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SENSITIVITY ANALYSIS IN A CLASS OF DYNAMIC 
OPTIMIZATION MODELS' 

Jesús Antón, Emilio Cerdá y Elena Huergo 

Departamento de Fundamentos del Análisis Económico 1 (Análisis Económico) 
Universidad Complutense de Madrid 

ABSTRACT 

A general roadel of dynamic optimization, detenninistic, in discrete time, and with ínfmite 
time horizon is considered. We suppose that there are parameters in the formulation of the 
ruade!. Conditions for stability of the optimal solution are studied. Local analysis of steady 
state comparative statics and comparative dynamics are presented. In addition we apply these 
results to a quadratic case and to an econoITÚc example: a ane sector growth roadel. 

RESUMEN 

Se considera un modelo general de optimización dinámica, detenninístico, formulado en 
tiempo discreto y con horizonte temporal infinito. Se supone que existen diferentes 
parámetros en la fonnulación del modelo. Se estudian condiciones de estabilidad para la 
solución óptima. Se presentan análisis locales de estática y dinámica comparativa. Se aplican 
los resultados al caso cuadrático y a un ejemplo económico: un modelo de crecimiento 
unisectorial. 
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1. INTRODUCTION 

In Stockey and Lucas (1989), recursive rnethods and applications in econonUc analysis are drawn 

together and preseoted in a systematie way, by tbe first time. As pointed out in tba! book, 

applications ofthese methods appear in almost every substantive area of economics: the theory of 

investment, tbe tbeory oftbe consumer, seareh theory, publie finance, growth tbeory and so on. In 

economic analysis we find many optimization problems in which we have parameters, tbat ¡s, values 

which are a priori known, but which can change in any moment (for instance prices, wages. 

interest rates, discount fartars.). Quite afien we are interested not on1y in obtaining the optimal 

path, hut also studying how the optimal path changes when Qne of these parameters changes. 

In tbis paper we dea1 witb a broad family of dyoamie optimization problems in discrete time, wítb 

infinite horizon. We consider the general detenninistic model studied in Stokey and Lucas, ror the 

unidimensional case, hut introducing a vector of parameters in both the function and the 

correspondence oftbe problem, as in Santos (1992a, 1992b) or Araujo y Sheinkman (1979). Jt is 

presented a systematie approaeh to studying the qualitative properties ofthe family ofmodels. This 

is aehieved by studying, in order: (i) the local stability of the steady state, (ü) the steady state 

comparative statics. (ili) the local comparative dynamic propertíes of the modeL The local stability 

anaIysis provides qualitative information which is necessary fur tbe steady state comparative static 

anaIysis. In tum, !bis information is necessary for conductiug tbe local compatative dyoamie 

analy~s. 

This systematic approach is the one used by Caputo (1987, 1989) in contmuous time models. This 

methodology is concentrated on obtaining ali pos~ble refutable implications of steady state 
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comparattve statics and comparative dynamics for any kind of parameter in the model. We obtain a 

set of theorems and corollarles which folIow a similar sequence to those of Caputo. This battery of 

resu1ts is ready to be directly applied in concrete economie models. This methodology can only be 

applied to infinite-horizon problems that are autonomous in present-value or current-value tenns. 

For olher case~ Caputo (1990a, 1990b, 1990e, 1992) has generalised Ihe prima!-dual methodology 

developed by Silbetherg for dynamie problems in continuous time. 

Section 2 presents a formal description ofthe made!. In section 3 we state necessary and sufficient 

optimality conditions, using Ihe variational approach for discrete time. As pointed out by Stockey 

and Lucas, to apply the stability theory to the problem of characterising solutians to dynamic 

programs, the strategy that does work is to use a linear approximation to the Euler equation. In 

sec1Íon 4 we study Ihe local stability of!he steady state. Also it is slated a theorern lhat assures Iha~ 

under certain conditions, there exists a unique optimal solution to the problem., that, rnoreover, 

converges to the steady state, Following this fuere are sections on the steady state comparative 

slatíe and local comParative dynamie proper1Íes of!he modelo In section 7 we study, particu1arly, 

!he quadratie case, that in our opinion has special interes!, because aJI !he resuhs are global. In 

section 8 a typical example is prese.nted: a one sector oprima! growth modelo Sorne intportant 

developments ofthis model can be found in Becker (1985), Boldtin and Montrucchio (1986) and 

Amir et Al. (1991). 

