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Sensitivity analysis in Bayesian generalized
linear mixed models for binary data

MaÃlgorzata Roos∗ and Leonhard Held†

Abstract. Generalized linear mixed models (GLMMs) enjoy increasing popular-
ity because of their ability to model correlated observations. Integrated nested
Laplace approximations (INLAs) provide a fast implementation of the Bayesian
approach to GLMMs. However, sensitivity to prior assumptions on the random
effects precision parameters is a potential problem. To quantify the sensitivity to
prior assumptions, we develop a general sensitivity measure based on the Hellinger
distance to assess sensitivity of the posterior distributions with respect to changes
in the prior distributions for the precision parameters. In addition, for model se-
lection we suggest several cross-validatory techniques for Bayesian GLMMs with
a dichotomous outcome. Although the proposed methodology holds in greater
generality, we make use of the developed methods in the particular context of the
well-known salamander mating data. We arrive at various new findings with re-
spect to the best fitting model and the sensitivity of the estimates of the model
components.

Keywords: Bayesian Analysis, Binary data, Generalized Linear Mixed Models,
Hellinger distance, Integrated nested Laplace approximations, Model choice, Sen-
sitivity analysis.

1 Introduction

Generalized linear mixed models (GLMMs) allow for correlated responses through the
inclusion of random effects in the linear predictor. They greatly extend the range of
possible applications beyond ordinary generalized linear models but involve more diffi-
cult and challenging computational issues. Several inference procedures have therefore
been proposed. A Bayesian analysis is often performed using Markov chain Monte Carlo
(MCMC). However, recently Rue et al. (2009) introduced a novel numerical inference
approach, so-called integrated nested Laplace approximations (INLAs). With this ap-
proach, MCMC sampling becomes redundant as the posterior marginal distributions
are accurately approximated in a fully automated way. In addition, INLA allows the
computation of many Bayesian GLMMs in a reasonable amount of time, enabling an
extensive comparison of different models and prior distributions.

In this paper we make use of a new method for sensitivity investigations exclusively
for GLMMs with binary response and describe our approach in the particular context
of the salamander mating data, although it applies more widely. The well-known sala-
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mander mating data set was first described and analyzed by McCullagh and Nelder
(1989). It has drawn the attention of statisticians because of the demanding crossed
study design and has been used by numerous researchers (a list with 24 references can
be obtained on request from the authors) to illustrate GLMM estimation procedures
using different model specifications.

Zeger and Karim (1991) and Karim and Zeger (1992) adopted the Gibbs sampling
method for GLMMs to analyze the salamander mating data. Recently, Fong et al. (2010)
proved the applicability of INLA to analyze Bayesian GLMMs. Karim and Zeger (1992)
computed the marginal likelihood of the models and Lee and Nelder (1996) referred
to the analysis of deviance when discussing model choice techniques in the context of
the salamander mating data. Based on the most recent developments on predictive
measures and their availability in INLA we suggest several alternative model selection
techniques for Bayesian GLMMs with a binary outcome.

A crucial problem in the formulation of Bayesian GLMMs is the specification of
the prior distribution for the random effects precision parameters. Lunn et al. (2009a)
argue that the choice of the gamma prior G(ε,ε) with small ε is generally inappropri-
ate. They regret that BUGS users frequently rely on these priors as a default choice.
However, Wakefield (2009) recommended a probabilistic derivation of the gamma priors
by considering the residual odds for binary data. Fong et al. (2010) proposed a partic-
ular choice of the gamma prior distributions for the random effects precisions for the
salamander mating data set.

In the rejoinder Lunn et al. (2009b) emphasized that their preference is to avoid
gamma priors for precision parameters altogether. They recommend to follow Gelman
(2006) in using half-normal or half-Cauchy priors for random-effect standard deviations.

The choice of the prior for random-effect precision can be critical when the number
of groups is large compared to the number of observations in each group (Box and Tiao
1973, Chapter 7). We face an important practical question: “How sensitive is the poste-
rior distribution of the random effect to changes in the prior distribution?” To address
this problem Geisser (1993) suggested perturbation of the model in potentially conceiv-
able directions to determine the effect of such alterations on the analysis. He discussed
both the Kullback-Leibler divergence and Hellinger distance as possible perturbation
diagnostics.

Sensitivity to prior assumptions for the random effect precision was discussed in
Browne and Draper (2006) and discussion articles following it (Gelman 2006; Kass and
Natarajan 2006; Lambert 2006). Geisser (1993) admitted that a Bayesian analysis may
depend critically on the modeling assumptions. Sensitivity analysis has been also sug-
gested using MCMC. Besag et al. (1995) discuss that a sensitivity analysis using MCMC
can be carried out using importance sampling, which speeds up the computations con-
siderably. Narasimhan (2005) describes software facilitating dynamic exploration of
posteriors by means of importance sampling. The changes in the posterior distributions
given the changes in the priors can be assessed visually.

