either $\mathbf{p} \leq q$ or $p \geq q$ so that sampling with the p that minimizes max $\mathbf{h}(\mathbf{q}, \mathbf{p})$ can produce considerably better worst case results.
$\mathbf{q} \in \mathcal{2}$
This section derives $h(q, p)$ explicitly for var $\psi_{b}(X, q, p)$. It makes use of the observation that for a coherent system $p \leq q$ for all $q \in \mathcal{2}$ implies $g(p) \leq g(q)$ and $g_{j}(p) \leq g_{j}(q)$ for $j \in\{L, U\}$ and $p \geq q$ for all $q \in \mathcal{L}$ implies $g(p) \geq g(q)$ and $g_{j}(p) \geq g_{j}(q)$ for $j\{L, U\}$. A completely analogous approach holds for var $\hat{\mathrm{g}}_{\mathrm{aL}}(\mathbf{q}, \mathbf{p})$. Also, the Appendix extends the analysis (Theorem 4 and 5) to cases in which the coefficients of variation

$$
\gamma_{1 j}(\mathbf{q}, \mathbf{p})=\left[\operatorname{var} \psi_{j}(X, q, p)\right]^{\frac{1}{2}} / g(\mathbf{q})
$$

and

$$
\left.\boldsymbol{\gamma}_{2 j}(\mathbf{q}, \mathbf{p})=\left[\operatorname{var} \psi_{j}(X, q, p)\right]^{\frac{1}{2} /[} / 1-g(q)\right] \quad j \in\{a, b\}
$$

are the criteria of acciracy.

Lemma 2. Define

$$
\begin{equation*}
\left.h_{1}(z)=h_{1}(z, q, p)=c(q, p) \Delta i p\right) \Delta\left(q^{*}\right)-\left[g_{\|}(q)-z\right]^{2} \tag{39}
\end{equation*}
$$

and

$$
\mathrm{h}_{2}(\mathrm{z})=\mathrm{h}_{2}(\mathrm{z}, \mathbf{q}, \mathbf{p})=\mathrm{c}(\mathbf{q}, \mathbf{p}) \Delta(\mathbf{p})\left[\mathrm{g}_{\mathrm{U}}\left(\mathbf{q}^{*}\right)-\mathrm{z}\right]-\left[\mathrm{g}_{\mathrm{U}}(\mathbf{q})-\mathrm{z}\right]^{2}
$$

$$
-\infty<z<\infty .
$$

Then for either $\mathbf{p} \leq \mathbf{q}$ or $\mathbf{p} \geq \mathbf{q}$

$$
\begin{align*}
& \operatorname{var} h_{b}(X, q, p) \leq h(q, p)=\max \left\{\max _{g_{L}(q) \leq z \leq g_{L}\left(q^{*}\right)^{h_{1}(z),} g_{g_{L}}(q) \leq z \leq g_{U}(q)} \max _{2}(z)\right] \tag{40a}\\
& \text { if } g_{L}(q) \leq g_{L}\left(q^{*}\right) \leq g_{U}(q) \\
& =\max _{g_{L}(q) \leq 2 \leq g_{0}(q)} h_{1}(z) \quad \text { otherwise. } \tag{40b}
\end{align*}
$$

The Appendix contains the proof.

Theorem 3. For h_{1} and h_{2} as defined in (39), $p \geq q$ or $p \geq q$, and

$$
\begin{array}{rlr}
z^{*} & =g_{0}(q)-c(q, p) \Delta(p) / 2, & \\
\text { var } \psi_{b}(X, q, p) \leq h(q, p)=\max \left[h_{1}\left(g_{L}\left(q^{*}\right)\right), h_{2}\left(\max \left(z^{*}, g_{L}\left(q^{*}\right)\right)\right)\right] \\
& =h_{1}\left(g_{0}(q)\right) \quad(q) \leq g_{L}\left(q^{*}\right) \leq g_{0}(q) \tag{41}\\
& \text { otherwise. }
\end{array}
$$

See the Appendix for the proof. To derive the analogous upper bound for var $\psi_{\mathrm{a}}(\mathbf{X}, \mathbf{q}, \mathrm{p})$, one replaces z by $1-2, g_{L}(q)$ by $1-g_{J}(q), g_{V}(q)$ by $1-g_{L}(q), g_{L}\left(q^{*}\right)$ by $1-g_{J}\left(q^{*}\right)$ and $g_{V}\left(q^{*}\right)$ by $1-\mathrm{g}_{\mathrm{L}}\left(\mathrm{q}^{*}\right)$ everywhere in (38), (39) and (40).

Recall from Section 4 that choosing \mathbf{p} from 2 is beneficial from the viewpoint of efficiency as any of the k_{i} grows. Then one can compute $\max _{\mathrm{q} \in \mathrm{q}} \mathrm{h}(\mathrm{q}, \mathrm{p})$ by enumeration for every p in \mathcal{L} and select the p that minimizes the maxima. In total $|\mathcal{L}|^{2}$ points are evaluaied. As the example in Section 11 shows, this method of choosing p can lead to significant improvements in statistical efficiency.

8. Individual Confidence Intervals

Although the distribution of $\left[\hat{\mathbf{g}}_{\mathbf{j}}(\mathbf{q}, \mathbf{p})-\mathrm{g}(\mathbf{q})\right] /\left[\operatorname{rar} \hat{\mathbf{g}}_{\mathrm{j}}(\mathbf{q}, \mathbf{p})\right]^{\frac{1}{3}}$ converges to the
standard normal distribution as $K \rightarrow \infty$, this result, at best, can only lead to a rough confidence interval for $\mathrm{g}(\mathrm{q})$. To avoid the errors of approximation inherent in the normal approach to confidence intervals, we use an alternative technique.

Theorem 6. Let

$$
\begin{aligned}
& \mathcal{S}_{\mathrm{a}}=\left\{x \in \boldsymbol{J}: \phi_{\mathrm{L}}(\mathrm{x})=0, \phi(\mathrm{x})=1\right\}, \\
& \mathbf{R}_{\mathbf{a}}(\mathbf{k}, \mathbf{q}, \mathbf{p})=\max _{\mathbf{x} \in \mathbb{S}_{\mathbf{z}}} \mathbf{R}(\mathbf{x}, \mathbf{k}, \mathbf{q}, \mathbf{p}), \\
& Y_{\mathbf{L}}(\mathbf{q}, \mathrm{p})=\left[\hat{\mathrm{g}}_{\mathbf{a z}}(\mathbf{q}, \mathrm{p})-\mathrm{g}_{\mathrm{L}}(\mathbf{q})\right] / \Delta(\mathbf{p}) \mathrm{R}_{\mathrm{a}}(\mathrm{k}, \mathbf{q}, \mathrm{p}), \\
& \mathrm{m}(\mathrm{z}, \omega)=\mathrm{z} \log (\omega / \mathrm{z})+(1-\mathrm{z}) \log [(1-\omega) /(1-\mathrm{z})] \quad 0<\mathrm{z}, \omega<1,
\end{aligned}
$$

let $\omega(z, \delta / 2, K)$ denote the solution to $m(2, \omega)=\frac{1}{\mathrm{~K}} \ln (\delta / 2)$ for fixed $\mathrm{z} \in(0,1]$ and $\delta \in(0,1)$, and let

$$
\begin{align*}
\omega^{*}(\mathrm{z}, \delta / 2, \mathrm{~K}) & =\omega(\mathrm{z}, \delta / 2, \mathrm{~K}) & & \text { if } 0<\mathrm{z} \leq 1 \\
& =0 & & \text { otherwise. } \tag{42}
\end{align*}
$$

Then, the interval

$$
\begin{equation*}
\left(g_{\mathrm{L}}(\mathbf{q})+\Delta(\mathbf{p}) \mathrm{R}_{\mathbf{a}}\left(\mathbf{k}, \mathrm{q}_{\mathrm{p}}, \mathbf{p}\right) \omega^{*}\left(\mathrm{Y}_{\mathbf{I}}(\mathbf{q}, \mathbf{p}), \delta / 2, \mathrm{~K}\right), \mathrm{g}_{\mathrm{L}}(\mathbf{q})+\Delta(\mathbf{p}) \mathrm{R}_{\mathbf{a}}(\mathbf{k}, \mathbf{q}, \mathbf{p}) \omega^{*}\left(1-\mathrm{Y}_{\mathbf{K}}(\mathbf{q}, \mathbf{p}), \delta / 2, \mathrm{~K}\right)\right) \tag{43}
\end{equation*}
$$

covers $\mathrm{g}(\mathbf{q})$ with probability $>1-\delta$.