2. mE MODELAN» ASSUMPTIONS 

The problem under consideration is to find a sequence {XI+l }:(} that salves: 

. 
max L ¡f F(x"x""a) 
{Xt1-!}~~ol~ o 

subjectto: XI+! E r(XI,a), t=O,1,2,

xo E X, given 

where Xi is the state variable at time t. 

Let: X e 91 bethe Se! ofpossible values forthe state variable x, 

A e m.m be the set ofpossible values for the vector of parameters, 
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(P) 

r: Xx A -----) X be the correspandence descnñing the feasibility constraints: that is, for 

each (x,a) E XxA, r(x,a) is the set offeasible vaIues for the state variable next 

perlod if the current state is x, and the vector of parameters is a, 

GbethegraphofG: G = ((x, y, a) e XxXxA, y e f(x,a)), 

F: G -t 9! be the one-perlod return function, 

p e B=(O,I) e 91, bethediscountfuctor. 

Callanysequence {XI+l};:o in Xaplan. Given Xo EX, anda EA, let 

be the set ofplans that are feasible from Xo, given the set ofparameters a EA ' 

In addition, we suppose that the following hypothesis always hold: 

(H.1) Int[r(x,a)] is non-empty, foraJI (x, a) eX x A. 

(H.2) For aJI x, eX,a eA, and Ix,}:, eII(x"a), i: ¡f F(x"x""a) is finite. 
1:0 
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Clearly, hypolhesis (Hl) implies lhat r(x,a) is non-empty. We suppose that Int[r(x,ex)] is non

empty because we want to characterise interior optimal solutions afthe stated problem. Hypothesis 

(11.2) is satisfied if lhe function F is bounded (bolh hypotheses appear, for example, in Santos 

(1993)). 

3. OPTIMALITY CONDffiONS 

In this seclion we characterise interior optimal soIutions for problem (P). It is proved that Euler 

condition is necessruy, and that EuIer and transversality conditions are sufficient, according to 

Stockey and Lucas (1989), wilh sorne small ehanges. In order to apply lhe variational approach for 

problem (P), let's add lhe following assumption: 

(Al) F continuos and continuonaly dilferentiable in Int(G) with re,pect to (x,y), for eaeh a EA. 

Proposition 1 (Necessity ofEuler condition). In. problem (P), for a fixed a EA, with assumption 

(Al) holding iflhere exists an interior oprimal solution {x;¡~, (!hat is, an optimal solution sueh 

tbat X;+I Elnt[rcx; ,a)], Vt:::: 0,1,2 ... ) theo, it must veritYthe Euler condition: 

[1] 

where Fx is the partial' derivative of F with respect to its first argument, and Fy is the partial 
Ü 

derivative ofF with reJi,ect to its second argument. 

To assure tbat Euler and transversality conditions are sufficient foc the maximization of (P), let's 

add lhe fullowing assumptions: 

4 
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(A2) X e \JI' v {O}. 

(A3)For eaeh y,ex, F(.,y, a) is strictly increasing in it, first argumen!. 

(A 4) For eaeh a E A, F i, concave in x,y, that is, 

F(O(x,y,a) +(l-O)(x',y',a)) ~ OF(x,y,a) +(J- O)F(x',y',a) 

'<Ix EX, Y Er(x,a), x' EX, y' Er(X',a) 

In addition, the inequaJity is strict if x *- X' • 

The transversality condition is: Iim ¡J F.(x"x'H,a).x, O [2] 
H_ 

Proposition 2 (Sufficiency ofEuler and transversality conditions). Let's consider problem (P), for a 

fixed a E A, with assumption (A 1) to (A.4) holding and assunting lhat lhere exists an interior 

solution {xa:o (that is, a soludon such that X;+l Elnt[r(x; ,a)], VI::: 0,1,2 ... ). 

lf {x;};:, verifies [1] and [2], then it is the unique global optimal soJution of(P). 

4.- STEADY STATE AND STABILITY 

For problem (P), with given a E A. it has been proved that if it exists an interior optimal solution 

{xa:o' it has to veruy the Euler equation [1], a second order difference equation. We define the 

steady state x ofproblern (P) as Ihe steady state ofthis difThrence equation thal is defined by: 

[3] 
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Let us assume now that: 

(AS) For each a eA. p e (0,1) , there exists a uniquex· eX, in an apen interval with centre at 

x·,suchthat o ~ F,(x·,x·,a) + P F.(x·,x·,a). 