A general measure of sensitivity based on the Kullback-Leibler divergence together
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with its calibration was developed in McCulloch (1989). Here we adopt this method but
resort to the Hellinger distance for reasons which will be discussed. We propose a general
sensitivity measure based on the Hellinger distance together with its calibration. This
calibration enables us to assess the relevance of the observed discrepancies between
the posterior distributions. Moreover, we study micro- and macro-sensitivity of the
posterior mean estimates of the fixed effects and the random effects precisions on a grid
of prior values for the hyperparameters. We arrive at interesting new findings regarding
the sensitivity of the estimates for the salamander mating data set.

The remainder of this article is organized as follows: Section 2 reviews the salaman-
der mating data and discusses several random-effects specifications together with the
hyperprior distributional assumptions. Section 3 briefly discusses the INLA approach
in the context of the salamander data set and presents several model selection mea-
sures. In Section 4 a sensitivity measure based on the Hellinger distance together with
its calibration is proposed, the selection of gamma and half-normal priors is discussed
and a short description of the sensitivity analysis on the grid of the hyperprior values
is provided. In Section 5 results are presented. Some concluding remarks are given in
Section 6.

2 Data and models

The detailed description of 11 crosses between salamanders from nine geographically
isolated populations can be found in Verrell and Arnold (1989). The salamander mating
data set, as introduced by McCullagh and Nelder (1989), deals with one particular cross
of two populations. The salamanders were named after the locality of the population
from which the animals in the study were collected: the Rough Butt Bald in Great
Balsam Mountains and the Whiteside Mountain on Highlands Plateau.

Data consist of three separate experiments, each performed according to the design
described by McCullagh and Nelder (1989) in Table 14.3. The first one was conducted
in summer of 1986 and the other two in fall 1986. The animals used for the first and
the second experiment were identical. A new set of salamanders was used in the third
experiment.

In one particular experiment there were two groups of 20 salamanders each. Every
group comprised five male Rough Butt, five male Whiteside, five female Rough Butt
and five female Whiteside salamanders. Within each group, all animals were paired to
three animals of the opposite sex from the same population and to three animals from
the other population. Therefore, 10× 6 = 60 male-female pairs were formed within one
group leading to 2 × 60 = 120 binary observations for each experiment. A successful
mating was indicated by 1 and an unsuccessful one by 0. McCullagh and Nelder (1989)
report in Tables 14.4 through 14.6 on the 360 observed binary outcomes on mating
success in these three experiments.
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2.1 Review of the models

The main scientific question addressed in the study was whether the mating of both
geographically isolated species of salamanders was as successful as the one between the
animals from the same population. Moreover, there was some interest if a seasonal
effect could be identified. Therefore, two factors fW (Whiteside female “yes”: 1, “no”:
0) and mW (Whiteside male “yes”: 1, “no”: 0) together with their interaction WW and a
seasonal effect fall (experiment conducted in fall “yes”: 1, “no”: 0) were defined. The
interaction coefficient, representing the cross effect, was of primary interest.

Let Yijk denote the binary outcome of the mating for female i and male j in exper-
iment k where i = 1, . . . , 20, j = 1, . . . , 20 and k = 1, 2, 3. Let Yijk denote a Bernoulli
random variable with success probability πijk and logit link function

log
πijk

1− πijk
= xT

ijkβ + bF
ik + bM

jk ,

where xijk is a vector comprising the intercept, fWik, mWjk, WWijk and fallijk variables; β
is the corresponding vector of the fixed effects parameters; and bF

ik and bM
jk are normally

distributed random effects with mean zero of females and males respectively. Their
precise specifications are discussed below and can be found in Table 1.

We have fitted several models to these data. In model A it is ignored that the same
salamanders were used in the first two experiments. The data are modeled as if different
sets of 40 salamanders were used in each experiment. The random effects bF

ik and bM
jk

are allowed to have different precisions, which are assumed to be the same from one
experiment to the next.

Model B1 accounts for the fact that the same animals were utilized in two experi-
ments by assuming that the corresponding random effects for each animal are bivariate
normal. Different but correlated effects for a single animal used in the first and in the
second experiment are allowed. The precision matrix is gender-specific.

Karim and Zeger (1992), Breslow and Clayton (1993) and Chan and Kuk (1997)
found evidence for correlation of the random effects for males but not for females.
Therefore, we consider three additional variations of model B1. In model B2 we assume
that the random effects of females between the two experiments are independent. Model
B3 assumes that the male random effects for the first two experiments are identical and
the female random effects are independent. In model B4 independence of random effects
in each experiment is assumed.