Theorem 7. Let

$$
\begin{aligned}
\mathscr{X}_{b} & =\left\{x \in \mathscr{S}: \phi(x)=0, \phi_{v}(x)=1\right\} \\
R_{b}(\mathbf{k}, \mathbf{q}, \mathrm{p}) & =\max _{x \in \mathscr{S}_{b}} \mathrm{R}(\mathrm{x}, \mathbf{k}, \mathrm{q}, \mathrm{p})
\end{aligned}
$$

and

$$
Z_{\mathbf{q}}(\mathbf{q}, \mathbf{p})=\left[g_{0}(\mathbf{q})-\hat{g}_{\mathrm{br}}(\mathbf{q}, \mathbf{p})\right] / \Delta(\mathbf{p}) \mathrm{R}_{\mathbf{b}}(\mathbf{k}, \mathbf{q}, \mathbf{p})
$$

Then the interval
$\left(g_{0}(\mathbf{q})-\Delta(\mathbf{p}) \mathrm{R}_{\mathbf{b}}(\mathbf{k}, \mathbf{q}, \mathbf{p}) \omega^{*}\left(1-\mathrm{Z}_{\mathbf{q}}(\mathbf{q}, \mathbf{p}), \delta / 2, \mathrm{~K}\right), \mathrm{g}_{0}(\mathbf{q})-\Delta(\mathbf{p}) \mathrm{R}_{\mathbf{b}}(\mathbf{k}, \mathbf{q}, \mathbf{p}) \omega^{*}\left(\mathrm{Z}_{\mathbf{l}}(\mathbf{q}, \mathbf{p}), \delta / 2, \mathrm{~K}\right)\right)$
covers $\mathrm{g}(\mathrm{q})$ with probability $>1-\delta$.

Proof of Theorems 6 and 7. Inspection of (13) and (14) makes clear that

$$
\begin{equation*}
\operatorname{pr}\left[g_{\mathrm{L}}(\mathbf{q}) \leq \psi_{\mathbf{a}}(\mathbf{X}, \mathbf{q}, \mathbf{p}) \leq \mathrm{g}_{\mathrm{L}}(\mathbf{q})+\Delta(\mathbf{p}) \mathbf{R}_{\mathbf{a}}(\mathbf{k}, \mathbf{q}, \mathbf{p})\right]=1 \tag{45}
\end{equation*}
$$

and

$$
\operatorname{pr}\left[g_{0}(\mathbf{q})-\Delta(\mathbf{p}) \mathrm{R}_{\mathrm{b}}(\mathbf{k}, \mathbf{q}, \mathbf{p}) \leq \psi_{b}(\mathbf{X}, q, p) \leq g_{0}(\mathbf{q})\right]=1 .
$$

The renulting confidence intervals follow from Theorem 1 in Fishman (1988).
Although these intervals generally are wider than the corresponding norrial confidence intervals would be for given K and δ, they are free of the error of approximation inhereni in normal intervals.

To use these intervals in practioe, one needs to know $\left\{\mathbf{R}_{\mathbf{a}}(\mathbf{k}, \mathbf{q}, \mathbf{p}), \mathrm{R}_{\mathbf{b}}(\mathbf{k}, \mathbf{q}, \mathbf{p}) ; \mathbf{q} \in \mathbf{q}\right\}$. Theorems 8 and 9 formulate matiematical programs aimed at computing these quantities. Since expericnce with several networks for the s-t connectedness problem with $2=$ $\left\{q_{1} \leq \ldots \leq q_{r}\right\}$ has shown that $p=q_{1}$ usually minimizes the worst case bound (42), we focus on the case $\mathbf{p} \leq \mathbf{q}$,

Thecrem 8. Let \mathscr{D} denote the set of all minimal $s-t$ cutsets of smallest cardinality, let

$$
\begin{aligned}
& \boldsymbol{f}\left(\boldsymbol{S H}^{*}\right)=\underset{\mathrm{i} \in \boldsymbol{X N}^{*}}{ } \delta_{\mathrm{i}} \\
& \mathcal{M}_{k}=\left\{\mathscr{S}_{i}, \mathrm{i}=1, \ldots, \mathrm{I}: \mathcal{I}_{\mathrm{i}} \subseteq \boldsymbol{\mathcal { C }}\left(\mathscr{F}^{*}\right)\right\} \\
& \mathscr{N}_{a}=\left\{\mathcal{E} \in \mathscr{S}: \mathcal{E} \subseteq \mathcal{E}\left(\mathscr{E}^{*}\right) \text { and }|\mathcal{E}|=\left|\mathcal{N}_{\mathrm{a}}\right|\right\} \\
& a_{i}=\log \left[q_{i}\left(1-p_{i}\right) / p_{i}\left(1-q_{i}\right)\right] \quad i \in \mathscr{*}^{*}
\end{aligned}
$$

and asume $q_{i} \geq p_{i}$ for $\forall i \in \mathscr{S}^{*}$. Then

$$
\begin{equation*}
R_{i}(k, q, p)=\prod_{i \in \delta^{*}}\left(q_{i} / p_{i}\right)^{k_{i}-\sum_{j \in \delta_{i}}^{z_{i}^{*}}}\left[\left(1-q_{i}\right) /\left(1-p_{i}\right)\right]^{\sum \in \delta_{i}^{z_{j}^{*}}} \tag{46}
\end{equation*}
$$

where z^{*} solves the integer program

$$
\begin{equation*}
\min _{X i \in \mathscr{X}^{*}}{ }^{a_{i}} \sum_{j \in \delta_{i}} z_{j} \tag{47a}
\end{equation*}
$$

subject to

$$
\begin{array}{ll}
\sum_{j \in g} Z_{j} \geq 1 & \forall g \in \mathcal{N}_{a} \\
\sum_{j \in \delta^{2}} z_{j} \leq|8|-1 & \forall \forall \in \mathcal{N}_{a}
\end{array}
$$

and

$$
\begin{equation*}
z_{j} \in\{0,1\} \quad \forall j \in \mathscr{O}\left(\mathscr{\mathscr { C }}^{*}\right) \tag{47d}
\end{equation*}
$$

The Appendix contains the proof.

Treorem 9. Let S denote the set of all minimal s-t paths of smallest cardinality, let

$$
\begin{aligned}
& \mathcal{H}_{b}=\left\{\boldsymbol{\delta}_{i}, \mathrm{i}=1, \ldots, \mathrm{~J}: \boldsymbol{\delta}_{i} \subseteq \boldsymbol{\delta}\left(\boldsymbol{\delta}^{*}\right)\right\} \\
& \mathscr{T}_{b}=\left\{\mathscr{S} \in \mathscr{S}: \mathscr{O} \subseteq\left(\mathscr{S}^{*}\right),|\boldsymbol{I}|=\left|\mathcal{F}_{b}\right|\right\}
\end{aligned}
$$

and asume $q_{i} \geq p_{i}$ for $V i \in \mathscr{F}^{*}$. Then
where : * solves the integer program

$$
\begin{equation*}
\min _{z} \sum_{i \in \mathcal{X}^{*}} \mathbf{a}_{i} \sum_{j \in \delta_{i}} z_{i} \tag{49a}
\end{equation*}
$$

subject to

$$
\begin{align*}
& \underset{j \in \mathcal{P}^{z_{j}}}{ } \geq 1 \tag{49c}\\
& \forall \mathscr{P} \in \mathscr{N}_{\mathrm{b}}
\end{align*}
$$

and

$$
\begin{equation*}
\left.z_{j} \in\{0,1\} \quad \forall j \in \mathscr{(} \mathscr{X}^{*}\right) \tag{49d}
\end{equation*}
$$

The proof follows analogously to that for Theorem 8.
Recall that since $\mathscr{\rho}_{1}, \ldots, \mathcal{I}_{\mathrm{I}}$ are edge disjoint, $\mathrm{I} \leq \mathrm{I}^{*} \equiv$ the size of the minimal s-t cutset of smallest cardinality. Therefore, if $\left|\boldsymbol{N}_{\mathbf{2}}\right|<\mathrm{I}^{*}$, then $\left|\mathscr{N}_{\mathbf{a}}\right|=0$ so that the constraints in (47c) vanish and

The case of $\left|\hat{\mu}_{\mathbf{a}}\right|=I^{*}$ requires more detail. If the minimal s-t cutsets in \mathscr{r}_{a} are edge-disjoint, then (47) has the form of a transportation problem with $\left|\mathscr{N}_{\mathrm{a}}\right| \leq \mathrm{J}^{*} \equiv$ the size of the minimal s-t path of smallest cardinality and can be solved using a special purpose algorithm as in Dantrig (1963, p. 308). If the cutsets are not edge-disjoint, \mathscr{P}_{a} potentially can have an exponential number of members, limiting one's capacity to enumerate them all. This possibility suggests an iterative approach.

