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Given a vehicle fleet and a stochastic process characterizing the load arrivals in a transportation

network, the primary objective of fleet management models is to make the vehicle repositioning and

vehicle-to-load assignment decisions so that some performance measure (profit, cost, deadhead miles,

number of served loads, etc.) is optimized. However, besides making these vehicle repositioning and

assignment decisions, an important question that is commonly overlooked by many fleet management

models is how the performance measures would change in response to a change in certain model

parameters. For example, freight carriers are interested in how much their profits would increase

if they introduced an additional vehicle into the system or if they served an additional load on a

certain traffic lane. Railroad companies want to estimate the minimum number of railcars that is

necessary to cover the random shipper demands. The Airlift Mobility Command is interested in the

impact of limited airbase capacities on the delayed shipments. Answering such questions, in one way

or another, requires sensitivity analysis of the underlying fleet management model responsible for

making the vehicle allocation decisions.

In this paper, we develop efficient sensitivity analysis methods for a stochastic fleet management

model previously developed in Godfrey & Powell (2002a) and Godfrey & Powell (2002b). This

model formulates the problem as a dynamic program, decomposing it into time-staged subproblems,

and replaces the value functions with specially-structured approximations that are obtained through

an iterative improvement scheme. Two aspects of this model are crucial to our work. 1) Due to

the special structure of the value function approximations, the subproblem that needs to be solved

for each time period is a min-cost network flow problem. This enables us to use the well-known

relationships between the sensitivity analyses of min-cost network flow problems and min-cost flow

augmenting trees. In particular, we can use the fact that the change in the optimal solution of a

min-cost network flow problem in response to a unit change in the supply of a node or a unit change

in the upper bound of an arc is characterized by a min-cost flow augmenting path. 2) Letting T be

the set of time periods in the planning horizon, just as the value functions {Vt(·) : t ∈ T } describe an

optimal vehicle allocation policy through the so-called optimality equation (see Puterman (1994)),

a set of value function approximations {Ṽ π
t (·) : t ∈ T } describe a (possibly suboptimal) vehicle

allocation policy π. Thus, given a trajectory of load realizations {dt : t ∈ T }, one can think of the

trajectory of vehicle allocation decisions {xπd
t : t ∈ T } induced by policy π under load realization

trajectory d = {dt : t ∈ T }. In this paper, we exploit the aforementioned sensitivity relationships to

compute the change in the decision trajectory {xπd
t : t ∈ T } in response to a change in a problem

parameter and to assess how changes in the current decisions affect the future time periods. In

particular, we develop methods to compute how much the profits would change if an additional

vehicle or an additional load were introduced into the system.
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Our work is motivated by the fact that the freight transportation industry is interested in “what-

if” scenarios, and this conventionally refers to changing certain parameters of the model and re-

running it. However, there are obvious advantages associated with being able to extract sensitivity

information from a single model run. For example, there can be many parameters whose impact

on the model performance is of interest, and making one (or more) run for each parameter may be

impossible. Furthermore, the decision-maker may simply not have an idea about the critical para-

meters, and it is important to point out where “the biggest bang for the buck” lies. Also, sensitivity

information is useful in determining the optimal fleet size and mix, or making pricing decisions.

A well-known class of models, from which one can quickly obtain sensitivity information, formu-

lates the problem over a “state-time network” where the nodes represent the supply of vehicles in

different states at different time periods and the arcs represent the vehicle movements. Examples of

such models from three different industries are Dantzig & Fulkerson (1954), Hane, Barnhart, John-

son, Marsten, Nemhauser & Sigismondi (1995) and Holmberg, Joborn & Lundgren (1998), and we

refer the reader to Dejax & Crainic (1987) and Powell, Jaillet & Odoni (1995) for detailed surveys.

For these types of models, sensitivity information is readily obtained by using the dual solution.

However, these models are inherently deterministic and can incorporate the random future load

arrivals only through the expected values.

The model that we analyze in this paper falls into the category of stochastic models, which

decompose the problem with respect to time periods and assess the impact of the current decisions

on the future through value functions. However, since practical fleet management models involve

large numbers of decision variables and possible load realizations, standard stochastic optimization

methods are not feasible for computing the value functions. Therefore, most of the stochastic fleet

management models revolve around the idea of approximating the value function in a tractable

manner. For stochastic fleet management models other than the one in Godfrey & Powell (2002a) and

Godfrey & Powell (2002b), we refer the reader to Frantzeskakis & Powell (1990), Crainic, Gendreau

& Dejax (1993), Carvalho & Powell (2000) and Topaloglu & Powell (2006).

Given a set of value function approximations, these models behave just like simulation models,

generating different trajectories of vehicle allocation decisions for different trajectories of load realiza-

tions. Therefore, a key question for their sensitivity analysis is to be able to assess how the decision

trajectories change when certain model parameters are perturbed. Our approach has similarities

with infinitesimal perturbation analysis, which refers to computing the gradient of a performance

measure in a discrete-event dynamic system with respect to an input parameter (see Glasserman

(1991) and Ho & Cao (1991)). However, for the systems we consider, the transitions between the

states are more complex than those that are conventionally considered by discrete-event dynamic
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systems, since these transitions are governed by the solutions of min-cost network flow problems.

In this paper, we make the following research contributions. We develop efficient sensitivity

analysis methods for a stochastic fleet management model previously developed in Godfrey & Powell

(2002a) and Godfrey & Powell (2002b). In particular, we show how to compute the change in the

objective value of this model in response to an additional vehicle or an additional load introduced into

the system. An accurate, but tedious, sensitivity analysis method is to physically change a parameter

of interest and rerun the model. We compare our methods with this “brute force” approach and

show that they are quite accurate even when theoretical analysis requires certain approximations.