Finally, in model C it is assumed that the salamanders from different experiments are
independent and the data from each experiment are analyzed separately. Consequently,
separate fixed and random effects are estimated for each experiment. The estimates of
the fixed effects (βk) in model C hence depend on the experiment (k) in contrast to the
models A and B discussed above.

2.2 Hyperpriors
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Model Females Males

A bF
ik

iid∼ N(0, τ−1
F (1,2,3)) bM

jk
iid∼ N(0, τ−1

M(1,2,3))

B1 (bF
i1, b

F
i2)

T ∼ N2(0, W−1
F ), (bM

j1 , bM
j2 )T ∼ N2(0, W−1

M ),

WF ∼ Wishart2(r,R−1
F ), WM ∼ Wishart2(r,R−1

M ),

bF
i3

iid∼ N(0, τ−1
F3 ) bM

j3
iid∼ N(0, τ−1

M3)

B2 bF
ik

iid∼ N(0, τ−1
Fk ), for k = 1, 2, 3 (bM

j1 , bM
j2 )T ∼ N2(0, W−1

M ),

WM ∼ Wishart2(r,R−1
M ),

bM
j3

iid∼ N(0, τ−1
M3)

B3 bF
ik

iid∼ N(0, τ−1
Fk ), for k = 1, 2, 3 bM

j12
iid∼ N(0, τ−1

M12),

bM
j3

iid∼ N(0, τ−1
M3)

B4 bF
ik

iid∼ N(0, τ−1
Fk ), for k = 1, 2, 3 bM

jk
iid∼ N(0, τ−1

Mk), for k = 1, 2, 3

C bF
ik

iid∼ N(0, τ−1
F (k)), for k = 1, 2, 3 bM

jk
iid∼ N(0, τ−1

M(k)), for k = 1, 2, 3

Table 1: Definition of random effects of females and males for models A, B1, B2, B3,
B4 and C. Here the precision is denoted by τ . Notation (k) in model C indicates that
the data from each experiment are analyzed separately.
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Fong et al. (2010) suggest in “Supplementary material” available at Biostatistics online
the use of the gamma distribution G(1, 0.622) as a prior distribution for the precision τ
of the random effects in the salamander mating data. Here we use the parametrization of
the gamma G(a1, a2) distribution with mean a1/a2, variance a1/a2

2 and density f(τ) =
aa1
2 Γ−1(a1)τa1−1 exp(−a2τ). We therefore consider θ0 = (1, 0.622) as a default choice.

Alternatively, we assume that κ0 = 0.01 is the default value of the parameter κ0 of the
half-normal hyperprior HN(κ0) for the random-effect standard deviation σ = τ−1/2 with
density f(σ) = 2κ

1/2
0 (2π)−1/2 exp(−κ0σ

2/2). Note that assuming a HN(κ0) distribution
for the standard deviation of the hyperparameter corresponds to assuming a gamma
distribution with parameters 1/2 and κ0/2 for the variance (rather than for the precision
as in Fong et al. 2010).

3 Estimation and model selection

3.1 INLA and inference based on deterministic approximations

The inla program, available at http://www.r-inla.org, allows the user to conve-
niently perform approximate Bayesian inference in latent Gaussian models. An R
package called INLA serves as an interface to the inla program and its usage is
similar to the glm function in R (see http://www.r-inla.org/examples/volume-ii/
code-for-model-b-of-salamander-data). The R interface is easy to use. Its stan-
dard output encompasses marginal posterior densities of all parameters in the model
together with summary characteristics. Furthermore, several model choice criteria (see
Section 3.2) are available in inla.

Latent Gaussian Markov random fields (GMRF) models, which underlie INLA, are
described in detail in Rue and Held (2005). A hierarchical GMRF model is characterized
through three stages of observables and parameters. First, the distributional assumption
for the observables dependent on latent parameters is formulated. Second, an a priori
model for the unknown parameters is assigned and the corresponding GMRF is specified.
For the models described in Section 2.1, the GMRF is (βT , (bF )T , (bM )T ).

By default a flat improper prior for the intercept β0 is assumed in inla. All other
components of β are assumed to be independent zero-mean Gaussian N(0, σ2) with fixed
precision σ−2 = 0.0001 a priori.