Suppose one begins by relaxing (47c). This gives the candidate solution (50). If the set of arcs chosen there do not form a minimal s-t cutset in \mathscr{D}, then the problem is solved. If they do form a cutset $\boldsymbol{\delta}^{*}$, then one activates the corresponding constraint. Let i^{*} denote the edge in \mathcal{B}^{*} with the largest a_{i}. Then $\left[\prod_{i \in \mathscr{K}^{*}}\left(q_{i} / p_{i}\right)\right] \exp \left(-\underset{\rho \in \mathcal{M}_{\mathrm{a}}}{\sum} \underset{i \in \mathcal{\rho} \backslash\left\{\mathrm{i}^{*}\right\}}{ } \min a_{i}\right)$ solves the problem provided that the selected edges do not form a minimal s-t cutset in \mathscr{D} - If they do form a cutset, then continued iteration becomes more complicated and one may elect to drop one of the edge-disjoint paths g_{0} in \mathcal{N}_{a} from the lower bound $g_{\mathrm{L}}(\mathrm{q})$ thereby reducing the size of μ_{8} and making

$$
R_{a}\left(k, q_{,} p\right)=\left[\prod_{i \in \mathscr{\not} *}\left(q_{i} / p_{i}\right)\right] \exp \left(-\sum_{\mathscr{P} \in \mathcal{M}_{a} \backslash g_{0}} \sum_{i \in \mathcal{P}} \min a_{i}\right)
$$

the solution.
The solution to (49) proceeds in an analogous manner. If $\mathscr{H}_{\mathrm{b}}<\mathrm{J}^{*}$, then

$$
\begin{equation*}
R_{b}(k, q, p)=\left[\prod_{i \in \mathscr{K}^{*}}\left(q_{i} / p_{i}\right)\right] \exp \left(-\sum_{\mathscr{E} \in \mathcal{M}_{\mathbf{b}}} \sum_{i \in \mathcal{S}^{2}} \min a_{i}\right) . \tag{51}
\end{equation*}
$$

If $\left|\mathscr{H}_{b}\right|=J^{*}$, then one can eitler drop a cutset \mathscr{E}_{0} in \mathscr{H}_{b} from the upper bound $g_{U}(q)$ and use

$$
R_{b}(k, q, p)=\left[\prod_{i \in \delta^{*}}\left(q_{i} / p_{i}\right)\right] \exp \left(--\sum_{\forall \in \mathcal{L}_{b} \backslash \delta_{0}} \sum_{i \in \mathcal{B}}^{\sum} \min a_{i}\right)
$$

as the solution, or again proceed iteratively. With (49c) relaxed, (51) is the candidate solution. If the set of selected edges do not form a path in N_{b}, then (51) is the minimum. If they do form a path g^{*} with edge i^{*} giving the largest a_{i}, then the solution $\left[\prod_{i \in \mathcal{S H}^{*}}\left(q_{i} / p_{i}\right)\right] \exp \left(-\sum_{\delta \in \mathcal{X}_{b}} \underset{i \in \mathcal{F} \backslash\left\{i^{*}\right\}}{\Sigma} \min a_{i}\right)$ needs to be checked, etc. One anticipates that choosing edge-disjoint paths $\mathscr{s}_{1} \ldots, \mathscr{F}_{1}$ and cutsets $\mathcal{F}_{1}, \ldots, \mathcal{F}_{J}$ such that \mathscr{N}_{a} and \mathscr{N}_{b} are empty generally will have small effect on the bounds $g_{L}(\mathbf{q})$ and $g_{V}(\mathbf{q})$ for large networks.

9. Slumaltaneoses Confidence Intervals

Although each confidence interval in Section 8 holds with probability $>1-\delta$, the ;int confidence intervals for $\{\mathbf{g}(\mathbf{q}), \mathbf{q} \in \mathcal{\&}$ hold simultaneously only with probability $>$ $1-\mid$ 2 δ. This result follows from a Bonferroni inequality. See Miller (1981, p. 8). To restore the joint confidence level to $1-\delta$, one replaces $\log (\delta / 2)$ by $\log (\delta / 2|2|\}$ in (43) and (44) and determines the corresponding solutions. The effect of this substitution is to increase the constant of proportionality in the approximate interval widths from $[: \operatorname{sg}(2 / \delta)]^{\frac{1}{2}}$ to $\left[2 \log (2 \mid 2 / / \delta]^{\frac{1}{2}}\right.$ (see Fishman 1986). For $\delta=.01$ and $|2|=20$ one has . $3(2|2| / \delta) / \log (2 / \delta)]^{\frac{1}{2}}=1.25$. For $\delta=.01$ and $|2|=100$, it is 1.37 and for $\delta=.01$ and $|2|=1000$ it is 1.52 . Moreover, if 2 denotes a continuous region in the $|8|$-dimensional hypercube $(0,1)^{|8|}$, then the resulting confidence intervals have infinite widths and are therefore useless.

An alternative approack derives simultaneous confidence intervals for $\{\mathbf{g}(\mathbf{q}), \mathbf{q} \in 2\}$ using the representation of $\mathbf{g}(\mathbf{q})$ in (44). In particular, it implicitly finds simultaneous
conadence intervale for the coefficients $\left\{u_{j}\left(z_{1}, \ldots, z_{r}\right)\right\}$ of which there are $N \leq \prod_{i \in \mathcal{X}_{*}} k_{i}$ in (34). For convenience of notation we take $|\%|=r$ but note the relatively atraightforward adjustment for $\left|\mathcal{N}^{*}\right|<r$. Let $z=\left(z_{1}, \ldots, z_{r}\right)$ and recall the definitions of $K_{\mathrm{a}}(\mathrm{z})$ and $\mathrm{K}_{\mathrm{b}}(\mathrm{z})$ in (35) and (36). Then $\left\{\left(\omega^{*}\left(\mathrm{~K}_{\mathrm{j}}(\mathrm{s}) / \mathrm{K}, \delta / 2 \mathrm{~N}, \mathrm{~K}\right), \omega^{*}\left(1-\mathrm{K}_{\mathrm{j}}(\mathrm{z}) / \mathrm{K}, \delta / 2 \mathrm{~N}, \mathrm{~K}\right)\right.\right.$; $\forall \mathrm{s}\}$, where $\omega^{*}(\cdot, \cdot, \cdot)$ is defined in (42), provide confidence intervals for $\left\{\mathrm{u}_{\mathrm{j}}(\mathrm{z})\right\}$ that hold aimultaneoualy with probability $>1-\delta$.

Obeerve that all coefificients $u_{j}(z)$ are nonnegative and that $\left\{\omega^{*}\left(\mathrm{~K}_{\mathrm{j}}(\mathrm{z}) / \mathrm{K}, \delta / 2 \mathrm{~N}, \mathrm{~K}\right)\right.$, $\omega^{*}\left(1-K_{j}(\mathbf{z}) / \mathrm{K}, \delta / 2 \mathrm{~N}, \mathrm{~K}\right\}$ are independent of \mathbf{q}. Therefore, for all $\mathbf{q} \in \mathcal{L}$
simultaneously covers $\{\mathbf{g}(\mathbf{q}), \mathbf{q} \in 2\}$ with probability $>1-\delta$ and likewise

$$
\begin{align*}
& \left(g_{0}(q)+\Delta(p) \sum_{z_{1}=0}^{k} \ldots \sum_{z_{r}=0}^{k} R^{*}(\mathbf{z}, \mathbf{k}, q, p) \omega^{*}\left(1-K_{b}(z) / K, \delta / 2 N, K\right),\right. \\
& \left.g_{0}(q)-\Delta(p) \sum_{z_{1}=0}^{\sum_{\Sigma_{r}}^{k} \ldots} \sum_{z_{r}=0}^{k} R^{*}(\mathbf{z}, \mathbf{k}, q, p) \omega^{*}\left(K_{b}(z) / K, \delta / 2 N, K\right)\right) \tag{53}
\end{align*}
$$

simultaneously covers $\{\mathbf{g}(\mathbf{q}), \mathbf{q} \in 2\}$ with probability $>1-\delta$.
The most desirable feature of this alternative approach is that the resulting intervals are unaffected in width or confidence level by the size of \mathcal{L}. However, since the number of quantities $K_{j}(z)$ to be collected is $O\left(\underset{i \in \mathcal{F}^{*}}{\Pi}\right)$, this alternative approach becomes less feasible to implement as the k_{i} and r increase.