The rest of the paper is organized as follows. In Section 1, we briefly describe the fleet management

model used throughout the paper. Understanding this model is important because we analyze the

sensitivity of the objective value under the policy prescribed by this particular model. In Section 2,

we consider problems with a single vehicle type and show how to compute the change in the objective

value in response to an additional vehicle or an additional load introduced into the system. Section

3 extends these results to problems with multiple vehicle types. The computational experiments

presented in Section 4 show the accuracy of the proposed sensitivity analysis methods.

1 Problem Formulation

We have a fleet of vehicles to serve the loads of different types that arrive over time. At every time

period, a certain number of loads enter the system, and we have to decide which loads to cover and to

which locations we should reposition the empty vehicles. We are interested in maximizing the total

expected profit over a finite horizon, but we formulate our model to minimize cost for compatibility

with the min-cost network flow literature. We assume that advance information about the future

loads is not available and the loads that cannot be covered in a given time period are served by an

emergency subcontractor. These enable us to assume that the uncovered loads immediately leave the

system. For notational brevity, we assume that it takes one time period to move between any pair

of locations. It is straightforward to extend our analysis to the case where there are multi-period

travel times by using the approach described in Topaloglu & Powell (2006). We define the following.

T = Set of time periods in the planning horizon, T = {1, . . . , T}.

I = Set of locations in the transportation network.

K = Set of available vehicle types.

L = Set of movement modes, L = {0, . . . , L}. Movement modes represent different ways

in which a vehicle can move from one location to another. Movement mode 0 always
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corresponds to empty repositioning, whereas other modes correspond to carrying

different types of loads.

xk
ijlt = Number of vehicles of type k dispatched from location i to j at time period t using

movement mode l.

ck
ijlt = Cost of dispatching one vehicle of type k from location i to j at time period t using

movement mode l.

Dijlt = Random variable representing the number of loads that need to be carried from

location i to j at time period t and correspond to movement mode l.

As will be clear shortly, the random variable Dijlt serves as an upper bound on the decision variables

{xk
ijlt : k ∈ K}. Since the movement mode 0 corresponds to empty repositioning and the empty

repositioning movements are not bounded, we assume that Dij0t = ∞ for all i, j ∈ I, t ∈ T . In

practice, the movement modes in L \ {0} may correspond to different types of loads or different

shippers, and we usually have ck
ijlt < 0 when l ∈ L\ {0}. The vehicle type may reflect the size of the

vehicle, the skill level of the driver of the vehicle, the ability of the vehicle to satisfy certain safety

or sanitary requirements, or a combination of these factors, which ultimately determine whether it

is feasible to cover a certain type of load with a certain type of vehicle and what profit is obtained

by doing so. If it is infeasible to cover a load of type l with a vehicle of type k, then we capture

this by letting ck
ijlt = ∞ for all i, j ∈ I, t ∈ T . Throughout the paper, we use dijlt to denote a

particular realization of Dijlt. By suppressing some of the indices in the variables above, we denote

a vector composed of the components ranging over the suppressed indices. For example, we have

dt = {dijlt : i, j ∈ I, l ∈ L}, d = {dijlt : i, j ∈ I, l ∈ L, t ∈ T }.

To capture the state of the system at time period t, we define

rk
it = Number of vehicles of type k that are available at location i at time period t.

The vector rt = {rk
it : i ∈ I, k ∈ K} completely defines the state of the vehicles at time period t.

Given this state vector and the realization of the loads at time period t, the set of feasible decision

vectors and the set of state vectors generated by these decisions at the next time period are given by

Y(rt, dt) =
{

(xt, rt+1) :
∑

j∈I

∑

l∈L
xk

ijlt = rk
it for all i ∈ I, k ∈ K (1)

∑

i∈I

∑

l∈L
xk

ijlt − rk
j,t+1 = 0 for all j ∈ I, k ∈ K (2)

∑

k∈K
xk

ijlt ≤ dijlt for all i, j ∈ I, l ∈ L (3)

xk
ijlt ∈ Z+ for all i, j ∈ I, l ∈ L, k ∈ K

}
. (4)
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We are interested in Markovian deterministic policies that minimize the total expected cost over

the planning horizon. A Markovian deterministic policy π can be characterized by a sequence of

decision functions {Xπ
t (·, ·) : t ∈ T } such that Xπ

t (·, ·) maps the state vector rt and the realization of

the loads dt at time period t to a decision vector xt. One can also define the state transition functions

{Rπ
t+1(·, ·) : t ∈ T } of policy π such that Rπ

t+1(·, ·) maps the state vector and the realization of the

loads at time period t to a state vector for the next time period. We note that given Xπ
t (·, ·), Rπ

t+1(·, ·)
can easily be defined by noting the state transition constraints in (2). Then, for a given state vector

rt and realization of future loads {dt, . . . , dT } at time period t, the cumulative cost function for policy

π can be written recursively as

F π
t

(
rt, dt, dt+1, . . . , dT

)
= ct ·Xπ

t (rt, dt) + F π
t+1

(
Rπ

t+1 (rt, dt) , dt+1, dt+2, . . . , dT

)
, (5)

with the boundary condition F π
T+1

( · ) = 0. By repeated application of (5), we obtain

F π
1

(
r1, d1, . . . , dT

)
= c1 ·Xπ

1 (r1, d1) + c2 ·Xπ
2 (Rπ

2 (r1, d1), d2) + . . .