In oroer to make!he problem analytically tmctable, let's define the following function: 

[4] 

and let's impose an additional assumptioo 00 (P): 

(A6) FEC",inInt(G). 

Now, we can expand the right hand side of[4] about the steady stateusing a Taylarpolynomial of 

~ and retaining on1y!inear terms: 

o [5.a] 

Since F·}'I<=F·xy, and combining tenns, we obtain: 

[5.b] 

To check the stability¡'of the steady state, we examine the characteristic equation of [5.b] to 
:ff, 

detennine its roats. The assaciated homogeneous equation is: 

P F~ Xt+2 + [F~ + P F:Xl Xl+! + F:r Xt = O [6] 

A) SupposethatF·",-o. From assumptions (A4) and (A5), F·",<O, F·~<O so [6] reducesto: 

[F~ + p F:"] Xl+! = O => X'+J = O, V t = 0,1,2,-

"'1 
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The salution to the homogeneous equation is Xo-JCo given, Xl=X;F--=X¡=--=O. The complete 

salutian is Xo=XO given, Xl=XZ~ =xr--=x •. 

B) Now suppose that F; '# O. Theo [6] can be written: 

XI+2 + 
I 

Xt+! + P XI o [7] 

For this case, we obtain the following results: 

Proposition 3: Let's consider problem (P), with assumptions (A2) to (A6) holding. Let's assume 

that F; * O. Then: 

(1) It is not possible lhat the steady state be asymptotically stable. 

(2) Ifthe roots ofthe chamcteristic polynomial are complex, then the steady state exlnbits 

instabi1ity. 

(3) Ifthe roots ofthe characteristic polynomial are real and equa!, then the steady state 

exhibits instability. 

Proof: 

(1) Let's consider equation [7]. Let Y lt issign[y] ~ - sign[F;']. 

I 
The characteristic equation is: A? + Y ti + - = O 

P 

This can be factored in the following way: 

(A - A,) (A - A,) ~ A' - (A, + A,) A + A, A, o 
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For these expressions to he identical, it must be verified that 

A¡+Á.2 =-Y 
1 . . 

A, A, ~ Ji > 1 "" Slgo[A'] ~ Slgo[A'] 

Since 0<13<1, the product ofthe roots must be positive and bigger than the unity, which rules out 

lhe possibilitylhal IA,I < 1, IA,I < 1, and hence lhe asymptotical stability. 

(2) Let's assume that A.l and 1..2 are complex. Suppose that: 

Then; 

Al = a+ bí 

íb=a-bi 

A.l + A.2 = 2a 

and then the steady state is unstable. 

(3) ¡n" ~ l., rcal, Ihen 

,4,4
11

2 
r --~O<c>r ~-"" r~-

P P,f1i 

and lhen lhe steady state is instable .• 

• 
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The main result about stahility oftbe steady state is the following: 

Theorem 1; Let's censider problem (1'), wilh assumptions (A.2) lo (A.6) holding. Lel's assume lhal 

F; 7:- O. TIten. the necessary and sufficient condition for the steady state to exhibit saddlepoint 

stability is lhal; 

F;' + P F:' + IF;'I(1 + jJ) < O [8] 

Proof: In proposition 3 we have seen that, in order to obtain saddlepoint stabillty, it is necessary 

that the roots of the characteristic polynomial are real and distinct. The roots of the characteristic 

polynomiaI are: 

1t must be verified tltat: 

,4,4
11

2 
r -->O<=>y >-=> r >-

P P,f1i 

Suppose that thls condition is holding. n: at the same time, 

a) ')'>0, then is obvious that A.2<A.l<O. For saddlepoint stability to exist it is required that: 

A.2 < ~ 1 < Al < O <=> 

<c> -~ - Nr' -¡ < - J < -% + i ~r' --f¡ < O <c> 

<c> Ir - 21 < ~r' - ¡ <c> 

<O> Irl ~ r > 1 + ! 
P 

b) y<O, then O<l.,<l.,. Saddlepoint stability [equires tha¡; 



O<ib<l<'¡1 <=> 

<? -~ - t Jr' - ~ < 1 < -3 + 1 Jr' - ~ < o <? 