10. Seepr for Implementation

To implement the proposed sampling plan to eatimate reliability for s-t connectedreas, one proceets as follows:

1. Determine a set of edge-disjoint minimal s-t paths $g_{1}, \ldots, 9_{1}$.
2. Determine a sed of edge-diajoint minimal s-t cutsets $\boldsymbol{\gamma}_{1}, \ldots, \boldsymbol{\delta}_{1}$.
3. Comptute $\left\{g_{2}(q), g_{0}(q) ; q \in \mathcal{Y}\right.$.
4. Determine a sampling vector p from 2 as in Section 7.
5. Using Algorithm A, perform K independent replications.
6. For each $q \in$ 8: compute $R_{b}(k, q, p)$ if $V\left[\hat{g}_{\mathbf{a}}(q, p)\right]>V\left[\dot{g}_{b x}(q, p)\right]$; otherwise compute $\mathbf{R}_{\mathbf{a}}(\mathbf{L}, \mathbf{q}, \mathbf{p})$ (Section 8).
7. Using the bounds $\left\{R_{a}(k, q, p) ; q \in \mathcal{A}\right.$ or $\left\{R_{b}(k, q, p) ; q \in \mathcal{H}\right.$ in step 6 , compute individual or simultaneous confidence intervals for $\{\mathbf{g}(\mathbf{q}), q \in 2\}$ (Sections 8 and 9).

Although theee stepe require more work than crude Monte Carlo function estimation does, one can develop computer programs with sufficient generality to compute all quantities in atepe 1 through 7 for many different network designs. Reusing the programs enables one to distribute the fixed cost of their development over all such network, making the cost per network incidental.

11. Erample

An analysis of the network in Fig. 1 illustrates the proposed method. The network has 30 edges and 20 nodes. Also, the example assumes $r=1$ so that all edges have identical reliabilities, allowing us to write $q=q$. Note that any other specification with $r>1$ can also

Insert Fig. 1 about here.
be accommodated easily. The objective is to estimate $\{\mathrm{g}(\mathbf{q}), \mathrm{q}=.80+.01(\mathrm{i}-1) \mathrm{i}=1, \ldots, 20\}$

Whare $\mathrm{g}(\mathrm{q})=$ probability that nodes $\mathrm{t}=1$ and $\mathrm{t}=20$ are connected when edge reliabilities are 4. For aampling, we ue $p=p$, again merely as a convenience. The selected edge-disjoint petha and cutcets are

$$
\begin{array}{ll}
\rho_{1}=\{3,9,18,27,28\} & \rho_{2}=\{1,5,12,21,29\} \\
\rho_{3}=\{2,7,15,24,30\} & \sigma_{1}=\{1,2,3\} \\
\boldsymbol{\sigma}_{2}=\{28,29,30\} & \delta_{3}=\{11,12,14,15,17,18\} \\
\boldsymbol{\gamma}_{4}=\{4,5,6,7,8,9\} & \delta_{5}=\{19,21,22,24,25,27\} .
\end{array}
$$

As a preliminary step, Table 1 shows the worst case upper bound on var $\psi_{b}(\mathbf{X}, \mathbf{q}, \mathbf{p})$ as given in (41). Obeerve that the choice $\mathrm{p}=.80$ minimives this worst case bound and it is

Insert Tables 1,2 , and 3 about here.
this component reliability that we use for sampling. A parallel analysis for var $\psi_{\mathbf{a}}(\mathbf{X}, \mathbf{q}, \mathbf{p})$ also chose $p=.80$.

Table 2 compares the estimates of $\operatorname{var} \dot{\mathrm{g}}_{\mathrm{ax}}(\mathbf{q}, \mathrm{p})$ and $\operatorname{var} \dot{\mathrm{g}}_{\mathrm{bI}}(\mathbf{q}, \mathrm{p})$ for a sample size K $=1048576$ and shows the eatimated control variate coefficient $\hat{\Theta}^{*}(q, p)$, as in (29). These results strongly favor relying on $\dot{\mathrm{g}}_{\mathrm{br}}(\mathbf{q}, \mathrm{p})$, if the choice is between this quantity and $\dot{\mathbf{B}}_{\mathrm{ar}}(\mathbf{q}, \mathrm{p})$. Table 3 shows the resulting estimates in col. 1 along with variance estimates in cal. 5 and individual 99% confidence intervals in cols. 6-8. In contrast to the exact results in col. 3 which took slightly more than one hour each to compute, all results in cols. $1,2,4$ and 5 took 72.7 minutes in total, o: 4.16 milliseconds per replication. Computation of the confidence intervals took incidental time. Whereas the calculated exact results in col. 3 were accurate to sixteen significant digits (reduced to four digits here for comparative purpoees), the confidence intervals suggest an accuracy to two significart digits at the .99 level. If two significant digits is acceptable for purposes of analysis, then the Monte Carlo approach clearly prevails.

Table 4 shows the effect of sampling at an arbitrary point $p=.90$ rather than at $\mathrm{p}=.80$. Although sampling at $\mathrm{p}=.90$ does produce better results for $\mathrm{q} \geq \mathrm{p}$, the deficiency of sampling at $\mathrm{p}=.80$ in this interval is considerably less than the corresponding deficiency for eampling with $p=.90$ for $.80 \leq q \leq .89$.

Insert Fig. 2 about here.

Figure 2 displays several variance ratios that reveal how $\left\{\hat{\mathrm{f}}_{\mathrm{br}}(\mathrm{q}, 80)\right\}$ performs compared to the crude cotimator $\left\{\bar{q}_{\mathrm{q}}(\mathrm{q})\right\}$ in (3), the estimator $\left\{\hat{\mathrm{g}}_{\mathrm{q}}(\mathrm{q})\right\}$ in (6), and the approcinately optimal eatimator $\left\{\hat{\mathrm{g}}_{\mathrm{I}}\left(\mathrm{q}, \mathrm{p}, \hat{\boldsymbol{\theta}}^{*}(\mathrm{q}, 80)\right)\right\}$ in (30). First, note that $\left\{\hat{\mathrm{g}}_{\mathrm{bx}}(\mathrm{q}, \mathrm{p})\right\}$ performa almost as well as $\left\{\hat{\mathrm{g}}_{\mathrm{I}}\left(\mathrm{q}, \mathrm{p}, \hat{\Theta}^{*}(\mathrm{q}, .80)\right)\right\}$. Second, observe that uniformly superior rutio for $\left\{\dot{\delta}_{\mathrm{bx}}(\mathrm{q}, \mathrm{p})\right\}$ when compared to $\left\{\overline{\mathrm{I}}_{\mathrm{I}}(\mathrm{q})\right\}$. In particular, note that these ratios exceed 100 for $\mathrm{q} \geq .95$.

We now turn to the efficiency measure (22). Since $\mathrm{V}\left[\dot{\mathrm{g}}_{\mathrm{ar}}(\mathrm{q}, 80)\right]>\mathrm{V}\left[\hat{\mathrm{g}}_{\mathrm{bx}}(\mathrm{q}, 80)\right]$ for all $q \in\left\{\right.$ Fig. 2 makes clear that $\Lambda_{1}(p)>10^{5}$, indicating the clear superiority of $\left\{\bar{E}_{\mathrm{wr}}(\mathrm{q}, 80)\right\}$ over the crude eatimator $\left\{\overline{\mathrm{E}}_{\mathrm{q}}(\mathrm{q})\right\}$ in (3).