+ cT ·Xπ
T (Rπ

T (Rπ
T−1(. . . , dT−2), dT−1), dT ), (6)

which is the total cost incurred over the whole planning horizon when we use policy π, the initial

state vector is r1 and the realization of the loads is {d1, . . . , dT }.

Assuming that, given rt, Dt is independent of {Dt′ : t′ = 1, . . . , t− 1}, it can be shown that the

optimal policy π∗ is Markovian deterministic, satisfying π∗ = argminπ∈Π E
{
F π

1

(
r1, D1, . . . , DT

) | r1

}
,

where Π is the set of Markovian deterministic policies. This optimal policy can be found by computing

the value functions through the so-called optimality equation (see Puterman (1994))

V π∗
t (rt) = E

{
min

(xt,rt+1)∈Y(rt,Dt)
ct · xt + V π∗

t+1(rt+1) | rt

}
. (7)

In this case, the decision and transition functions for the optimal policy become
(
Xπ∗

t (rt, dt), Rπ∗
t+1(rt, dt)

)
= argmin

(xt,rt+1)∈Y(rt,dt)
ct · xt + V π∗

t+1(rt+1). (8)

Throughout the paper, to keep the presentation simple, we assume that the cost vector ct is perturbed

by small random amounts so that problem (8) has a single optimal solution. Under this assumption,

the decision and state transition functions are properly defined, and our proofs become easier.

Computing the value functions {V π∗
t (·) : t ∈ T } through (7) is intractable for almost all problem

instances of practical significance, since it requires enumerating over all possible values of rt and

taking an expectation over the multi-dimensional random variable Dt for all t ∈ T . In this paper,

we follow a class of (suboptimal) policies proposed in Godfrey & Powell (2002a), which are obtained

by replacing {V π∗
t (·) : t ∈ T } in (8) with separable approximations {Ṽ π

t (·) : t ∈ T } of the form

Ṽ π
t (rt) =

∑

i∈I

∑

k∈K
Ṽ πk

it (rk
it) (9)
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where each Ṽ πk
it (·) is a one-dimensional piecewise-linear convex function with points of nondifferen-

tiability being a subset of positive integers. In this case, for a policy π characterized by separable

piecewise-linear convex value function approximations {Ṽ π
t (·) : t ∈ T }, we can define the decision

and state transition functions as
(
Xπ

t (rt, dt), Rπ
t+1(rt, dt)

)
= argmin

(xt,rt+1)∈Y(rt,dt)
ct · xt + Ṽ π

t+1(rt+1). (10)

We note that although the value function approximations {Ṽ π
t (·) : t ∈ T } are separable, the cumula-

tive cost functions {F π
t (·, dt, . . . , dT ) : t ∈ T } for policy π are not necessarily separable. Furthermore,

we have V π∗
t (rt) = E

{
F π∗

t (rt, Dt, . . . , DT ) | rt

}
for the optimal policy π∗ by the principal of optimal-

ity (see Puterman (1994)), but we do not necessarily have Ṽ π
t (rt) = E

{
F π

t (rt, Dt, . . . , DT ) | rt

}
for

the policy π characterized by the value function approximations {Ṽ π
t (·) : t ∈ T }.

Godfrey & Powell (2002a) give a sampling-based algorithm that can be used to obtain a “good”

set of value function approximations. The question of whether these suboptimal policies yield high-

quality solutions is outside the scope of this paper. We refer the reader to Godfrey & Powell (2002a),

Godfrey & Powell (2002b) and Topaloglu & Powell (2006) where the experimental work indicates

that this class of policies beat standard benchmarks by significant margins. Here, we assume that we

already have a “good” policy π, and we are interested in computing the change in F π
1 (r1, d1, . . . , dT )

induced by changing an element of the state vector r1 or the load availability vector d1. We make

this question precise in the next two sections. However, before going into the specific details, we

can summarize the contents of the next two sections as follows. 1) We note that if we use a policy

characterized by separable piecewise-linear convex value function approximations, then problem (10)

is a min-cost network flow problem. 2) We use the well-known relationships between the sensitivity

analyses of min-cost network flow problems and min-cost flow augmenting trees to find how the

solution of problem (10) at time period 1 changes in response to an additional vehicle or an additional

load introduced into the system. 3) We find how the state vector at time period 2 changes in response

to the change in the solution of problem (10) at time period 1. 4) Finally, we find how the solution

of problem (10) at time period 2 changes in response to the change in the state vector at time period

2. We repeat the same argument in a recursive fashion for the subsequent time periods.

In Section 2, we start by considering problems with a single vehicle type. We generalize the ideas

to multiple vehicle types in Section 3.

2 Problems with a Single Vehicle Type

In this section, we assume that |K| = 1 and drop the vehicle type superscript, in which case (9)

becomes Ṽ π
t (rt) =

∑
i∈I Ṽ π

it (rit). Letting R be the total number of available vehicles, the relevant
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domain of Ṽ π
it (·) is {0, 1, . . . , R}. Therefore, assuming that Ṽ π

it (0) = 0 without loss of generality, we

can represent Ṽ π
it (·) by a sequence of numbers {ṽπ

it(q) : q = 1, . . . , R} where ṽπ
it(q) is the slope of

Ṽ π
it (q) over (q − 1, q). That is, we have ṽπ

it(q) = Ṽ π
it (q) − Ṽ π

it (q − 1). In this case, problem (10) can

explicitly be written as

min
(xt,rt+1,zt+1)

∑

i,j∈I

∑

l∈L
cijlt xijlt +

∑

j∈I

R∑

q=1

ṽπ
j,t+1(q) zj,t+1(q) (11)

subject to
∑

j∈I

∑

l∈L
xijlt = rit for all i ∈ I (12)