<? Ir + 21 < 

1 
<? Irl ~ -r > 1 + P 

Thus, in order lo exhibil saddlepoinl stability, lhe steady stale musl satisfY: 

(i) Irl > jp 
(ii) Irl > l + ~ 

P 

Let us see now!hal if(ü) is verified, Ihen (i) is verified: 

which is evident. 
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Therefore, assuming tha~ F; :¡t; O. the necessary and sufficient condition for the steady state to 
, 

have saddlepoint stabiliJ is lhat: 

Irl > 1 + ~ 
P 

IF;' + P F:"I > 1 + ~ 
PIF:"I P 

<? F;' + P F:" + IF:'I (1 + P) < O 

4 
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and the theorem is proved.a 

Note: In the fonnulation of the model, in section 2, it is assumed that 0<13<1. Let us see what 

happens if~~I, Ibat is, iflbere is no discoun!. IfP~I, accordingto Levhari-Liviatan (1972) Ibere is 

with absolute certainty saddlepoint stability. It is a1so proved innnedialely lhal Ibe necessruy and 

sufficient condition ofsaddJepoint stability oftheorem 1 holds, since the hessian matrix is negative 

defined for each a E A . 

We wonder now under wruch conditions we can assure that the equation ofthe steady state [3] 

defines implicitly x· as a continuousIy differentiable function of a and 13. We have the answer in the 

following proposition: 

Propo,ilion 4: Let's oonsider prohlero (P) for a Elnt(A), with assumptions (A2) lo (A6) 

holding. Let's assume that F; * o. Then: 

If the steady state exlúbits saddlepoint stability. there exists a UIlÍque continuously 

dilrerentiable function x'9<'(a,P), defined in an appropriate neigbboothood in AxB, sueh 

lha!: 

Proof: Let's oonsider equation [3) of Ibe steady state. Let's see !hat we can apply Ibe impUcit 

function theorent. It is evident that conditions 1 and 2 of the implicit function theorem hold. The 

third oondition requires !hat 
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(Notice similarity with [8]). 

1) If IF;' I ~ F;',!hat is, if F;' > O, !han from [8] we have: 

F;' + P F:' + F;' (1 + PJ < O, so " o. 

2) If IF;' I ~ -F;', !hat is, if F;' < O, tben, as also F;' < O, F:' < O we have: 

F~ + P F:X + F; (I + fJ) < 0, so ::¡:. O. 

By direct application ofthe implicit function theorem, the result is obtained ._ 

Now it is stated and proved theorem 2 that shows that, ir there is saddlepoint stability and if Xo 

belongs to sorne interval with centre at x·, tben the unique path that converges to tbe steady state 

from Xo is the optimal solution ofproblem (P), assuming that the optimal solution aftbe problem is 

an interior solution. It is assumed, therefore, that: 

(A7) If {xa:o is a solution that verifies the Euler condition fur problem (P), it verifies that 

This assumption is standard, since it is found, for example, in the studies of Boldrin and 

Montrncchio (1989), Soptos (1991, 1992, 1993), Araujo (1991) or Capulo (1987). 

Tbeorem 2: Let's consider problem (P), with assumptions (A2) lo (A 7) holding. Let's assume tba! 

\ 
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Then: fur a fixed a eA, there exists U, open interval with centre at x+, such that if Xo eU, there 

exists {x;};:'o wiili Xo +=xo, being {x;};:o the unique optimal solutÍon of problern (P). Moreover, 

Proof: Consider the EnJer equation associated to problem (P), for a fixed a E A . It can be written 

as: 

O ~ F,(x,y,a) + P F,(y,z,a) 

By direct application of the implicit function theorem at point x;=x+, y=x ", z.=x •• we obtain that there 

exists a continuously differentiable function g(y,x), defined in a neighbourhood of(x·,x\ verifYing 

O F,(x,y,a) + P F,(y,g(y,x),a) 

We have lhat: 

( ' ') I (' ') g. x,x ~ -p; g, x ,x 

Define tbe first order dynamic system: 

Z~l ~ (X~2,X"') ~ (g(x,,,,x,),x,,,) ~ heZ,), forl~O,I,2,... [9] 

where Z¡={",."",), for which Z'={x,x) is a steady stale. 