Refareances

1. Agrawal A. and A. Satyanarayana (1984). An $0|E|$ time algorithm for computing the relicility of a class of directed networks, Aper. Res., 32, 493-515.
2. Aho, A.V., J.E. Hopcroft and J.D. Ullman (1974). The Design and Analysis of Compriter Alerrithma, Addison-Wesley, Reading, Massachusetts.
3. Ball, M.O. and J.S. Provan (1983). Calculating bounds on reachability and conrectedress in stochastic networks, Networks, 13, 253-278.
4. Burlow, R.E. and F. Proschan (1981). Statistical Theory of Reliability and Life Tenting Probability Modela, To Begin With, Silver Spring, Maryland.
5. Dantrig, G.B. (1963). Linear Prorramming and Extensions, Princeton University Press.
6. Eaary, J.D. and F. Proschan (1966). Coherent structures of non-identical components, Technometrics, 5, 191-209.
7. Easton, M.C. and C. K. Wong (1980). Sequential destruction method for Monte Carlo evaluation of system reliabiity, IFEE Trens. on Rel., 29, 27-32.
8. Fishman, G.S. (1986). A Monte Carlo sampling plan for estimating network reliability, Oper Res., 34, 581-594.
9. Fishman, G.S. (1987), A Monte Carlo sampling plan for estimating reliability parameters and related functions, Networks, 17, 169-186.
10. Fishman, G.S. (1988). Confidence intervals for means and proportions in the bounded case, Technical Report No. UNC/ORSA/TR-86/19, Department of Operations Research, University of North Carolina at Chapel Hill, revised January 1988.
11. Itai and Shiloach (1979). Maximum fow in planar networks, SLAM J Comput, 8, 2, 135-150.
12. Kahn, H. (1950). Random sampling (Monte Carlo) techniques in neutron attenuation problems $-I$, Nucleonics, 6, 27-37.
13. Kahn, H. and T.E. Harris (1951). Estimation of particle transmission by random samping, Monte Carlo Methods, National Bureau of Standards, Applied Mathematics Series, 12.
14. Karp, R. and M.G. Luby (1983). A new Monte Carlo method for estimating the faikre probahility of an n-component system, Computer Science Division, University of California, Berkeley.
15. Kumamoto, H., K. Tanaka and K. Inoue (1977). Effcient evaluation of system reliability by Monte Carlo method, IEEE Trans. on Rel., 26, 311-315.
16. Kumamoto, H., K. Tanaka, K. Inoue and E.J. Henley (1980). Dagger-sampling Monte Carlo for system unavailability cvaluation, IEEE Trans. on Rel., 29, 122-125.
17. Miller, R. (1981). Simultaneous Statistical Inference, Springer Verlag, second edition.
18. Valiant, L.G. (1979). The complexity of enumeration and reliability problems, SIAM L. Comp., 8, 410-421.
19. Van Slyke, R.M. and H. Frank (1972). Network reliability analysis: Part I, Networis, 1, 279-290.
20. Wagner, H.M. (1975). Principles of Operations Research, 2nd ed., Prentice Hall, Englewood Cliff, New Jersey.

Table 1^{\dagger}

$\max h(q, p)$ for $2=\{.8+.01(i-1) \mathrm{i}=1, \ldots, 20\}$ and $p \in\{.5+.02(\mathrm{i}-1) \mathrm{i}=1, \ldots, 25\}$ q $\in 2$

p	q.	$\max \mathrm{h}(\mathrm{q}, \mathrm{p})$	p	q.	\max $\mathrm{q} \in \mathcal{Z}$ $\mathrm{h}(\mathrm{q}, \mathrm{p})$

$\dagger_{\mathrm{q} .}=\mathrm{q}$ in 2 at which $\mathrm{h}(\mathrm{q}, \mathrm{p})$ achieves its maximum for specified p.

Table 2

$$
\begin{aligned}
& \text { Comparison of } \mathrm{V}\left[\hat{\mathrm{~g}}_{\mathrm{ar}}(\mathrm{q}, \mathrm{p})\right] \text { and } \mathrm{V}\left[\hat{\mathrm{~g}}_{\mathrm{bX}}(\mathrm{q}, \mathrm{p})\right] \\
& \qquad(\mathrm{p}=.80, \mathrm{~K}=1048576)
\end{aligned}
$$

9	$\frac{\mathrm{V}\left[\hat{\mathrm{~g}}_{\mathrm{aI}}(\mathrm{q}, \mathrm{p})\right]}{\mathrm{V}\left[\hat{\mathrm{~g}}_{\mathrm{bE}}(\mathrm{q}, \mathrm{p})\right]}$	$\hat{\boldsymbol{\theta}}^{*}(\mathrm{q}, \mathrm{p})$	q	$\frac{\mathrm{V}\left[\hat{\mathrm{~g}}_{\mathrm{aI}}(\mathrm{q}, \mathrm{p})\right]}{\mathrm{V}\left[\hat{\mathrm{~g}}_{\mathrm{b}}(\mathrm{q}, \mathrm{p})\right]}$	$\hat{\theta}^{*}(\mathrm{q}, \mathrm{p})$
. 80	1.00	-	. 90	214.0	. 0001
. 81	1.58	-. 4941	. 91	319.0	. 0005
. 82	3.04	-. 1799	. 92	475.5	. 0006
. 83	6.07	-. 0852	. 93	713.8	. 0006
. 84	11.61	-. 0440	. 94	1097.0	. 0005
. 85	20.97	-. 0233	. 95	1755.0	. 0003
. 86	35.92	-. 0122	. 96	2995.0	. 0002
. 87	58.78	-. 0060	. 97	5727.0	. 0001
. 88	92.67	-. 0026	. 98	13665.0	. 0001
. 89	142.10	-. 0008	. 99	57108.0	. 0000

($\mathrm{p}=.80, \mathrm{~K}=1048576$)

Reliability Estimation

9	$1-g_{U}(q)$	$1-g_{L}(q)$	$1-g(q){ }^{\text {t }}$	($\mathrm{p}=.80, \mathrm{~K}=1048576$)		Individual 99\% Confidence Intervals for $1-\mathrm{g}(\mathrm{q})$		
				$\left.1-\hat{g}_{b K}(q)\right]^{t t}$	$\mathbf{V}\left[\hat{\mathrm{g}}_{\mathrm{bK}}(\mathrm{q})\right]^{\dagger \dagger}$	Lower	Upper	Widuh
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
. 80	. 1612D-01	.3039D+00	.3624D-01	. 3624D-01	. $5135 \mathrm{D}-08$. 3601D-01	.3648D-01	. $46650-03$
. 81	. $1381 \mathrm{D}-01$.2763D+00	.2976D-01	.2976D-01	.32800-08	. 2954D-01	.2998D-01	
. 82	. $1173 \mathrm{D}-01$.2492D+00	.2421D-01	.2420D-01	.21070-01	. 2400D-01	.2441D-01	- 41790-03
. 83	. $9874 \mathrm{D}-02$. 2227D +00	. 1949D-01	. 1948D-01	. 1360D-08	. 1929D-01	1968D	. $38500 \mathrm{D}-03$
. 84	.8225D-02	. 1969D+00	. 1552D-01	. 1551D-01	.8818D-09	. $1534 \mathrm{D}-01$. 1569D-01	.3483D-03
. 85	. $6773 \mathrm{D}-02$. $1722 \mathrm{D}+00$. 1221D-01	. 1220D-01	. $5726 \mathrm{D}-09$. $1205 \mathrm{D}-\mathrm{C1}$. 1235D-01	. 3089D-03
. 86	. 5503D-02	. 1485D+00	.9473D-02	. $9464 \mathrm{D}-02$. 3711D-09	. $9332 \mathrm{D}-02$.9600D-02	. $26881 \mathrm{D}-03$
. 87	. $4404 \mathrm{D}-02$. 1262D+00	.7241D-02	. $7232 \mathrm{D}-02$. 2387D-09	. $7120 \mathrm{D}-02$.7348D-02	.2274D-03
. 88	. $3462 \mathrm{D}-02$. $1053 \mathrm{D}+00$.5440D-02	.5432D-02	. 1514D-09	.5339D-02	.5527D-02	. 18770-03
. 89	.2666D-02	.8611D-01	. $4006 \mathrm{D}-02$. 3998D-02	.9372D-10	. 3924D-02	. $4075 \mathrm{D}-02$. 1504D-03
. 90	.2002D-02	6867D-01	.2880D-02	. 2873D-02	. 5599D-10	. $2816 \mathrm{D}-02$. 2932D-02	. 1162D-03
. 91	. 1459D-02	.5314D-01	.2011D-02	. 2006D-02	. 3179D-10	. $1964 \mathrm{D}-02$.2050D-02	. 8614 LJ -04
. 92	. $1025 \mathrm{D}-02$. $3962 \mathrm{D}-01$. 1355D-02	. 1351D-02	. 16S0D-10	. 1321D-02	. 1382D-02	. 60620-04
. 93	. $6862 \mathrm{D}-03$.2818D-01	. $8720 \mathrm{D}-03$. 8689D-03	.8042D-11	.8497D-03	. 8897D-03	. 3999D-04
. 94	. $4321 \mathrm{D}-03$. 1884D-01	. $5284 \mathrm{D}-03$. 5263D-03	. 3350D-11	. 5147D-03	. 5389D-03	. $2425 \mathrm{D}-04$
. 95	. $2500 \mathrm{D}-03$. $1158 \mathrm{D}-01$. $2947 \mathrm{D}-03$. 2934D-03	.1142D-11	. 2871D-03	. 3003D-03	$1311 \mathrm{D}-04$
. 96	. $1280 \mathrm{D}-03$.6293D-01	.1456D-03	. 1449D-03	.2833D-12	. 1421D-03	. 1481D-03	.60u6D-05
. 97	. $5400 \mathrm{D}-04$.2819D-01	.5937D-04	. 5908D-04	. 4454D-13	. 5809D-04	.6021D-04	. 2120D-05
. 98	. $16000 \mathrm{D}-04$.8869D-03	. 1702D-04	. 1695D-04	. 2750D-14	. 1673D-04	. 1720D-04	. $4652 \mathrm{D}-06$
. 99	.2000D-05	.1177D-03	.2062D-05	.2055D-05	. 1743D-16	.2041D-05	.2073D-05	.3211D-0