The definition of the latent model is completed by assigning prior distributions to
the hyperparameters. A gamma prior for τ with values (a1, a2) in the independent
random effects model is the default choice. The prior distribution of the precision
matrix WF (WM ) for correlated random effects is assumed to be Wishart2(r,R−1)
(see http://www.math.ntnu.no/~hrue/r-inla.org/doc/latent/iid123d.pdf). By
setting r = 2a1 + 1, Rii = 2a2 for i = 1, 2 and R12 = 0 (Fong et al. 2010) we ensure
that the marginal distribution of the precisions in the bivariate specification is equal to
the gamma prior in the independent random effects model. Alternatively, a half-normal
prior with parameter κ can be assumed for τ−1/2 in the independent random effects
model.

http://www.r-inla.org�
http://www.r-inla.org/examples/volume-ii/code-for-model-b-of-salamander-data�
http://www.r-inla.org/examples/volume-ii/code-for-model-b-of-salamander-data�
http://www.math.ntnu.no/~hrue/r-inla.org/doc/latent/iid123d.pdf�
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We used the default INLA settings: the simplified Laplace approximation strategy
and the Central Composite Design (CCD). These options give rise to both quick and re-
liable estimates of the models. Throughout we have used the function inla.hyperpar()
to obtain improved estimates of the marginal posterior densities of the hyperparame-
ters. This manuscript has been generated with the INLA-R-Interface-Version generated
on the 15th of December 2010. For a detailed description of the INLA methodology we
refer to Rue et al. (2009) and Fong et al. (2010).

3.2 Model selection

The Deviance Information Criterion (DIC) is contained in the standard inla output.
It is a well-known Bayesian model choice criterion for comparing complex hierarchical
models (Spiegelhalter et al. 2002). Lower DIC values correspond to better models.
However, DIC is problematic in models with many random effects (Plummer 2008).

Alternatively, inla also provides the log marginal likelihood (LML). The marginal
likelihood for a certain model M is defined as π(y|M) =

∫
π(y,x, θ|M)dxdθ and can

be used as a basis for model comparison. Larger values of the LML correspond to a
better model. However, the LML reacts severely when nearly improper priors are used.
Nevertheless, the LML can be used to compare models with identical improper priors
on the same parameters.

The conditional predictive ordinate (CPO) as discussed in Geisser (1993) can be
obtained from inla as a predictive measure. The CPO value given by CPOijk =
π(yijk,obs|y−(ijk),obs) is defined as the cross-validated predictive density π(yijk|y−(ijk))
at the observation yijk,obs, where y−(ijk),obs denotes the data without the ijk’th obser-
vation. For the salamander data we use the mean logarithmic CPO defined as

LCPO = − 1
360

∑

i,j,k

log(CPOijk).

This can be identified as the cross-validated logarithmic score (Gneiting and Raftery
2007; Held et al. 2010), which measures the predictive quality of a model. Stone (1977)
showed its asymptotic equivalence to AIC. Lower values of LCPO indicate a better
model.

For a binary response the goodness of fit of a model is the degree to which the fitted
probabilities of a successful mating for the ijk’th observation P̂ [yijk = 1] coincide with
the observed binary outcomes yijk,obs. The mean Brier score (e.g. Schmid and Griffith
2005)

1
360

∑

i,j,k

(yijk,obs − P̂ [yijk = 1])2 (1)

is often used in this context. The cross-validated Brier Score BS is defined as in (1) but
using

P̂ [yijk = 1|yijk,obs] =
{

π(yijk = yijk,obs|y−(ijk),obs), if yijk,obs = 1
1− π(yijk = yijk,obs|y−(ijk),obs), if yijk,obs = 0 (2)
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instead of P̂ [yijk = 1]. Note that (2) is a function of CPOijk and yijk alone, and so is
directly available in INLA. Lower values of BS indicate a better model.

To evaluate discrimination of a particular model the area under the curve (AUC)
is often used in a ROC analysis (e.g. Pepe 2003). Here we suggest the use of the
cross-validated probability P̂ [yijk = 1|yijk,obs] defined in (2) for comparison with the
observed values of success to obtain a cross-validated AUC. Higher values of AUC
indicate a better discrimination of the model.

4 Sensitivity analysis and choice of prior distributions

4.1 Sensitivity measure and its calibration

There are several ways of investigating the sensitivity of the estimates and their posterior
distributions to the choice of the hyperprior distributions. One of the questions is if the
posterior distributions of the fixed effects change and how the change can be quantified.
Another question is to what extent the posterior distribution of the random effects
precision is sensitive to the changes in their priors.

McCulloch (1989) developed a simple but fairly general method for comparing the
influence of the prior distribution on the posterior distribution based on the Kullback-
Leibler divergence. He suggested a measure of sensitivity which warns if the results are
overly sensitive to the choices of the priors. Moreover, he provided a useful calibration
of both the Kullback-Leibler divergence and the sensitivity measure. Unfortunately,
the Kullback-Leibler divergence turns to infinity as soon as one of the densities attains
the value 0 and the other one not. This happens quite frequently in our application
as the estimated marginal posterior distributions provided numerically by inla attain
nonzero values only on a finite discrete set of points. Consequently, the Kullback-Leibler
divergence is not applicable in our setting. In contrast the Hellinger distance does not
have this undesirable feature.