The Jacobian matril< ofh at (x',x) is: 
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th.t verifles 11 - Al ~ [F;' + PF'", + (1 + Pi F:']I (J1F:') '" O, being one of the eigenvalues of 

A Jess than 1 in absolute value, an the other greater than 1 in absolute value. 

Applying to dynamic system [9] the results oftheorem 6.6 in Stockey and Lucas (1989), it can be 

• ssured that tbere is • neighbourhood V of z: ,"<x',x'J, and • continuously difierentiable function 

~: V ->!Jl for which the m.trix (~/Z'), ~,(Z')) has rank 1, such thal if IZa::, is a solution of 

[9]withZ, EVand ~Z,)~O,thenlim Z ~ z:. 
H. 

Therefore there exists U, apeo inteIVal with centre at x·, such tbat VXo E U there is a unique Xl *, 

{x:};:o verifiestheEulerequationand lim x; = x· 
H. 

Letls see tbat the soIution obtained from the EuIer equation verifies transversality condition [2]: 

Hro 1/ Px(x;,x;+1,a) x; = O since, 
H. 

0<~<1 implies that P' -> O as t -> 00 

Fx is a continuous functiOIl x; E{X~}:o u {x·} and X;+1 E (x;};:'o u (x·}, being 

(xa:o u (*.) acompactset. ThereforeFxCxt,xt+t,a)isbounded. 

Byasswnption (A 7) the solution is interior and, by applying proposition 2, it follows that {xa:.o 

is the unique global optimal solution ofproblem (P) .• 
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5. THE STEADY STATE COMPARATIVE STATICS 

In this section we try to answer the following question: How does steady state change when there 

is a small change in sorne parameters in problem (P)? The steady state comparative statics are 

found by taking partial derivatives in [3] with respect to the parameters (a ,P) using the chain rule . 

Resu1ts are given by the following theorem: 

Tbeorem 3: In the problem (P) for a Elnt(A) , with assumptions (A2) to (A 7) holding and with 

F; #= O, the effects of variations in the parameters (a,p) on the optimal steady state choice 

functionx¡ = x·(a,PJ are foundfrom: 

1"'", + P F:' + F:' (1 + PJ 
i=l,2 ... m 

Bx' 

Bp 

Proof: The derivation of equation [3] with respect to a¡ yie1ds to: 

Solving tbis equation gives: 
Bx' 

Ba, F;' + P F'" + 1"'", (1 + PJ 

SimilarIy, deriving [3] with respect to ~ we obtain: 

, Bx' + p[ , Bx' 
F", Bp Fn BP + 

F' Bx' ] + F' ~ O 
'" Bp • 
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Solving tbis equation gives: 
F;' + p F:' + F;' (1 + P) • 

At tbis level of generality. no signs are implied for this expressions. However, from the assertion 

that the steady state exhibits saddle-point stability, the denominator ofboth expressions is negative. 

Then, it can be proved the following corollary: 

CoroU"'Y 3: Under the assumptions ofTheorern 3, jfthe steady state exhibits saddle-point stability, 

titen: 

(1) 

(2) 

(3) lf any parameter a; enters tite fimroon F sueh tltat it is attaehed to '" onIy, when evalusted 

at tbe steady state, tltat i~ F;', ~ O, then sig1l (!:J ~ sigll(F:.,). 

(4) lf any pararneter a; enters tite fimroon F sueh thst it is attaehed to x" 1 only, when evaluated 

attltesteadystate, tbatis, F:., ~ O, then sign (!:J ~ sign(F;.,J. 

6,LOCALCOMPARATIVEDYNAMICS 

In the previous section we bave seen how does steady state change when Ihere i, a smaU chango in 

sorne parameters in problem (P). Steady state changes from Xl to x?- as a consequence of a sma1l 

change in the value of sorne parameter. In this section we tty to answer the following question: 

Which trajectory will be the optimal solution in moving frOID Xl to x:? 

Suppose that there exists saddle-point stability. In tbis case, the soIutions of the characteristic 

equation of [5b] are real root, Al and A2 (non-zero). Assume, for exarnple, tltat 

IA,I < 1, IA,I > l. The general solution to the Iinearized equation [5a] is Iherefore: 

z(t;a,p,x,) ~ A,.A: + A,.Al + x'(a,p) 

To Iind the specilic path tbat maximises (P) near the steady state it must be taken into aceount the 

boundary condition, x(O) = x" and Ihe result !tom Theorern2: 

lim x, = x'(a,p) 
,~. 