\dagger Provided by J.S. Provan using an algorithm based on cutset enumeration.
${ }^{\dagger 1}$ Computed as in Algorithm A

Table 4

$$
\begin{gathered}
\Lambda(\mathrm{q})=\operatorname{var} \hat{\mathrm{g}}_{\mathrm{bI}}(\mathrm{q}, .90) / \text { var } \hat{\mathrm{g}}_{\mathrm{bI}}(\mathrm{q}, 80)^{\dagger} \\
(\mathrm{K}=1048576)
\end{gathered}
$$

q	$\Lambda(\mathrm{q})$	$[\Lambda(\mathrm{q})]^{\frac{1}{2}}$	q	$\Lambda(\mathrm{q})$	$[\Lambda(\mathrm{q})]^{\frac{1}{2}}$
.80	39.18	6.26	.90	.9821	.9910
.81	46.80	6.84	.91	.7072	.8410
.82	29.78	5.46	.92	.2796	.5288
.83	18.87	4.34	.93	.4117	.6416
.84	11.96	3.46	.94	.3334	.5774
.85	7.61	2.76	.95	.2808	.5299
.86	4.88	2.21	.96	.2452	.4951
.87	3.17	1.78	.97	.2217	.4709
.88	2.09	1.45	.98	.2061	.4540
.89	1.41	1.18	.99	.1989	.4460

Estimated by $\mathrm{V}\left[\hat{\mathrm{g}}_{\mathrm{bx}}(\mathrm{q}, 90)\right] / \mathrm{V}\left[\hat{\mathrm{g}}_{\mathrm{bx}}(\mathrm{q}, 8 \mathrm{Bu})\right]$.

Fig. 1 Network

All component reliabilities are identical.
$\mathrm{p}=.80$
$2=\{.80+.01(\mathrm{i}-1) \quad \mathrm{i}=1, \ldots, 20\}$
$K=2^{20}=1048576$
Lower bound based on 3 edge-disjoint paths
Upper bound based on 5 edge-disjoint cutsets

Fig. 2 Variance Ratios for Alternative Estimators

Appendix

Proof of Lemma 1. Observe that

$$
\begin{aligned}
E[\phi(X) R(X, k, q, p)] & =\underset{x \in \mathscr{S}}{\sum} \phi(x) R(x, \mathbf{k}, \mathbf{q}, \mathbf{p}) Q(x, \mathbf{k}, p) \\
& =\underset{x \in \mathscr{S}}{\Sigma} \phi(x) \frac{P(x, k, q}{P(x, k, p)}\left[\frac{\phi_{0}(x)-\phi_{L}(x)}{\Delta(\mathbf{p})}\right] P(x, \mathbf{k}, \mathbf{p}) .
\end{aligned}
$$

Since $\phi(x) \phi_{L}(x)=\phi_{L}(x)$ and $\phi(x) \phi_{0}(x)=\phi(x)$, one has

$$
E[\phi(\mathbf{X}) R(\mathbf{X}, \mathbf{k}, \mathbf{q}, \mathrm{p})]=\left[\mathrm{g}(\mathbf{q})-\mathbf{g}_{\mathrm{L}}(\mathbf{q})\right] / \Delta(\mathbf{p}) .
$$

Also,

$$
\begin{aligned}
E[\phi(X) R(X, k, q, p)]^{2} & =\sum_{x \in \mathscr{S}^{\prime}} \phi(x) R^{2}(x, k, q, p) Q(x, k, p) \\
& =\sum_{x \in S} \phi(x) \frac{\mathbf{p}^{2}(x, k, q)}{P(x, k, p)}\left[\frac{\phi_{0}(x)-\phi_{L}(x)}{\Delta(\mathbf{p})}\right] .
\end{aligned}
$$

Observe that

$$
\begin{aligned}
P^{2}(x, k, q) / P(x, k, p) & =\prod_{i=1}^{r}\left(q_{i}^{2} / p_{i}\right)^{x_{i}}\left[\left(1-q_{i}\right)^{2} /\left(1-p_{i}\right)\right]^{k_{i}-x_{i}}, \\
& =c(q, p)\left\{\prod_{i=1}^{r}\left(q_{i}^{2} / c_{i} p_{i}\right)^{x_{i}}\left[\left(1-q_{i}\right)^{2} / c_{i}\left(1-p_{i}\right)\right]^{k_{i}-x_{i}}\right\},
\end{aligned}
$$

so that $\left\{\mathbf{P}^{2}(\mathbf{x}, \mathbf{k}, \mathbf{q}) / \mathbf{c}(\mathbf{q}, \mathbf{p}) \mathbf{P}(\mathbf{x}, \mathbf{k}, \mathbf{p}), \mathbf{x} \in \boldsymbol{\mathscr { A }}\right\}$ is a p.m.f. Expression (12) follows.

Proof of Lemma 2. We restrict z to $\left[g_{L}(q), g_{0}(q)\right]$. Consider the case $p \geq q$ which implies that $\mathbf{q}^{*} \leq q$ so that $\mathbf{g}\left(\mathbf{q}^{*}\right) \leq \mathbf{g}(\mathbf{q})$ and $g_{\mathrm{L}}\left(\mathrm{q}^{*}\right) \leq \mathrm{g}_{\mathrm{L}}(\mathrm{q})$. In this case $\mathrm{h}_{1}(\mathrm{z}) \leq \mathrm{h}_{2}(\mathrm{z})$ so that (40 b) gives the tightest upper brund.

Since $p \leq q$ implies $q \leq q^{*}$ so that $g(q) \leq g\left(q^{*}\right)$ and $g_{j}(q) \leq g_{j}\left(q^{*}\right)$ for $j \in\{L, U\}$, one has $\mathbf{g}\left(\mathbf{q}^{*}\right) \geq \max \left[g_{L}\left(\mathbf{q}^{*}\right), \mathbf{g}(\mathbf{q})\right]$. Also, either $g_{L}(\mathbf{q}) \leq \mathrm{g}_{\mathrm{L}}\left(\mathbf{q}^{*}\right) \leq \mathrm{g}(\mathbf{q})$ or $\mathrm{g}_{\mathrm{L}}\left(\mathbf{q}^{*}\right) \geq \mathrm{g}_{\mathrm{V}}(\mathbf{q})$. Since $\mathrm{g}_{\mathrm{L}}\left(\mathbf{q}^{*}\right)$

2g(q) implies $g_{L}\left(q^{*}\right) \geq g(q), h_{1}(z) \leq h_{2}(x) 80$ that ($40 b$) gives the tightest bound. If $g_{L}(q)$ $\leq g_{L}\left(q^{*}\right) \leq g_{\mathrm{V}}(\mathrm{q})$, it is not clear whether $g(q) \leq g_{L}\left(q^{*}\right)$ or $g(q) \geq g_{L}\left(q^{*}\right)$. Therefore, (40a) gives the beet bound.