For a default θ0 and a shifted θ prior value let

S(θ0, θ) =
H(post(θ0), post(θ))
H(pri(θ0), pri(θ))

(3)

denote the relative change in the posterior distribution with respect to the change in the
prior distribution as measured by the Hellinger distance H, where pri(θ) is the prior
(no-data) distribution and post(θ) is the corresponding posterior distribution. The
Hellinger distance (Le Cam 1986) is a symmetric measure of discrepancy between two
densities f and g:

H(f, g) =

√
1
2

∫ ∞

−∞

(√
f(u)−

√
g(u)

)2

du =
√

1−BC(f, g).

Here BC(f, g) =
∫∞
−∞

√
f(u)g(u)du denotes the Bhattacharyya coefficient (Bhattacharyya

1943). The Hellinger distance is equal to 0 if and only if both densities are equal. It
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takes maximal value equal to 1 if BC is equal to 0. This happens whenever the density
f assigns probability 0 to every set to which the density g assigns a positive probability
and vice versa.

Note that the Hellinger distance is invariant to any one-to-one transformation (for
example logarithmic, inverse or square-root) of both densities (Jeffreys 1961, p. 180).
To see this, let X1 and X2 be random variables with densities fX1 and fX2 respectively.
Let Y1 = g(X1) and Y2 = g(X2), where g(x) is a strictly monotonic (increasing) function
with inverse g−1(y) having a continuous derivative dg−1(y)/dy. Then

BC(fY1 , fY2) =
∫ g(∞)

g(−∞)

√
fY1(y)fY2(y)dy

=
∫ g(∞)

g(−∞)

√
fX1(g−1(y))

∣∣∣dg−1(y)
dy

∣∣∣fX2(g−1(y))
∣∣∣dg−1(y)

dy

∣∣∣dy

=
∫ g(∞)

g(−∞)

∣∣∣dg−1(y)
dy

∣∣∣
√

fX1(g−1(y))fX2(g−1(y))dy

=
∫ g−1(g(∞))

g−1(g(−∞))

√
fX1(x)fX2(x)dx

=
∫ ∞

−∞

√
fX1(x)fX2(x)dx = BC(fX1 , fX2).

The invariance of the Hellinger distance is important in our application since we specify
prior distributions both for precisions and corresponding standard deviations.

Similar to McCulloch (1989) for the Kullback-Leibler divergence we provide a cal-
ibration of the Hellinger distance H. Let Ber(q) denote a Bernoulli distribution with
success probability q. Then it can be shown that

H(Ber(1/2), Ber(q)) =
√

1−
√

(1− q)/2−
√

q/2. (4)

Note that (4) attains its maximum
√

1−
√

1/2 = 0.541 at q = 0 and q = 1. Con-
versely, for a given Hellinger distance h smaller than 0.541 we can derive q(h) such that
H(Ber(1/2),Ber(q(h))) = h. Let h(q) be the Hellinger distance corresponding to the
probability q = q(h). Using (4) we obtain

q(h) =
(
1 +

√
1− 4((1− h2)2 − 1/2)2

)
/2.

Assuming that q(h) is between 0.5 and 1, this expression is invertible:

h(q) =

√
1−

√
1/2 +

√
q(1− q).

Table 2 shows the desired calibration q(h) for a range of h values. It tells us that the
Hellinger distance h between two distributions is the same as that between a Ber(1/2)
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h = h(q) q(h) = q
0.000 0.500
0.035 0.550
0.071 0.600
0.108 0.650
0.145 0.700
0.185 0.750
0.227 0.800
0.272 0.850
0.325 0.900
0.391 0.950
0.541 1.000

Table 2: Calibration of the Hellinger distance.

and a Ber(q(h)) distribution. This latter difference is one that we can easier interpret.
For simplicity, we denote it a q(h)− 1/2 distance in Bernoulli probability scale. In our
application we never observe Hellinger distances larger than 0.541. For larger distances
this definition would need appropriate amendment.

We now provide the calibration for the sensitivity measure S as introduced in (3):

C(S, p) = q(S × h(p)). (5)

Note that if S > 1 then C(S, p) > p; if S < 1 then C(S, p) < p; and if S = 1 then
C(S, p) = p. The value of C(S, p) can be interpreted as follows. Given a pair of priors
whose Hellinger distance is calibrated by p, then the Hellinger distance between the
corresponding posteriors is calibrated by C(S, p).

4.2 Application to gamma and half-normal hyperpriors

We first explain the general approach described above for gamma hyperpriors. Alter-
natively, half-normal priors will be considered.

It can be shown that for any two gamma densities with values θ1 = (a11, a12) and
θ2 = (a21, a22)

H(pri(θ1), pri(θ2)) =

√√√√1− Γ
(a11 + a21

2

)√
aa11
12 aa21

22

Γ(a11)Γ(a21)(a12+a22
2 )a11+a21

. (6)

For θ0 = (1, 0.622) and the two alternatives θm = (1, 0.311) and θp = (1, 0.933) we have
H(pri(θ0), pri(θm)) = 0.239 and H(pri(θ0), pri(θp)) = 0.142. For example, because
q(0.239) = 0.814 (see Table 2) this means that using a G(1, 0.311) instead of a G(1, 0.622)
prior corresponds to a distance of 0.814−1/2 = 0.314 in Bernoulli probability scale.