In this case and near the steady state. the optimal solution can be approximated by the solution of 

Ihe Iinearized equation [5a]. Since 1 A, 1 > 1, tbis lintit rosult holds if and only jf ArO. 

Therefore: 

and A, = x, - x'(a,p) 

The specilie equilibrium palh around the steady state talces the following fonn: 

z(t;a,p,x,) ~ [x, - x'(a,p)].A: + x'(a,p) [lO] 

From tbis expression we can obtain the following local comparative dynamics resu1t: 

Theorem 4: Be Ihe problern (P) for a elnt(A) , witlt assumptions (A2) to (A 7); leI us assume 

aIso tltat F';" O and F';' + p. F'; + IF,;I· (1 + p) < O. Then, Ihe elfects of varistions in Ihe 

panuneter1l (lío, a, P) on tite equihbrium path z(t;a,p,x'(a,p)) around the steady state are 

foundfrom: 

~ ~ ox' (1 - AD 
oa¡ oa¡ 

oz, ~ ox" (I _ AD 
op op 

where Al is the root ofthe characteristic equation of[5b] , with .41 < l. 
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Proof: These local comparative dynamics results follow frOID the derivation of equation [10] with 

respect to the parameters (Xo, el, (3) and setting Xo = x" (a,p). Consider rust parameterXo: 

[11] 

Consider now parameter a;: 

This derivativemust be evaluated at Xo = x" (a,j3), so: 

[12] 

Finally, considerthe parameter f3, evaluatingthe derivative at Xo = x" (a,PJ: 

ox' , [ '( (JJ] "d Al ox' 
- o(J Al + x, - x a, t Ji dp + op 

ox' (/ ') - - Al 
o(J 

[13] 

• 
We can evaluate these derivatives when t -+ oo. reslllting in the following intuitive reslllts: 

lim :z (t;a,p,x'(a,(J}) ~ O 
t4<O UXO 

a ox" lim -!-(t;a,(J,x'(a,(J)} ~ 
14<0 val oa¡ 

From the assertion lbat the steady state exlnlJits saddle-point stability, I Al I < 1. Then, its obvious 

the following corollary: 

¡ 

J 

CoroUary4: 

(1) 

(2) 

(3) 

. (oz0 Slgn -
ox +, if r<O~F~ >0 

S;gn(OZ') = alternatelypositiveandnegative, if r> O ~F~ < O 
ox, 

Sign( OZ,) ~ Sign(oX·). 
oa.. aa .. 

7. TBE QUADRATlC CASE 
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In this section we study a particular case and apply the results obtained in previous sections. In this 

case function F in the objective is quadratic; this is a very interesting case since it does not require 

that the initial Xo be around the steady state and we can be sure of the existence of an optimal 

salutian: resuIts have a global nature rather than a local one . 

We consider the following problem: 

. 
Max ~ ¡f F[x"x,."a,b,c,d,e,D with x(o) ~ x, given (QP) 
(xl+d';..Q ,~O 

Intbiscase: X~91· u(o}; A~ (a ~ (a,b,c,d,e,j)) c9l' 

r(x,a)=9t, VXEX, VaEA; (J E(O,I) 



---------------------r----------------------------------------------------------------- -------
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We assume tbat a<O,b<O,ah-c2 
> O, so that F is strict1y convex in x,y, fue any a eA. In 

order lo assure that assumption (A3) hole!, we assume lbal fur any y eX,a eA js 

1'; (x,y, a) = ax + 0' + d > O. The Euler equation js in this case: 

Therefure, Ihe steady stale is defined by: 

e+fJd 
[15] 

c{l+ P)+b+ fJa 

which exists and jI js unique ir and only ir c(l + P) + b + fJa " o. 