Proof of Theorem 3. The function h_{1} has its unrestricted maximum at $z=g_{V}(q)$. Therefore,

$$
g_{L}(q) \leq s \leq g_{0}(q) h_{1} h_{1}(x)=h_{1}\left(g_{0}(q)\right) \quad \text { if } g_{L}\left(q^{*}\right) \in\left[g_{L}(q), g_{0}(q)\right]
$$

and

$$
\max _{g_{L}(q) \leq r \leq g_{L}\left(q^{*}\right)} h_{1}(z)=h_{1}\left(g_{L}\left(q^{*}\right)\right) \quad \text { if } g_{L}\left(q^{*}\right) \in\left[g_{L}(q), g_{V}(q)\right]
$$

The function h_{2} is concave with its maximum at $\pi^{*}<g_{0}(q)$. Therefore,

$$
\begin{array}{rlrl}
g_{L}\left(q^{*}\right) \leq z \leq g_{0}(q)^{\max _{2}(z)} & =h_{2}\left(z^{*}\right) & \text { if } g_{L}\left(q^{*}\right) \leq z^{*}<g_{0}(q) \\
& =h_{2}\left(g_{L}\left(q^{*}\right)\right) & & \text { if } z^{*} \leq g_{L}\left(q^{*}\right) .
\end{array}
$$

Then Thenrem ? fellows directly from Lemma 2.

Theorem 4. Define $w_{1}(z)=h_{1}(z) / z^{2}$ and $w_{2}(z)=h_{2}(z) / z^{2}$ for h_{1} and h_{2} as in (39) for $-\infty<z<\infty$ Let $z_{1}=g_{0}(q)-c(q, p) \Delta(p) \Delta\left(q^{*}\right) / g_{0}(q), z_{2}=\left[g_{0}^{2}(q)-c(q, p) \Delta(p) \Delta\left(q^{*}\right)\right] /$ $\left.\left[g_{0}(q)-c(q, p)\right] \Delta(p) / 2\right]$ and $b_{2}=2 g_{0}(q)-c(q, p) \Delta(p)$. Then

$$
\begin{aligned}
& r_{1 b}^{-}\left(r_{1} \cdot\right)^{\prime}=w^{\prime}(q, p)=\max _{g_{L}(q) \leq z \leq g_{V}(q)^{w}(z) \quad \text { if } g_{L}\left(q^{*}\right) \&\left[g_{L_{L}}(q), g_{V}(q)\right]} \\
& =\max \left[\max _{g_{L}(q) \leq z \leq g_{L}\left(q^{*}\right)} w_{1}(z), g_{g_{L}(q)} \max _{\leq \leq \leq g_{V}(q)} w_{2}(z)\right] \\
& \text { if } g_{L}\left(\mathbf{q}^{*}\right) \in\left[g_{L}(\mathbf{q}), g_{U}(\mathbf{q})\right]
\end{aligned}
$$

i.

$$
\begin{array}{rlrl}
\operatorname{g}_{\mathrm{L}}(q) \leq z \leq g_{0}(q) \\
& =w_{1}\left(z_{1}\right) & & \text { if } z_{1} \leq g_{L}(q) \\
& & \text { if } z_{1} \geq g_{L}(q)
\end{array}
$$

3.

$$
\begin{array}{rlrl}
\max _{L}(q) \leq z \leq g_{0}\left(q^{*}\right) \\
& =w_{1}(z) & \left.=w_{1 \sim L}(q)\right) & \\
& \text { if } z_{1} \leq g_{L}(q) \\
& =w_{1}\left(g_{L}\left(q^{*}\right)\right) & & \text { if } g_{L}(q) \leq z_{1} \leq g_{L}\left(q^{*}\right)
\end{array}
$$

and
iii.

$$
\left.\begin{array}{rlrl}
g_{L}\left(q^{*}\right) \leq \leq \leq g_{0}(q)^{m_{2}(z)} & =w_{2}\left(g_{L}\left(q^{*}\right)\right) & & \text { if } z_{2}<0 \text { and } b_{2}>0, \\
& =w_{2}\left(g_{0}(q)\right) & & \text { if } z_{2}<0 \text { and } b_{2}<0 \\
& =w_{2}\left(g_{L}\left(q^{*}\right)\right) & & \text { if } 0 \leq z_{2} \leq g_{L}\left(q^{*}\right) \text { and } b_{2}>0 \\
& =w_{2}\left(z_{2}\right) & & \text { if } g_{L}\left(q^{*}\right) \leq z_{2} \leq g_{V}(q) \text { and } b_{2}>0 \\
& =w_{2}\left(g_{0}(q)\right) & & \text { if } z_{2} \geq g_{0}(q) \text { and } b_{2}>0
\end{array}\right] \begin{array}{ll}
& \text { if } 0 \leq z_{2} \leq g_{L}\left(q^{*}\right) \text { and } b_{2}<0 \\
& =w_{2}\left(g_{0}(q)\right) \\
&
\end{array}
$$

Proof of perta i and ii. Since

$$
\nabla_{1}(z)=h_{1}(g) / s^{2}=a_{1} / z^{2}+b_{1} / z-1
$$

where

$$
a_{1}=c(q, p) \Delta(p) \Delta\left(q^{*}\right)-s_{0}^{2}(q) \text { and } b_{1}=2 g_{v}(q),
$$

then

$$
\frac{d w_{1}}{d z}=-\left(2 a_{1} / z+b_{1}\right) / z^{2}=-b_{1}\left(-z_{1} / z+1\right) / z^{2}
$$

and

$$
\frac{d^{2} w_{1}}{d s^{2}}=2\left(3 a_{1} / z+b_{1}\right) / z^{3}=2 b_{1}\left(-3 z_{1} / 2 z+1\right) / z^{3}
$$

If $z_{1} \leq 0$, then w_{1} is convex and decreasing on $[0, \infty)$ and w_{1} has its maximum at $z=g_{2}(q)$. If $\varepsilon_{1}>0$, then w_{1} is concave on $\left[0,3 z_{1} / 2\right]$ and $z_{1} \leq g_{0}(q)$ so that w_{1} has its maximum on $\left[g_{\mathrm{L}}(q), g_{0}(q)\right]$ at $z=z_{1}$ if $z_{1} \in\left[g_{L}(q), g_{0}(q)\right]$ and at $z=g_{\mathrm{I}_{\mathrm{I}}}(\mathbf{q})$ otherwise. The result for part ii followe immediately.

Proof of iii. Since

$$
w_{2}(x)=h_{2}(z) / z^{2}=a_{2} / z^{2}+b_{2} / z-1
$$

where

$$
q_{2}=c(q, p) \Delta(p) g_{0}\left(q^{*}\right)-g_{0}^{2}(q) \text { and } b_{2}=2 \varepsilon_{0}(q)-c(q, p) \Delta(p),
$$

then

$$
\frac{d w_{2}}{d z}=-b_{2}\left(-z_{2} / z+1\right) / z^{2}
$$

and

$$
\frac{d^{2} w_{2}}{d z^{2}}=2 b_{2}\left(-3 z_{2} / z+1\right) / z^{3}
$$

Consider the interval $\left.g_{L}\left(q^{*}\right), g_{0}(q)\right]$. If $z_{2}<0$ and $b_{2}>0$ then w_{2} is convex on $[0, \infty)$ and its maximum occurs at $z=g_{2}\left(q^{*}\right)$. If $z_{2}<0$ and $b_{2}<0$ then w_{2} is concave on $[0, \infty)$ and has its maximum at $z=g_{0}(q)$. If $z_{2}>0$ and $b_{2}>0$, then w_{2} is concave on $\left[0,3 z_{2}^{2}\right]$ so that the
maximum occurs at $\varepsilon=g_{L}\left(q^{*}\right)$ if $z_{2} \leq g_{L}\left(q^{*}\right), z=z_{2}$ if $g_{L}\left(q^{*}\right) \leq z_{2} \leq g_{0}(q)$ and at $z=g_{0}(q)$ if $z_{2} \geq g_{0}(q)$. If $z_{2}>0$ and $b_{2}<0$, the maximum occurs at $z=g_{0}(q)$ if $z_{2} \leq g_{L}\left(q^{*}\right)$, at $z=g_{L}\left(q^{*}\right)$ if $z_{2} \geq g_{0}(q)$ and at $a=\max \left[w_{2}\left(g_{L}\left(q^{*}\right)\right), w_{2}\left(g_{0}(q)\right)\right]$ if $g_{L}\left(q^{*}\right) \leq z_{2} \leq g_{V}(q)$.