The Hellinger distances between the prior distributions can be now compared with
the distances of the corresponding posterior distribution, see Section 5.3. Our investi-
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gations benefit from the ability of INLA to provide the marginal posterior distributions
of every desirable quantity in the model. The inla function called inla.dmarginal()
evaluates the posterior densities at a fixed grid of values. The Hellinger distance between
two posterior densities, say post(θ0) and post(θ), can now be evaluated numerically at
a finite set of integration points k via

H(post(θ0), post(θ)) =
√

1−
∑

k

√
post(θ0)(k)post(θ)(k)∆k,

with area weights ∆k provided by the trapezoidal rule.

The Hellinger distance between two half-normal HN(κ) priors with values κ1 and κ2

can be computed according to

H(pri(κ1), pri(κ2)) =

√√√√1− (κ1κ2)1/4

√
κ1+κ2

2

.

Note that due to the invariance of the Hellinger distance, this is in fact a special case
of Equation (6) with θ1 = (a11, a12) = (1/2, κ1/2) and θ2 = (a21, a22) = (1/2, κ2/2)
(see Section 2.2 for a justification). For the default choice κ0 = 0.01 and the alternative
values κm = 0.0269 and κp = 0.00563, respectively, the Hellinger distance for a prior
change from HN(κ0) to HN(κm) is 0.239 and from HN(κ0) to HN(κp) is 0.142. As
intended, our choice of κm and κp leads to the same Hellinger distances as for the
gamma priors just below Equation (6).

4.3 Sensitivity on the prior grid

Following suggestions by Geisser (1993) we also investigated sensitivity of the posterior
mean estimates for both large and small perturbations of the gamma and half-normal
hyperpriors. In this way we can evaluate both macro- and micro-sensitivity. Gamma
priors are more challenging in this context as changes in two parameters have to be
examined. The following 3 × 3 grid of prior values has been considered: G(a1, a2),
where a1 ∈ {0.5, 1, 1.5} and a2 ∈ {0.311, 0.622, 0.933}. Consequently, there are 9 pairs
of values (a1, a2) called central. For each central pair 9 models with slightly perturbed
prior values (a1 + ε1, a2 + ε2), where ε1, ε2 ∈ {−0.01, 0, 0.01} have been fitted.

A similar idea can be applied to the half-normal priors. We consider three centers
0.0269, 0.01, 0.00563 for the κ value. For each central value 3 models with slightly per-
turbed prior values κ+ε are examined. Their choice is as follows: εm ∈ {−0.002, 0, 0.002}
for κm = 0.0269, ε0 ∈ {−0.0007, 0, 0.0007} for κ0 = 0.01 and εp ∈ {−0.0004, 0, 0.0004}
for κp = 0.00563.

The Hellinger distance for the prior densities between centers of the same prior type
is always larger than 0.1. On the other hand the Hellinger distance between the central
priors and the micro-perturbed priors is never lager than 0.02.
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Model DIC LML LCPO BS AUC
A 394.3 -211.5 0.548 0.185 0.790
B1 392.3 -210.8 0.545 0.184 0.790
B2 388.0 -209.9 0.540 0.182 0.796
B3 384.1 -207.5 0.534 0.180 0.801
B4 393.8 -211.3 0.547 0.185 0.791
C 397.5 0.556 0.188 0.786

Table 3: Comparison of DIC, LML, LCPO, BS and AUC for different models for gamma
hyperpriors with value θ0 = (1, 0.622).

5 Results

We first demonstrate the use of the model choice criteria for the default choice θ0 =
(1, 0.622) of the gamma prior of the random effects precision. Next, we investigate
the sensitivity of the estimates of the best fitting model to the alternative gamma and
half-normal hyperprior specifications.

5.1 Model choice

All model choice criteria considered favor model B3, see Table 3. This finding is in
agreement with the analysis by Lee and Nelder (1996). For the other choices of the
gamma and half-normal prior (see Sections 4.2 and 4.3) model B3 was also the best.
We therefore conduct our sensitivity analysis in Sections 5.2 to 5.4 exclusively for model
B3. We note that the LML for model C is equal to -204.8. However, it is not comparable
with LMLs from other models as there are separate intercepts fitted for each of the three
experiments. Note also that if we assumed that the probability of the mating success
is equal to the overall prevalence p̂ = 0.525 of mating success in the data set, then the
Brier score would be equal to p̂(1 − p̂) = 0.249, a natural reference value (Schmid and
Griffith 2005). The values of BS are substantially better than this threshold.