∑

i∈I

∑

l∈L
xijlt − rj,t+1 = 0 for all j ∈ I (13)

rj,t+1 −
R∑

q=1

zj,t+1(q) = 0 for all j ∈ I (14)

xijlt ≤ dijlt for all i, j ∈ I, l ∈ L (15)

zj,t+1(q) ≤ 1 for all j ∈ I, q = 1, . . . , R (16)

xijlt, rj,t+1, zj,t+1(q) ∈ Z+ for all i, j ∈ I, l ∈ L, q = 1, . . . , R, (17)

where we use a standard technique to embed the piecewise-linear convex functions {Ṽ π
j,t+1(·) : j ∈ I}

into problem above through the decision variables {zj,t+1(q) : j ∈ I, q = 1, . . . , R}. In particular,

due to the convexity of Ṽ π
j,t+1(·), we have ṽπ

j,t+1(1) ≤ ṽπ
j,t+1(2) ≤ . . . ≤ ṽπ

j,t+1(R). Since the objective

function is minimized, noting constraints (14), (16) and (17), we must have
∑R

q=1 ṽπ
j,t+1(q) zj,t+1(q) =

∑rj,t+1

q=1 ṽπ
j,t+1(q) = Ṽ π

j,t+1(rj,t+1) in the optimal solution. Therefore, the second term in (11) computes
∑

j∈I Ṽ π
j,t+1(rj,t+1) (see Nemhauser & Wolsey (1988)). Although constraints (13) and (14) can be

combined into
∑

i∈I
∑

l∈L xijlt −
∑R

q=1 zj,t+1(q) = 0, we leave them separate to emphasize that (13)

handles the state transition, whereas (14) handles the computation of the value function approxima-

tion. It is easy to see that problem (11) is the min-cost network flow problem in Figure 1. In this

figure, we assume that I = {a, b, c} and L = {n,m}. Constraints (12), (13) and (14) respectively

correspond to the flow balance constraints for the white, gray and black nodes. The sets of decision

variables {xijlt : i, j ∈ I, l ∈ L}, {rj,t+1 : j ∈ I} and {zj,t+1(q) : j ∈ I, q = 1, . . . , R} respectively

correspond to the arcs that leave the white, gray and black nodes.

2.1 Policy gradients with respect to vehicle availabilities

In this section, we develop a method to compute how much the total cost under policy π would change

if an additional vehicle were introduced into the system. We let
{
xπd

t : t ∈ T }
and

{
rπd
t : t ∈ T }

be

the sequences of decisions and states visited by the system under policy π and load realization

d = {dt : t ∈ T }. That is, {xπd
t : t ∈ T } and {rπd

t : t ∈ T } are recursively computed by

xπd
t = Xπ

t (rπd
t , dt), rπd

t+1 = Rπ
t+1(r

πd
t , dt), with rπd

1 = r1. (18)
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Figure 1: Problem (11) is a min-cost network flow problem. The path in bold arcs represents a
possible min-cost flow augmenting path from node a on the left side to the sink node. Such min-cost
flow augmenting paths will be useful in Section 2.1.

Then, noting (5), F π
t

(
rπd
t , dt, . . . , dT

)
becomes the total cost incurred at time periods {t, . . . , T}

under policy π and load realization d. Letting ei be the |I|-dimensional unit vector with a 1 in the

element corresponding to i ∈ I, our objective in this section is to compute

Φπ
t (ei, d) = F π

t

(
rπd
t + ei, dt, . . . , dT

)− F π
t

(
rπd
t , dt, . . . , dT

)
(19)

for all i ∈ I, t ∈ T . Then, E
{
Φπ

1 (ei, D)
}

tells us how much the total expected cost under policy π

would change by introducing an additional vehicle at location i at the first time period. We note

that Φπ
t (ei, d) can be computed by two simulations of policy π under load realization d, one of which

starts with the state vector rπd
t and the other with rπd

t + ei. However, doing this for all i ∈ I, t ∈ T
and for multiple load realizations can get time consuming. Our objective is to be able to compute

Φπ
t (ei, d) for all i ∈ I, t ∈ T from a single simulation.

Using (5) and (18), (19) can be written as

Φπ
t (ei, d) = ct ·

{
Xπ

t (rπd
t + ei, dt)−Xπ

t (rπd
t , dt)

}

+ F π
t+1

(
Rπ

t+1(r
πd
t + ei, dt), dt+1, . . . , dT

)− F π
t+1

(
Rπ

t+1(r
πd
t , dt), dt+1, . . . , dT

)

= ct ·
{
Xπ

t (rπd
t + ei, dt)− xπd

t

}

+ F π
t+1

(
Rπ

t+1(r
πd
t + ei, dt), dt+1, . . . , dT

)− F π
t+1

(
rπd
t+1, dt+1, . . . , dT

)
. (20)

As will be clear shortly, computing Xπ
t (rπd

t + ei, dt) − xπd
t and Rπ

t+1(r
πd
t + ei, dt) − rπd

t+1 is key to

computing Φπ
t (ei, d). Since we have

(xπd
t , rπd

t+1) = argmin
(xt,rt+1)∈Y(rπd

t ,dt)

ct · xt + Ṽ π
t+1(rt+1), (21)
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Xπ
t (rπd

t + ei, dt)− xπd
t and Rπ

t+1(r
πd
t + ei, dt)− rπd

t+1 are related to how the solution of problem (11)

changes when the right side of constraints (12) is increased from rπd
t to rπd

t + ei.

