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Epidemiological models may give some basic guidelines for public health practitioners, allowing the analysis of issues that can
in�uence the strategies to prevent and 
ght a disease. To be used in decision making, however, a mathematical model must be
carefully parameterized and validated with epidemiological and entomological data. Here an SIR (S for susceptible, I for infectious,
and R for recovered individuals) andASI (A for the aquatic phase of themosquito, S for susceptible, and I for infectiousmosquitoes)
epidemiological model describing a dengue disease is presented, as well as the associated basic reproduction number. A sensitivity
analysis of the epidemiological model is performed in order to determine the relative importance of the model parameters to the
disease transmission.

1. Introduction

Dengue is a major public health problem in tropical and sub-
tropical countries. It is a vector-borne disease transmitted by
Aedes aegypti andAedes albopictusmosquitoes. Four dierent
serotypes can cause dengue fever. A human infected by one
serotype, on recovery, gains total immunity to that serotype
and only partial and transient immunity with respect to the
other three.

Dengue can vary from mild to severe. �e more severe
forms of dengue include shock syndrome and dengue hemor-
rhagic fever (DHF). Patients who develop these more serious
forms of dengue fever usually need to be hospitalized.

�e full life cycle of dengue fever virus involves the role
of the mosquito as a transmitter (or vector) and humans
as the main victim and source of infection. Preventing or
reducing dengue virus transmission depends entirely on the
control of mosquito vectors or interruption of human-vector
contact [1].

In Section 2 an epidemiological model for dengue disease
is presented. It consists of six mutually exclusive com-
partments, expressing the interaction between human and
mosquito and designed for examining the process of the
disease spread into a population.

Similarly to humans,mosquitoes dier among themselves
in terms of their life history traits. Besides individual varia-
tions, the environment (temperature and humidity) also has
a strong eect on the life history [2]. Another source of
uncertainties, regarding appropriate parameter values, is the
scarcity of the data available for the mosquito population and
the diversity among the international data.

Our model includes a set of parameters related to human
and mosquito populations and their interaction. O�en the
unknown parameters involved in the models are assumed
to be constant over time. However, in a more realistic per-
spective of any phenomenon, some of them are not constant
and implicitly depend on several factors. Many of such
factors usually do not appear explicitly in the mathematical
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models because of the need of balance betweenmodeling and
numerical tractability and the lack of a precise knowledge of
them [3].

Sensitivity analysis allows to investigate how uncertainty
in the input variables aects the model outputs and which
input variables tend to drive variation in the outputs. Sensitiv-
ity of the basic reproduction number for a tuberculosismodel
can be found in [4]. Here one of the goals is to determine
which parameters are worth pursuing in the 
eld in order to
develop a dengue transmissionmodel. For our speci
cmodel,
a sensitivity analysis is performed in Section 4 to determine
the relative importance of the model parameters to disease
transmission, taking into account the basic reproduction
number (Section 3).

Section 5 reports some numerical experiments: a set
of simulations is presented to illustrate the eect of the
parameters on the number of infected individuals. Finally,
some conclusions are given in Section 6.

2. Dengue Model

Taking into account the model presented in [5, 6] and the
considerations of [7, 8], a new model more adapted to
the dengue reality is proposed. �e notation used in the
mathematicalmodel includes three epidemiological states for
humans:

�ℎ(�)—susceptible (individuals who can contract the
disease),

�ℎ(�)—infected (individuals capable of transmitting
the disease),

�ℎ(�)—resistant (individuals who have acquired
immunity).

It is assumed that the total human population,�ℎ, is constant:�ℎ = �ℎ(�) + �ℎ(�) + �ℎ(�) at any time �. �e population is
homogeneous, which means that every individual of a com-
partment is homogeneouslymixedwith the other individuals.
Immigration and emigration are not considered.

�ree other state variables, related to the female
mosquitoes, are considered:

��(�)—aquatic phase (that includes the egg, larva,
and pupa stages),

��(�)—susceptible (mosquitoes that are able to con-
tract the disease),

��(�)—infected (mosquitoes capable of transmitting
the disease).

Note that male mosquitoes are not taken into account,
because they are not capable of transmitting the disease and
that there is no resistant phase, due to the short lifespan of
mosquitoes.

It is assumed homogeneity between host and vector
populations, which means that each vector has an equal
probability to bite any host. Humans and mosquitoes are
assumed to be born susceptible. �e dengue epidemic is

modeled by the following nonlinear system of time-varying
ODEs (ordinary dierential equations):

��ℎ
�� = 	ℎ�ℎ − (���ℎ

��
�ℎ + 	ℎ) �ℎ,

��ℎ
�� = ���ℎ

��
�ℎ �ℎ − (�ℎ + 	ℎ) �ℎ,

��ℎ
�� = �ℎ�ℎ − 	ℎ�ℎ,

���
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��
��ℎ) (�� + ��) − (�� + 	�) ��,

���
�� = ���� − (��ℎ�

�ℎ
�ℎ + 	�) ��,

���
�� = ��ℎ�

�ℎ
�ℎ �� − 	���,

(1)

with initial conditions

�ℎ (0) = �ℎ0, �ℎ (0) = �ℎ0, �ℎ (0) = �ℎ0,
�� (0) = ��0, �� (0) = ��0, �� (0) = ��0.