5.2 Sensitivity of the fixed effects

We now investigate sensitivity of the marginal posterior distributions of the fixed effects
in model B3 when the values of the gamma priors of all five hyperparameters are changed
at the same time as described in Section 4.2. Inspection of the Hellinger distances
and their calibrations (columns H1, H2, q(H1) and q(H2) in Table 4) reveals that the
posterior distributions of β(fW) and β(WW) vary the most which is in agreement with the
marginal posterior densities shown in Figure 1. Interestingly, the Hellinger distances for
half-normal hyperpriors (columns H3 and H4 in Table 4) are smaller than for gamma
hyperpriors (H1 and H2). The columns q(H3) and q(H4) show that changing the value
of κ results in posterior changes which are at most 0.01 in Bernoulli probability scale.
Thanks to the calibration of the Hellinger distance we conclude that our assumptions
on the values of the gamma and half-normal hyperpriors influence the estimates of all
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Figure 1: Marginal posterior densities of the fixed effects for θ0 =(1,0.622) (solid),
θm =(1,0.311) (dashed) and θp =(1,0.933) (dot-dashed) gamma prior values for all
precision parameters in model B3.

fixed effects only to some minor extent.

5.3 Sensitivity of the random effects precisions

We now want to investigate the sensitivity of the five precision parameters in model B3
for the same prior changes as in Section 5.2, applied to each precision in turn with all
other priors kept fixed at the default choice θ0. Figure 2 gives the marginal posterior
distributions while Table 5 lists the sensitivities and their calibrations (with respect to
0.8) computed according to Equations (3) and (5), respectively.

We describe the use of the sensitivity calibration at one particular example of S =
0.483 in column S1 in Table 5 obtained for τM3 for the change from θ0 to θm. Let p = 0.8,
then following the formula in Equation (5) C(S, 0.8) = q(S×h(0.8)) = q(0.483×0.227) =
q(0.109) = 0.652 which can be found in the corresponding entry in column C(S1).
This means that two priors whose difference is comparable with the difference between
an event having probability 0.5 and 0.8 correspond to posteriors whose difference is
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Variable H1 H2 H3 H4 q(H1) q(H2) q(H3) q(H4)
β0 0.042 0.030 0.005 0.005 0.559 0.543 0.507 0.507
β(fW) 0.077 0.055 0.003 0.005 0.608 0.578 0.505 0.507
β(mW) 0.029 0.021 0.003 0.003 0.542 0.530 0.504 0.505
β(WW) 0.082 0.059 0.006 0.007 0.615 0.583 0.508 0.510
β(fall) 0.030 0.022 0.005 0.005 0.542 0.530 0.507 0.507

Table 4: Hellinger distance and its calibration q(H) between the posterior distributions
of fixed effects in model B3 for changes of the values of all hyperpriors at the same
time: H1 = H(post(θ0), post(θm)), H2 = H(post(θ0), post(θp)) for the gamma prior
values θ0 =(1,0.622), θm =(1,0.311), θp =(1,0.933). H3 = H(post(κ0), post(κm)),
H4 = H(post(κ0), post(κp)) for the half-normal prior values κ0 =0.01, κm =0.0269 and
κp =0.00563.

Variable S1 S2 S3 S4 C(S1) C(S2) C(S3) C(S4)
τF1 0.625 0.747 0.331 0.557 0.695 0.731 0.605 0.675
τF2 0.564 0.793 0.327 0.549 0.677 0.744 0.604 0.673
τM12 0.566 0.748 0.329 0.553 0.678 0.731 0.605 0.674
τF3 1.017 1.104 0.669 1.119 0.804 0.826 0.708 0.830
τM3 0.483 0.654 0.321 0.538 0.652 0.704 0.602 0.669

Table 5: Sensitivity and its calibration C(S, 0.8) of the precisions in the model B3 for
individual changes of the values of the hyperpriors: S1 = S(θ0, θm), S2 = S(θ0, θp) for
the gamma prior values θ0 =(1,0.622), θm =(1,0.311), θp =(1,0.933). S3 = S(κ0, κm),
S4 = S(κ0, κp) for the half-normal prior values κ0 =0.01, κm =0.0269 and κp =0.00563.
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Figure 2: Marginal posterior densities of the precisions in model B3 for individual
changes of the gamma prior values θ0 =(1,0.622) (solid), θm =(1,0.311) (dashed) and
θp =(1,0.933) (dot-dashed).

comparable with the difference between an event having probability 0.5 and 0.652.