Consider problem (21) and its network representation in Figure 1. Set the flows on the arcs

in this network such that these flows correspond to the optimal solution (xπd
t , rπd

t+1). Let Pπ
t (ei, d)

be the min-cost flow augmenting path from node i ∈ I on the left side to the sink node in this

figure. One possible flow augmenting path when i = a is shown in bold arcs. We define the vector

ξπ
t (ei, d) = {ξπ

ı`t(ei, d) : ı,  ∈ I, ` ∈ L} as

ξπ
ı`t(ei, d) =





+1 if the arc corresponding to variable xı`t is a forward arc in Pπ
t (ei, d)

−1 if the arc corresponding to variable xı`t is a backward arc in Pπ
t (ei, d)

0 if the arc corresponding to variable xı`t is not in Pπ
t (ei, d).

Similarly, we define the vector δπ
t+1(ei, d) = {δπ

,t+1(ei, d) :  ∈ I} as

δπ
,t+1(ei, d) =





+1 if the arc corresponding to variable r,t+1 is a forward arc in Pπ
t (ei, d)

−1 if the arc corresponding to variable r,t+1 is a backward arc in Pπ
t (ei, d)

0 if the arc corresponding to variable r,t+1 is not in Pπ
t (ei, d).

(22)

For example, for the flow augmenting path in Figure 1, we have ξπ
abnt(ea, d) = +1, ξπ

cbnt(ea, d) =

−1, ξπ
ccmt(ea, d) = +1 and δπ

c,t+1(ea, d) = +1. The following result characterizes how the solution of

problem (21) changes when the number of vehicles available at location i is increased by 1.

Lemma 1 The following results hold.

1) We have Xπ
t (rπd

t + ei, dt) = xπd
t + ξπ

t (ei, d) and Rπ
t+1(r

πd
t + ei, dt) = rπd

t+1 + δπ
t+1(ei, d).

2) One element of the vector δπ
t+1(ei, d) is equal to +1 and the other elements are equal to 0.

Proof The first part is a direct result of Theorem 1 in Powell (1989). The second part holds because

any acyclic path from node i ∈ I on the left side of Figure 1 to the sink node traverses exactly one

of the arcs corresponding to one of the variables {rj,t+1 : j ∈ I}. 2

The second part of the lemma implies that if an additional vehicle is introduced at a certain

location at time period t, then exactly one element of the state vector at time period t + 1 will

increase by 1. The following proposition gives an efficient method to compute Φπ
t (ei, d).

Proposition 2 We have Φπ
t (ei, d) = ct · ξπ

t (ei, d) + Φπ
t+1(δ

π
t+1(ei, d), d) for all i ∈ I, t ∈ T with the

boundary condition Φπ
T+1(·, d) = 0.

Proof Using Lemma 1, (20) can be written as

Φπ
t (ei, d) = ct · ξπ

t (ei, d) + F π
t+1

(
rπd
t+1 + δπ

t+1(ei, d), dt+1, . . . , dT

)− F π
t+1

(
rπd
t+1, dt+1, . . . , dT

)

= ct · ξπ
t (ei, d) + Φπ

t+1(δ
π
t+1(ei, d), d). 2

10



The first term in ct · ξπ
t (ei, d) + Φπ

t+1(δ
π
t+1(ei, d), d) captures how much the cost incurred at time

period t changes in response to an additional vehicle at location i at time period t, whereas the

second term captures how much the cost incurred at time periods {t + 1, . . . , T} changes in response

to an additional vehicle at location i at time period t.

Thus, the idea is to start with the last time period T and let Φπ
T (ei, d) = cT · ξπ

T (ei, d) for all

i ∈ I. Then, we move to time period T − 1. Since δπ
T (ei, d) is always a positive integer unit vector,

Φπ
T−1(ei, d) can easily be computed as cT−1 · ξπ

T−1(ei, d) + Φπ
T (δπ

T (ei, d), d). We continue in a similar

fashion until we reach the first time period.

We note that to evaluate the expected cost impact of an additional vehicle, we need to compute

E
{
Φπ

t (ei, D)
}

as opposed to Φπ
t (ei, d) for a particular load realization d. In this case, since computing

this expectation is usually intractable, we can sample N load realizations, say d1, . . . , dN , use the

method described in this section to compute Φπ
t (ei, d

n) for all n = 1, . . . , N and use the standard

confidence interval methodology to estimate E
{
Φπ

t (ei, D)
}
. By carrying out a “pilot run” that uses

a small number of load realizations, we can assess the number of load realizations that are needed

to estimate E
{
Φπ

t (ei, D)
}

with a certain precision (see Law & Kelton (2000)).

Finally, we note that a similar method to compute

Φπ
t (−ei, d) = F π

t

(
rπd
t − ei, dt, . . . , dT

)− F π
t

(
rπd
t , dt, . . . , dT

)
(23)

can be developed by using min-cost flow decreasing trees. This will be useful in the next section.

2.2 Policy gradients with respect to load availabilities

Freight carriers continuously face the problem of evaluating newly arriving loads to decide whether

to accept or reject them. In this section, we develop a method to compute how much the total cost

under policy π would change if an additional load were introduced into the system. This information

can, in turn, be used for load evaluation decisions. The class of policies we consider assume that

there is no advance information about future load realizations. For this reason, we assume that if t

is the current time period, then the additional load that is introduced into the system is a load that

needs to be served at time period t.