Euler equation (17) can also be -written as; 

fJcxt+2 + (h+fb)xt+l +cxt = (fJc+b + {la + c)x· (16) 

Assume e -:t:. O(i .e. F; =F O). The necessruy and sufficíent condition fur saddlepoint stability is; 

b + fJa +Icl{l + P) <O 

This condition guarantees that there is only one steady state x·, The roots of the characteristic 

equation associated with (16) are: 

4 

P 
. A =2.l-

b
+fJa - (b+ fJa)' 

"2 f1c f1c 
4 

P 

AssumingtjJerejs saddlepointstability: x; =z(t;a,p,x,)= AJA'J + A,A', + x'(a,p) 

• irc>O, then O<A, < ¡<AJ. Making AJ9l, x(O)=x, = A, +x', wehave 

• irc<O, then A, <-!<A<O,. MakingArQ, x(O)=x, = A, + x', wehave 

(17) 
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Therefore, 

[18] 

js the only optimal solution lo (QP), which also verifies limx,' = x'. 
H_ 

In arder to study the steady state comparative statics we could directly ca1culate tbe partial 

derivatives of x.* with respect to parameters a,b,c,d,e,f,J3 from equation (15). We could also use 

Theorem 3. CoroIlaIy 3 gives us sorne useful results: 

1. Sigll(~;) ~ sign(F:J=sigll(a+c)x' +d) 

sigll (~:J ~ sigll( F:'J = sign( x') 

sign (~) ~ sign(F:,J = sign(l), whichis positive. 

. (ax') Slgn ---
al 

~ sign(F',;J=O 

3. 8ince P;' = F; = O, we obtain: 

sign(~~') ~ sign(F;'J=sign(x') 

sign (a~·) = sign(F~)=sigll(1), whichispositive 

In order to obtain comparative dynamics results we use equations (18) and (17). We apply 

Theorem 4 lo obtain: 



Ox' 
-' ax, 

Ox' 
-' ~ 
ap 

" , Ah 

ax' (1 - Al) 
ap 

with i~1 if C<O, and i~ if 0>0, We could also directly use Corollruy 4. 

8. AN ECONOMIC EXAMPLE: OPTIMAL GROWm 
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One ofthe most well known economic applications of dynarnic optimization in discrete time is the 

one sector model of optimal growth. We could write this fumily of models as tbe following 

maximization problem: 

where: 

Max 
(kl+\ tt = O 

00 

¿ pt U[ed 
t ~ O 

S.t. et ::::; C[kpkt+l'o] 

Ct;;::O kt;;::O 

• kt;;:: O is the capital per worker at perlod "tU
, ko is given. 

• U(Ct ) is the utility function afthe representative consumer (the standard assumptions 

are imposed: fy>o, U'<O),The inequality in the restrietioo becomes equality because Ihe 

utillty funetioo is a1ways increasing, 

• C,(kt,kt+l'O):?: O is the consumption function roc wruch we assume C>O. c.,.<o. In 

order lo simpruy t1ús example we wiIl assume Ihe following form for t1ús consumptioo 

• f is the production function and a is tbe capital depreciation coefficient, (tbe standard 

assumptions, f>O, f<O, are imposed), 

Tberefore, tbe maximizarlon problem becomes: 

Max 

(kul t? = 

pI U [flk,)-ok,.,] 

l' 

For convenience we write now the first and second derivatives ofthe utility function: 

F(k"k",,6) ~ U[/(k,) -6k .. ,j 

F. ~ U'[f(k,)-& .. ,j/~,» O 

F~ ~ U"[.J U~,)f + U'[,}f'fk,) < O 

Fyy ~ 6'U"f.} < O 

F" ~ - 6U"[.}/~,) > O 

Sleady State 

Using the formulas aboye, we can write tbe Euler condition in the steady state as: 

By the assumptions of positive marginal utility and decreasÍng marginal productivity we obtain the 

only possible steady state amount ofCapital from: 



We can use Theorem 1 to test for saddle-point stability: 

F; + pF; + (1 + P)IF;I ~ 
~8'U"'+~u"'(r)' +U" j"'j-(l+P)8U'" f"~ 

~ PU" f"'< O 
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We conclude that tbere is saddle--point stability in trus problem. In addition, from F J:Y > O we know 

tbat the roots of the characteristic equation are real and positive and therefore, near the steady 

state, there is no oscillation ofthe state variable (capital) in the optimal path: ifthe initial amount of 

capital is higher (lower) !han the steady state leve~ the optimal path wilI be monotonously 

decreasing (increasing). 