Theorem 5. Let $w_{3}(z)=h_{1}(z) /(1-z)^{2}$ and $w_{4}(z)=h_{2} /(1-z)^{2}$ for h_{1} and h_{2} as defined ir (39). Let

$$
\begin{aligned}
& s_{3}=g_{0}(q)+c(q, p) \Delta(p) \Delta\left(q^{*}\right) /\left[1-g_{v}(q)\right] \\
& s_{4}=1-2\left\{c(q, p) \Delta(p)\left[i-g_{0}\left(q^{*}\right)\right]+\left[1-g_{0}(q)\right]^{2}\right\} /\left\{c(q, p) \Delta(p)+2\left[1-g_{v}(q)\right]\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \gamma_{2 b}^{2}(q, p) \leq w^{* *}(q, p)= \max _{g_{L}(q) \leq z \leq g_{V}(q)} w_{3}(z) \quad \text { if } g_{L}\left(q^{*}\right) \&\left[g_{L}(q), g_{V}(q)\right] \\
&= \max \left[\max _{g_{L}(q) \leq z \leq g_{L}\left(q^{*}\right)^{w_{3}}(z)}^{\left.g_{L}\left(q^{*}\right) \leq z \leq g_{V}(q)^{w_{4}(z)}\right]}\right. \\
& \text { if } g_{L}\left(q^{*}\right) \in\left[g_{L}(q), g_{V}(q)\right]
\end{aligned}
$$

where

$$
\begin{array}{rlrl}
g_{L}(q) \leq z \leq g_{0}(q) \\
& =w_{3}\left(g_{0}(q)\right) & & \text { if } z_{3} \geq 1 \\
\max _{g_{L}}(q) \leq w_{3}\left(g_{L}(q)\right) \\
g_{L}\left(q \leq g_{L}\left(q^{*}\right)^{w_{3}(z)}\right. & =w_{3}\left(g_{L}\left(q^{*}\right)\right) & & \text { if } z_{3}<1 \\
& =w_{3}\left(g_{0}(q)\right) & & \text { if } z_{3} \geq 1 \\
& & \text { if } z_{3}<1
\end{array}
$$

$$
\begin{array}{rlrl}
g_{L}\left(q^{*}\right) \leq \leq \leq g_{V}(q) \\
\mathbf{m}_{4}\left(z^{\prime}\right) & =w_{4}\left(g_{L}\left(q^{*}\right)\right) & & \text { if } z_{4} \leq g_{L}\left(q^{*}\right) \\
& =w_{4}\left(z_{4}\right) & & \text { if } g_{L}\left(q^{*}\right) \leq z_{4} \leq g_{U}(q) \\
& =w_{4}\left(g_{0}(q)\right) & & \text { if } z_{4} \leq g_{V}(q) .
\end{array}
$$

Procif of Theorem 5. Since

$$
w_{3}(z)=a_{3} /(1-z)^{2}+b_{3} /(1-z)-1
$$

where

$$
a_{3}=c(q, p) \Delta(p) \Delta\left(q^{*}\right)-\left[1-g_{0}(q)\right]^{2}
$$

and

$$
b_{3}=2\left[1-g_{0}(q)\right],
$$

then

$$
\frac{d w_{3}}{d z}=\frac{b_{3}}{(1-z)^{2}}\left[2 a_{3} / b_{3}(1-z)+1\right]=\frac{b_{3}}{(1-z)^{2}}\left[-\left(1-z_{3}\right) /(1-z)+1\right]
$$

and

$$
\frac{d^{2} w}{d s^{2}}=\frac{2 b_{3}}{(1-z)^{3}}\left[3 a_{3} / b_{3}(1-z)+1\right]=\frac{2 b_{1}}{(1-z)^{3}}\left[-3\left(1-z_{3}\right) / 2(1-z)+1\right] .
$$

Obeerve that $z_{3}=1+2 a_{3} / b_{3}>g_{U}(q)$. If $z_{3} \geq 1$, then w_{3} is convex on $(-\infty, 1]$, having its maximum on $\left[g_{\mathrm{L}}(\mathrm{q}), \mathrm{g}_{\mathrm{V}}(\mathrm{q})\right]$ and on $\left[\mathrm{g}_{\mathrm{L}}(\mathrm{q}), \mathrm{g}_{\mathrm{L}}\left(\mathrm{q}^{*}\right)\right]$ at $\mathrm{z}=\mathrm{g}_{\mathrm{L}}(\mathrm{q})$. If $\mathrm{z}_{3} \leq 1$, then w_{3} is convex on $\left[\left(3 g_{3}-1\right) / 2,1\right]$ and w_{1} has its maximum on $\left[g_{L}(q), g_{0}(q)\right]$ at $z=g_{0}(q)$ and on $\left[g_{L}(q)\right.$, $\left.g_{\mathcal{L}}\left(q^{*}\right)\right]$ at $2=g_{L}\left(q^{*}\right)$, establishing i and ii .

Proof of iii. Since

$$
w_{4}(z)=a_{4} /(1-z)^{2}+b_{4} /(1-z)-1
$$

where

$$
a_{4}=c\left(q_{1} p\right) \Delta(p)\left[1-g_{0}\left(q^{*}\right)\right]+\left[1-g_{v}(q)\right]^{2}
$$

and

$$
b_{4}=2\left[1-s_{0}(q)\right]+c(q, p) \Delta(p)
$$

then
and

$$
\frac{d w_{2}}{d z}=\frac{b_{4}}{(1-z)^{2}}\left[2 a_{4} / b_{4}(1-z)+1\right]=\frac{b_{4}}{(1-z)^{2}}\left[-\left(1-z_{4}\right) /(1-z)+1\right]
$$

$$
\frac{d^{2} w_{2}}{d z^{2}}=\frac{2 b_{4}}{(1-z)^{2}}\left[3 a_{4} / b_{4}(1-z)+2\right]=\frac{2 b_{4}}{(1-z)^{3}}\left[-3\left(1-z_{4}\right) / 2(1-z)+1\right] .
$$

Consider the interval $\left[g_{l}\left(q^{*}\right), g_{0}(q)\right]$. Since $z_{4}<1 \quad w_{2}$ is concave on $\left[-\left(1-z_{4}\right) / 2,1\right]$. Then σ_{4} has its maximum at $z=g_{L}\left(q^{*}\right)$ if $z_{4} \leq g_{L}\left(q^{*}\right)$, at $z=z_{4}$ if $g_{L}\left(q^{*}\right) \leq z_{2} \leq g_{U}(q)$ and at $z=$ $g_{0}(q)$ if $z_{4} \geq g_{0}(q)$.

Proof of Theorem 8. Observe that

$$
R^{*}(x, k, q, p)=\prod_{i \in \mathcal{N}^{*}}\left(q_{i} / p_{i}\right)^{x_{i}}\left[\left(1-q_{i}\right) /\left(1-p_{i}\right)\right]^{k_{i}-x_{i}}
$$

has the alternative form

$$
R^{*}(x, k, q, p)=\left[\prod_{i \in \delta^{*}}\left(q_{i} / p_{i}\right)^{k_{i}}\right] \exp \left[-\sum_{i \in \delta_{0}} a_{i} \sum_{j \in \delta_{i}}\left(1-y_{j}\right)\right]
$$

with

$$
\sum_{j \in \delta_{i}} y_{i}=x_{i}
$$

The condition $\phi_{L}(x)=0$ requires that

$$
\sum_{j \in 9}\left(1-y_{j}\right) \geq 1
$$

$$
\forall \mathscr{P}_{\in} \mathscr{M}_{\mathrm{a}}
$$

and the condition $\phi(x)=1$ requires that

$$
\sum_{j \in \delta}\left(1-y_{j}\right) \leq|\delta|-1
$$

$$
\forall \mathscr{B} \in \mathscr{N}_{\mathbf{a}} .
$$

Since
one has the integer program (47) with $y_{j}=\left(1-2_{j}\right)$.