Letting eijlt and eijl be the |I|2|L||T | and |I|2|L|-dimensional unit vectors with a 1 in the element

corresponding to i, j ∈ I, l ∈ L, t ∈ T and i, j ∈ I, l ∈ L, we want to compute

Ψπ
t (eijl, d) = F π

t

(
r
π,d+eijlt

t , dt + eijl, dt+1, . . . , dT

)− F π
t

(
rπd
t , dt, dt+1, . . . , dT

)
, (24)

which is the change in the total cost of policy π under load realization d in response to an additional

load of type l on lane (i, j) at time period t. Using an argument similar to the one in (20) and noting

11
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Figure 2: Qπ
t (−ea, ec, d) is the min-cost flow augmenting path from node c in the middle section to

node a on the left side.

that r
π,d+eijlt

t is a function of the load realizations up to (but not including) time period t, (24) can

be written as

Ψπ
t (eijl, d) = F π

t

(
rπd
t , dt + eijl, dt+1, . . . , dT

)− F π
t

(
rπd
t , dt, dt+1, . . . , dT

)

= ct ·
{
Xπ

t (rπd
t , dt + eijl)− xπd

t

}

+ F π
t+1

(
Rπ

t+1(r
πd
t , dt + eijl), dt+1, . . . , dT

)− F π
t+1

(
rπd
t+1, dt+1, . . . , dT

)
. (25)

To compute Ψπ
t (eijl, d), we now need to characterize Xπ

t (rπd
t , dt +eijl)−xπd

t and Rπ
t+1(r

πd
t , dt +eijl)−

rπd
t+1. These quantities are related to how the solution of the min-cost network flow problem (11)

changes when the upper bound on the decision variables xt is increased from dt to dt + eijl.

Consider problem (21) and its network representation in Figure 2. Set the flows on the arcs in

this network such that these flows correspond to the optimal solution (xπd
t , rπd

t+1). Let Qπ
t (−ei, ej , d)

be the min-cost flow augmenting path from node j ∈ I in the middle section to node i ∈ I on the

left side in this figure. Denote the cost of this min-cost flow augmenting path by Cπ
t (−ei, ej , d). One

possible flow augmenting path when i = a, j = c is shown in dashed arcs. We define the vector

ξπ
t (−ei, ej , d) = {ξπ

ı`t(−ei, ej , d) : ı,  ∈ I, ` ∈ L} as

ξπ
ı`t(−ei, ej , d) =





+1 if the arc corresponding to variable xı`t is a forward arc in Qπ
t (−ei, ej , d)

−1 if the arc corresponding to variable xı`t is a backward arc in Qπ
t (−ei, ej , d)

0 if the arc corresponding to variable xı`t is not in Qπ
t (−ei, ej , d).

We also define the vector δπ
t+1(−ei, ej , d) similar to (22), but using the flow augmenting path

Qπ
t (−ei, ej , d). For example, for the flow augmenting path in Figure 2, we have ξπ

aant(−ea, ec, d) = −1,

ξπ
cbmt(−ea, ec, d) = +1, ξπ

ccnt(−ea, ec, d) = −1, δπ
a,t+1(−ea, ec, d) = −1 and δπ

b,t+1(−ea, ec, d) = +1.

The following result characterizes how the solution of problem (21) changes when the number of

loads of type l on lane (i, j) is increased by 1.

12



Lemma 3 The following results hold.

1) Letting 1{a<b} =

{
1 if a < b

0 otherwise,
we have

Xπ
t (rπd

t , dt + eijl) = xπd
t + 1{Cπ

t (−ei,ej ,d)+cijlt<0}
{
ξπ
t (−ei, ej , d) + eijl

}

Rπ
t+1(r

πd
t , dt + eijl) = rπd

t+1 + 1{Cπ
t (−ei,ej ,d)+cijlt<0} δπ

t+1(−ei, ej , d).

2) The vector δπ
t+1(−ei, ej , d) can be written as δπ

t+1(−ei, ej , d) = δπ+
t+1(−ei, ej , d) − δπ−

t+1(−ei, ej , d)

where one element of each of the vectors δπ+
t+1(−ei, ej , d) and δπ−

t+1(−ei, ej , d) is equal to +1 and the

other elements are equal to 0.

Proof See the appendix. 2

Therefore, if Cπ
t (−ei, ej , d) + cijlt ≥ 0, then an additional load of type l on lane (i, j) does not

change the solution of problem (21). We note that the min-cost flow augmenting path Qπ
t (−ei, ej , d)

may not include any arcs corresponding to one of the variables {rj,t+1 : j ∈ I}. In this case, we have

δπ
t+1(−ei, ej , d) = 0 and we can set δπ+

t+1(−ei, ej , d) = δπ−
t+1(−ei, ej , d) in the second part of Lemma 3.

The following proposition gives an efficient method to compute Ψπ
t (eijl, d).

Proposition 4 Letting ζπ
t (eijl, d) = 1{Cπ

t (−ei,ej ,d)+cijlt<0}
{
ξπ
t (−ei, ej , d)+eijl

}
for notational brevity,

we have the following results.

1) If Cπ
t (−ei, ej , d) + cijlt ≥ 0 or δπ

t+1(−ei, ej , d) = 0, then we have Ψπ
t (eijl, d) = ct · ζπ

t (eijl, d).

2) If F π
t+1

(·, dt+1, . . . , dT

)
is a separable function, Cπ

t (−ei, ej , d) + cijlt < 0 and δπ
t+1(−ei, ej , d) 6= 0,

then we have

Ψπ
t (eijl, d) = ct · ζπ

t (eijl, d) + Φπ
t+1(δ

π+
t+1(−ei, ej , d), d) + Φπ

t+1(−δπ−
t+1(−ei, ej , d), d) (26)

for all i, j ∈ I, l ∈ L, t ∈ T , where Φπ
t+1(∓ei, d) is as defined in (19) and (23).