(2)

�e meaning of the parameters of the model, together with
the baseline values used in Section 4, is given in Table 1.

3. Basic Reproduction Number

Due to biological reasons, only nonnegative solutions of the
initial value problem (1)-(2) are acceptable. More precisely, it
is necessary to study the solution properties of the system (1)
subject to given initial conditions (2) in the closed set

Ω = {(�ℎ, �ℎ, �ℎ, ��, ��, ��) ∈ R6+ : �ℎ + �ℎ + �ℎ ≤ �ℎ,
�� ≤ ��ℎ, �� + �� ≤ ��ℎ} .

(3)

It can be veri
ed that Ω is a positively invariant set with
respect to (1).�e proof of this statement is similar to the one
in [9].
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De�nition 1. A sextuple � = (�ℎ, �ℎ, �ℎ, ��, ��, ��) is said
to be an equilibrium point for system (1) if it satis
es the
following relations:

	ℎ�ℎ − (���ℎ ���ℎ + 	ℎ) �ℎ = 0,

���ℎ ���ℎ �ℎ − (�ℎ + 	ℎ) �ℎ = 0,
�ℎ�ℎ − 	ℎ�ℎ = 0,

� (1 − ����ℎ) (�� + ��) − (�� + 	�) �� = 0,

���� − (��ℎ� �ℎ�ℎ + 	�) �� = 0,

��ℎ� �ℎ�ℎ �� − 	��� = 0.

(4)

An equilibrium point � is biologically meaningful if and only
if � ∈ Ω. �e biologically meaningful equilibrium points are
said to be disease-free or endemic, depending on �ℎ and ��:
if there is no disease for both populations of humans and
mosquitoes, that is, if �ℎ = �� = 0, then the equilibrium
point is said to be a disease-free equilibrium (DFE); otherwise,
if �ℎ ̸= 0 or �� ̸= 0, in other words, if �ℎ > 0 or �� > 0, then the
equilibrium point is called endemic.

It is easily seen that system (1) admits at most two DFE
points. Let

M = − (��	� + 	�	� − ���) . (5)

If M ≤ 0, then there is only one biologically meaningful
equilibrium point �∗1 :

�∗1 = (�ℎ, 0, 0, 0, 0, 0) . (6)

IfM > 0, then there are two biologically meaningful disease-
free equilibrium points: �∗1 and

�∗2 = (�ℎ, 0, 0, ��ℎM��� ,
��ℎM
	�� , 0) . (7)

By algebraic manipulation,M > 0 is equivalent to condition
(�� + 	�) 	�
��� < 1, (8)

which is related to the basic ospring number formosquitoes:
if M ≤ 0, then the mosquito population will die out; if
M > 0, then the mosquito population is sustainable, and the
equilibrium �∗2 is more realistic from a biological standpoint.

An important measure of transmissibility of the disease
is the epidemiological concept of basic reproduction number
[10]. It provides an invasion criterion for the initial spread of
the virus in a susceptible population.

De�nition 2. �ebasic reproduction number, denoted byR0,
is de
ned as the average number of secondary infections that
occurs when one infective individual is introduced into a
completely susceptible population.

Using the next generation matrix of an ODE [11], one
concludes that the basic reproduction numberR0 associated
to the dierential system (1) is given, in the caseM > 0, by

R
2
0 = ��

2�ℎ���ℎM
� (�ℎ + 	ℎ) 	2� . (9)

IfR0 < 1, then the disease cannot invade the population and
the infection will die out over a period of time. �e amount
of time this will take generally depends on how smallR0 is. If
R0 > 1, then an invasion is possible and infection can spread
through the population. Generally, the larger the value ofR0,
the more severe, and possibly widespread, the epidemic will
be [12].

In determining how best to reduce human mortality
and morbidity due to dengue, it is necessary to know the
relative importance of the dierent factors responsible for its
transmission. In the next section the sensitivity indices ofR0,
related to the parameters in the model, are calculated.

4. Sensitivity Analysis

Sensitivity analysis tells us how important each parameter
is to disease transmission. Such information is crucial not
only for experimental design, but also to data assimilation
and reduction of complex nonlinear models [13]. Sensitivity
analysis is commonly used to determine the robustness of
model predictions to parameter values, since there are usually
errors in data collection and presumed parameter values. It is
used to discover parameters that have a high impact on R0
and should be targeted by intervention strategies.

Sensitivity indices allow us tomeasure the relative change
in a variable when a parameter changes. �e normalized
forward sensitivity index of a variable with respect to a
parameter is the ratio of the relative change in the variable to
the relative change in the parameter. When the variable is a
dierentiable function of the parameter, the sensitivity index
may be alternatively de
ned using partial derivatives.