Comparative Staties 

Using the correspondlng corollaries aboye, we can sign the partial derivatives of the steady stale 

level of capital. Beginning with parameter p, from CoroUary 3 (1): 

Sign(ak') ~ sign(F;)=> ak' >0 
ap ap 

which means that an increase in the valuation of the utility ohtained in the future will increase the 

optimal steady stale leve! of capital. The optimal decision consists on consuming less in Ihe fust 

perlad, in arder to be able to produce and consume more in the following perlads. 

Wrth respeet lo the capital depreciation coelIicient 6, we obtain frem Corollary 3 (2): 

. (ak') . (F' p' ) slgn a8 = Slgn y8 + F ,,6 

Since: 

F 
I 

we conc1ude: 

ak' < O 
08 
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That is, if capital depreciation rate increases, then the steady state level of capital will be reduced. 

111e optimal decision will be to consume more in the first period, reducing tbe level of production 

and consumption in the future. 

Both steady stale comparative statics resuhs could also be obtalned dlrectly from the above 

expression fo! the steady state 1eve1 of capital and using the assumptions of positive and decreasing 

prodnctivity of capital (f>O, 1'<0). 

Local Comparative Dynamics 

From Corollary 4 we obtain the following local comparative dynamics resuIts: 

ak, = Al > O, with O < Al < 1 
ako 1 

.~Ok,) .~Ok') SI - =SI -

08 08 
ok, =>- < O 
08 

. (ak,) . (ak') ok, Slgn op ~ SI[JI' op => op > O 

The sign of the etrects of changes in 6 and p on Ibe optimallevel of capital in each perlad (k.' wilh 

t>O) are the same as those of the elfects on the steady stale level of capital (k'J. However, from 

Theorem 4 we know that the amount ofthese e:ffects 18 smaller for kt· (with t :6nite) tban for k·. 

We can represent both steady state comparative statics results and local comparative dynamics 

results in the following figure: 



I 

'lo or 11(3 I 
~---------------------(,..) -------_. 

'" ... .... .... .... k*t(Il6tj 
;; 

k* ....... ',:;""" ...................... . 

-' , , , 

012345 t 

Figure 1 

Interpretatioo of the Euler Condition 

Euler condition can be written as: 

I 
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Thi, i, a typical marginalist result. Capital in penod (t+ 1) affect, utility in bolh penod (1) (in a 

negative way) and perlod (t+1) (in a positive way). Optimality in the path ofthe stock of capital 

require, that Ihe positive marginal utility ofcapital (t+1) in perlod (1+1) (correcterl by Ihe di,couot 

fuetor ~), should be equal lo the negative marginal utility of capital (t+ 1) in perlod (t). !fthe fonner 

were Iarger than the h¡ter, it would be profitable to increase the amount of capital (t+I), and 

therefore, we would not be in an optintal path; in the optimal path, capital (t+1) would be increased 

wrti1 its total ínter temporal marginal utility is zero. 

InterpretatioD oftbe sigo ofFxy 

The concavity assumption about the general function F requires: 

r 
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F:' < O, F;" < O, F'~ F;" > (F;,f 

These conditions hold in our example. In general the cross second derivative F~ could have any 

sign, as fur as ¡ts absolute value is not too high. However in our example, under the standard 

assumptions on the utility function (U'<O) and Ihe production function (1'>0), we have. 

This siga can intuitively be explained be Ihe fullowing chain ofreasoning: 

Ilkl+l ---tVCt ~IlU'(C,) --7AFx 
wifh 11 = increase, V = decrease 

In this case we already lrnow there is no osci1lation, which can also be understood f"om tbe 

condinon foc an oprimaI path (Euler condition): 

The partial derivatives of ~ have the following signs: ~., > O, ~'M < O, ~'M > O. We also 

know tba! in the steady state Euler condition must hold: 

Therefore, if ko > k', then k; > k' in order lo maintain ~ ~ o. And if k; > k', Ihen 

k; > k*. And so on. So, there is no oscillation. 

In an optimal growth modellik.e the one we have developed in this example, there is not much 

econontÍc sense in either F~ = O nor F~ < O. In tbe former, the link between the optimisation 

decisions in the different perlod, would be broken and, therefure, optimal deci,ion would be the 

same in aH perlod.. In the !atter oscillations would nse in !he optintal path. In both cases the 

standard assumptions on the utility and the production functions would not hold. 
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