Proof Under the conditions stated in the first part, Lemma 3 implies that Rπ
t+1(r

πd
t , dt +eijl) = rπd

t+1

and (25) becomes Ψπ
t (eijl, d) = ct ·

{
Xπ

t (rπd
t , dt + eijl) − xπd

t

}
. Then, the first part follows by the

definition of ζπ
t (eijl, d) and Lemma 3. By using Lemma 3, (25) becomes

Ψπ
t (eijl, d) = ct · ζπ

t (eijl, d) + F π
t+1

(
rπd
t+1 + δπ+

t+1(−ei, ej , d)− δπ−
t+1(−ei, ej , d), dt+1, . . . , dT

)

− F π
t+1

(
rπd
t+1, dt+1, . . . , dT

)
.

13



Since F π
t+1

(·, dt+1, . . . , dT

)
is separable, Lemma 8 in the appendix implies that

Ψπ
t (eijl, d) = ct · ζπ

t (eijl, d)

+ F π
t+1

(
rπd
t+1 + δπ+

t+1(−ei, ej , d), dt+1, . . . , dT

)− F π
t+1

(
rπd
t+1, dt+1, . . . , dT

)

+ F π
t+1

(
rπd
t+1 − δπ−

t+1(−ei, ej , d), dt+1, . . . , dT

)− F π
t+1

(
rπd
t+1, dt+1, . . . , dT

)
. 2

The first part of the proposition corresponds to the case where an additional load of type l on

lane (i, j) at time period t either does not change the decisions at time period t or does not change

the state vector at time period t + 1. The second part corresponds to the case where an additional

load of type l on lane (i, j) at time period t does change the state vector at time period t + 1. Given

the fact that δπ+
t+1(−ei, ej , d) and δπ−

t+1(−ei, ej , d) are positive integer unit vectors, (26) can easily be

computed once we know Φπ
t+1(∓ei, d) for all i ∈ I.

As noted in Section 1, F π
t+1

(·, dt+1, . . . , dT

)
is not necessarily a separable function. However,

we propose using (26) as an approximation to Ψπ
t (eijl, d) even when F π

t+1

(·, dt+1, . . . , dT

)
is not

separable. Our computational experiments show that this approximation yields accurate results.

We believe that the accuracy of this approximation is due to the following reason. The expression

in (26) captures the change in the total cost of policy π under load realization d in response to an

additional load of type l on lane (i, j) at time period t. Among the three terms on the right side

of (26), the first term accurately captures the change in the cost incurred at time period t, whereas

the sum of the second and third terms approximately captures the change in the cost incurred at

time periods {t + 1, . . . , T}. Therefore, accurately capturing the change in the cost incurred at the

current time period and approximately capturing the change in the cost incurred at the future time

periods appear to be adequate to obtain a good approximation.

Assuming that Cπ
t (−ea, ec, d)+cacmt < 0 and noting that δπ

a,t+1(−ea, ec, d) = −1, δπ
b,t+1(−ea, ec, d) =

+1 for the min-cost flow augmenting path in Figure 2, the approximation in (26) can be interpreted

as follows. The first term gives the change in the immediate cost due to the change in the decisions

at time period t. The second term gives the change in the future cost due to having an additional

vehicle at location b at time period t + 1. The third term gives the change in the future cost due to

having one less vehicle at location a at time period t + 1.

3 Problems with Multiple Vehicle Types

In this section, we extend the ideas in Section 2 to the case where there are multiple vehicle types.

Topaloglu & Powell (2006) note that if there are multiple vehicles types and policy π is character-

ized by a set of separable piecewise-linear convex value function approximations, then problem (10)

14



becomes a min-cost integer multicommodity network flow problem, and this inhibits exploiting prop-

erties of min-cost flow augmenting and decreasing trees as we did in the previous section. Nonetheless,

they also show that if each Ṽ π
t (·) is a linear function of the form Ṽ π

t (rt) =
∑

i∈I
∑

k∈K ṽπk
it rk

it, then

problem (10) is a min-cost network flow problem. Furthermore, over a limited domain, say [0, 1]

or [0, 2], linear functions approximate piecewise-linear functions quite well. Since the sum of the

elements of the |I||K|-dimensional vector rt is always equal to the number of available vehicles, say

R, if |I||K| À R, then we expect the elements of the vector rt to be mostly 0’s, 1’s or 2’s. In this

case, using piecewise-linear approximations does not bring too much advantage over linear approxi-

mations. For these reasons, when working on problems with multiple vehicle types, we use policies

characterized by linear value function approximations.

We now extend the results of Section 2.1 to the case of multiple vehicle types. Noting (2), the

objective function of problem (10) under a policy defined by linear value function approximations is

ct · xt + Ṽ π
t+1(rt+1) =

∑

i,j∈I

∑

l∈L

∑

k∈K
ck
ijlt xk

ijlt +
∑

j∈I

∑

k∈K
ṽπk
j,t+1

(∑

i∈I

∑

l∈L
xk

ijlt

)
.

Then, the decision function for policy π can be written as

Xπ
t (rt, dt) = argmin

xt

∑

i,j∈I

∑

l∈L

∑

k∈K

(
ck
ijlt + ṽπk

j,t+1

)
xk

ijlt (27)

subject to (1), (3), (4),

which is the min-cost network flow problem in Figure 3. In this figure, we assume that I = {a, b},
L = {n, m} and K = {f, g}. Constraints (1) represent the flow balance constraints for the gray

nodes. Defining the additional decision variables {wijlt : i, j ∈ I, l ∈ L} and splitting constraints

(3) into two sets of constraints
∑

k∈K xk
ijlt −wijlt = 0 and wijlt ≤ dijlt for all i, j ∈ I, l ∈ L, the first

set represents the flow balance constraints for the white nodes in the middle section.