De�nition 3 (cf. [14]). �e normalized forward sensitivity
index of R0, that depends dierentiably on a parameter �,
is de
ned by

ΥR0� = �R0�� ×
�
R0
. (10)

Given the explicit formula (9) for R0, one can easily
derive an analytical expression for the sensitivity ofR0 with
respect to each parameter that comprises it. �e obtained
values are described in Table 2, which presents the sensitivity
indices for the baseline parameter values in the last column
of Table 1. Note that the sensitivity index may be a complex
expression, depending on dierent parameters of the system,
but can also be a constant value, not depending on any of

the parameter values. For example, ΥR0��ℎ ≡ +0.5, meaning

that increasing (or decreasing) ��ℎ by 10% increases (or
decreases) alwaysR0 by 5%.

A highly sensitive parameter should be carefully esti-
mated, because a small variation in that parameter will lead to
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Table 1: Parameters used in the dengue mathematical model (1).

Parameter Description Value

�ℎ Total human population 480000

� Average daily biting (per day) 0.8

��ℎ Transmission probability from �� (per bite) 0.375

�ℎ� Transmission probability from �ℎ (per bite) 0.375

	ℎ Average lifespan of humans (in days) 1/(71 × 365)
�ℎ Mean viremic period (in days) 1/3
	� Average lifespan of adult mosquitoes (in days) 1/10
� Number of eggs at each deposit per capita (per day) 6

	� Natural mortality of larvae (per day) 1/4
�� Maturation rate from larvae to adult (per day) 0.08

� Female mosquitoes per human 3

� Number of larvae per human 3
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Figure 1: State variables of the ODE system (1) with initial conditions (11) and parameters as in Table 1.

large quantitative changes. An insensitive parameter, on the
other hand, does not require as much eort to estimate, since
a small variation in that parameter will not produce large
changes to the quantity of interest [15].

5. Numerical Analysis

�e simulations were carried out using the following values
for the initial conditions (2):

�ℎ0 = �ℎ − 10, �ℎ0 = 10, �ℎ0 = 0,
��0 = ��ℎ, ��0 = ��ℎ, ��0 = 0.

(11)

�e 
nal time was �� = 100 days. Computations were run
in Matlab with the ode45 routine. �is function implements

a Runge-Kutta method with a variable time step for e�cient
computation.

Figures 1(a) and 1(b) show the solutions to (1)-(2) with
the baseline parameter values given in Table 1, for human and
mosquitoes, respectively.

Figure 2 shows a set of graphics that re�ect the eects
on the disease through parameters variation. Each graphic
presents the number of infected humans using the baseline
parameter values (solid line) described in Table 1 and the
corresponding curves with a speci
c parameter increase of
10% (dashed line).

�e obtained graphics reinforce the sensitivity analysis
made in Section 4. Some parameters, 	ℎ, �, and 	�, present
residual sensitivity indices having small in�uence on R0,
and the changes are not graphically perceptible. �e most
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Figure 2: Continued.
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Figure 2: Infected individuals with initial parameter values as given in Table 1 (solid line) and with an increase of 10% of a speci
c (or all, in
(g)) parameter (dashed line).

Table 2: Sensitivity indices ofR0 evaluated at the baseline parame-
ter values given in Table 1.

Parameter Sensitivity index

� +1

��ℎ +0.5

�ℎ� +0.5

	ℎ −0.0000578748
�ℎ −0.499942
	� −1.03691
� +0.0369128

	� −0.0279642
�� +0.527964

� +0.5

positive sensitive parameter is the mosquito biting rate, �,
whereΥR0
 = +1 (see Figure 2(a)). Figures 2(b), 2(e), and 2(f)
re�ect the same behavior as the previous one with respect
to ��ℎ, ��, and � parameters, respectively. As the sensitivity
index for �ℎ� is equal to the ��ℎ and its eect in the infected
humans is similar, the graphic is omitted. For all these 
ve
parameters the positive signal in the sensitivity indices ofR0
agrees with our intuition.

�e parameters �ℎ and 	� have a negative sensitivity
index. �e most negative sensitive parameter is the average

lifespan of adult mosquitoes, 	�, with ΥR0�� = −1.03691. If�ℎ and 	� are increased by 10%, then the basic reproduction
number R0 decreases approximately 5% and 10%, respec-
tively. In this situation the infected humans also decrease by
accordingly, as can be seen in Figures 2(c) and 2(d).

Figure 2(g) presents the comparison of the infected
humans when the original parameters are considered and all
the parameters are increased by 10%.

6. Conclusions

A dengue model was studied by evaluating the sensitivity
indices of the basic reproduction number, R0, in order to
determine the relative importance of themodel parameters in
the disease transmission. Such information allows us to iden-
tify the robustness of the model predictions with respect to
parameter values and the in�uence of each parameter in the
basic reproduction number and consequently in the disease
evolution. Such analysis can provide critical information for
decision makers and public health o�cials, who may have to
deal with the reality of an infectious disease.

We trust that the research direction initiated here can
be of great bene
t to citizens aected by dengue, with an
impact on both the prevention and control of an epidemic.
Such contribution is especially interesting regarding a disease
like dengue, which causes a large disruption in the lives of
suerers and has enormous social and economic costs, as was
well illustrated by the outbreak of dengue that occurred in
Cape Verde in 2009.
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