Remarkably, the values of sensitivities and calibrations are mostly smaller for half-
normal than the corresponding ones for gamma priors. The largest sensitivity for τF3 in
Table 5 in columns S1 and S2 is confirmed by the discrepancy of the marginal posterior
densities in Figure 2. Calibrations provided in the columns C(S1) to C(S4) for gamma
and half-normal priors indicate that the posterior distribution of τF3 is the most sen-
sitive to alterations of the values of hyperpriors. Information introduced by the prior
is practically retained without any change on the posterior. We have not gained much
information about τF3 after taking into account the observed data.

5.4 Sensitivity on the prior grid

Figures 3 and 4 show ranges of the posterior mean estimates of the fixed effects and
the precision parameters, respectively, for both gamma and half-normal priors. As in
Section 5.2 the posterior mean estimates of β(fW) and β(WW) vary the most when the
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Figure 3: Ranges of posterior mean estimates of the fixed parameters in model B3 for
different values (a1, a2) of the gamma and κ of the half-normal prior of the hyperpa-
rameters. The ordering of the center parameters from left to right on the x–axis is as
follows: gamma (a1, a2) 1: (0.5, 0.311), (0.5, 0.622), (0.5, 0.933), 2: (1, 0.311), (1, 0.622),
(1, 0.933), 3: (1.5, 0.311), (1.5, 0.622), (1.5, 0.933) and half-normal κ 4: 0.0269, 5: 0.01,
6: 0.00563.

values of the gamma hyperpriors are altered on the grid. Moreover, the posterior mean
estimates of the precision of the hyperparameter τF3 vary the most on the grid of values
for gamma and half-normal priors which confirms the findings in Section 5.3. Macro-
sensitivity for half-normal priors is clearly less than for gamma priors. Interestingly,
the posterior mean estimates of the most sensitive parameters disagree the most for the
gamma and half-normal hyperprior assumptions.

6 Discussion

In this paper we have proposed a novel sensitivity measure for Bayesian hierarchical
models and re-visited the salamander mating data to illustrate the methodology. First,
we applied various model choice criteria to arrive at the best model which turned out to
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Figure 4: Ranges of posterior mean estimates of the precision parameters in model
B3 for different values (a1, a2) of the gamma and κ of the half-normal prior of the
hyperparameters. The ordering of the center parameters from left to right on the x–
axis is as follows: gamma (a1, a2) 1: (0.5, 0.311), (0.5, 0.622), (0.5, 0.933), 2: (1, 0.311),
(1, 0.622), (1, 0.933), 3: (1.5, 0.311), (1.5, 0.622), (1.5, 0.933) and half-normal κ 4: 0.0269,
5: 0.01, 6: 0.00563. Note that for τF3 the estimate of log(τF3) is shown.

be model B3. Next, we conducted a sensitivity analysis of this model. The calibration
of the Hellinger distance enabled us to discuss the relevance of the discrepancies of the
estimates of the fixed and random effects for varying hyperprior choices. It turned out
to be a useful tool for judging the extent of the discrepancies of the estimates due to
the hyperprior values alterations. This measure can be useful for practical statisticians
to assess the amount of sensitivity with respect to prior assumptions. It can be ex-
tended easily to other models and its application is not constrained to binary GLMMs.
The sensitivity measure based on the Hellinger distance developed above might be of
some help to furnish visual impressions with a measure of their relevance, for exam-
ple if posterior densities have been estimated using MCMC and Rao-Blackwellization
(Gelfand and Smith 1990). We complemented the sensitivity analysis by investigating
the posterior mean estimates of the fixed effects and the random effects precisions on
the grid of macro- and micro-perturbed parameters of the gamma and half-normal prior



276 Sensitivity analysis in Bayesian GLM

distributions.

As far as the fixed effects are considered, we observed that the marginal posterior
densities and posterior mean estimates for β(fW) and β(WW) react the most to changes
of the hyperprior values. Moreover, we found that the marginal posterior distributions
of the random effects precisions are very sensitive to prior alterations. The estimates
of τF3 were the most sensitive as the information introduced by the prior is practically
transferred to the posterior without any change. The binary data in the salamander
mating experiment apparently do not carry much information with respect to τF3.

Our work enabled the comparison of the sensitivity performance in model B3 under
two different distributional assumptions for gamma and half-normal hyperpriors. It
suggests that half-normal priors lead to less sensitive estimates and give a more stable
performance. Consequently, we agree with Gelman (2006) and Lunn et al. (2009b) that
one should be careful with gamma priors.

Interestingly, for the fixed and random effects which are relatively unsensitive to the
changes of the hyperprior values the results from both prior assumptions (gamma and
half-normal) are close to each other. However, the estimates which are highly sensitive to
the choice of the hyperprior values within one particular prior specification disagree the
most for different distributional hyperprior assumptions. For these model components
the estimates can differ considerably depending on the distributional assumption of the
prior of the hyperparameters. Therefore, we agree with Box and Tiao (1973) that the
precise choice of the prior may be crucial and the models may be not robust to the
choice of the prior.
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