We let π be a policy characterized by the linear value function approximations {Ṽ π
t (·) : t ∈ T }

with the decision, state transition and cumulative cost functions Xπ
t (·, ·), Rπ

t+1(·, ·), F π
t (·, ·, . . . , ·).

We also define {xπd
t : t ∈ T } and {rπd

t : t ∈ T } similar to their counterparts in Section 2.1. Letting ek
i

be the |I||K|-dimensional unit vector with a 1 in the element corresponding to i ∈ I, k ∈ K, we want

to compute Φπ
t (ek

i , d) = F π
t

(
rπd
t + ek

i , dt, . . . , dT

)− F π
t

(
rπd
t , dt, . . . , dT

)
for all i ∈ I, k ∈ K, t ∈ T .

Consider problem (27) and its network representation in Figure 3. Set the flows on the arcs in

this network such that these flows correspond to the optimal solution xπd
t . Let Pπ

t (ek
i , d) be the

min-cost flow augmenting path from node (i, k) ∈ I × K on the left side to the sink node in this

figure. One possible flow augmenting path when (i, k) = (a, f) is shown in bold arcs. We define the
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Figure 3: Problem (27) is a min-cost network flow problem.

vector ξπ
t (ek

i , d) = {ξπκ
ı`t(e

k
i , d) : ı,  ∈ I, ` ∈ L, κ ∈ K} as

ξπκ
ı`t(e

k
i , d) =





+1 if the arc corresponding to variable xκ
ı`t is a forward arc in Pπ

t (ek
i , d)

−1 if the arc corresponding to variable xκ
ı`t is a backward arc in Pπ

t (ek
i , d)

0 if the arc corresponding to variable xκ
ı`t is not in Pπ

t (ek
i , d).

We also define the vector δπ
t+1(e

k
i , d) = {δπκ

,t+1(e
k
i , d) :  ∈ I, κ ∈ K} as

δπκ
,t+1(e

k
i , d) =

∑

ı∈I

∑

`∈L
ξπκ
ı`t(e

k
i , d). (28)

For example, for the flow augmenting path in Figure 3, we have ξπf
aant(e

f
a , d) = +1, ξπg

aant(e
f
a , d) = −1,

ξπg
abmt(e

f
a , d) = +1, δπf

a,t+1(e
f
a , d) = +1 δπg

a,t+1(e
f
a , d) = −1 and δπg

b,t+1(e
f
a , d) = +1. The following

result characterizes how the solution of problem (27) changes when the number of vehicles of type k

available at location i is increased by 1.

Lemma 5 The following results hold.

1) We have Xπ
t (rπd

t + ek
i , dt) = xπd

t + ξπ
t (ek

i , d) and Rπ
t+1(r

πd
t + ek

i , dt) = rπd
t+1 + δπ

t+1(e
k
i , d).

2) There exist two disjoint subsets of I × K, say ∆π+
t+1(e

k
i , d) and ∆π−

t+1(e
k
i , d), such that δπ

t+1(e
k
i , d)

can be written as

δπ
t+1(e

k
i , d) =

∑

(,κ)∈∆π+
t+1(e

k
i ,d)

eκ
 −

∑

(,κ)∈∆π−
t+1(e

k
i ,d)

eκ
 .
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Proof In the first part, the first equality is a direct result of Theorem 1 in Powell (1989) and the

second equality follows from the definition of δπ
t+1(e

k
i , d) in (28) and the state transition constraints

(2). We show the second part in the appendix. 2

The second part of the lemma shows that an additional vehicle of type k at location i at time

period t may change the state vector at time period t+1 in a complicated manner, but each component

of the state vector at time period t + 1 changes by at most 1. The following proposition gives an

efficient method to compute Φπ
t (ek

i , d).

Proposition 6 If F π
t+1

(·, dt+1, . . . , dT

)
is a separable function, then we have

Φπ
t (ek

i , d) = ct · ξπ
t (ek

i , d) +
∑

(,κ)∈∆π+
t+1(e

k
i ,d)

Φπ
t+1(e

κ
 , d) +

∑

(,κ)∈∆π−
t+1(e

k
i ,d)

Φπ
t+1(−eκ

 , d) (29)

for all i ∈ I, k ∈ K, t ∈ T with the boundary condition Φπ
T+1(·, d) = 0.

Proof Using Lemma 5, we have

Φπ
t (ek

i , d) = ct · ξπ
t (ek

i , d) + F π
t+1

(
rπd
t+1 +

∑

(,κ)∈∆π+
t+1(e

k
i ,d)

eκ
 −

∑

(,κ)∈∆π−
t+1(e

k
i ,d)

eκ
 , dt+1, . . . , dT

)

− F π
t+1

(
rπd
t , dt+1, . . . , dT

)

= ct · ξπ
t (ek

i , d) +
∑

(,κ)∈∆π+
t+1(e

k
i ,d)

{
F π

t+1

(
rπd
t+1 + eκ

 , dt+1, . . . , dT

)− F π
t+1

(
rπd
t+1, dt+1, . . . , dT

)}

+
∑

(,κ)∈∆π−
t+1(e

k
i ,d)

{
F π

t+1

(
rπd
t+1 − eκ

 , dt+1, . . . , dT

)− F π
t+1

(
rπd
t+1, dt+1, . . . , dT

)}
,

where the second equality uses the separability assumption and Lemma 8 in the appendix. 2

On the right side of (29), the first term captures how much the cost incurred at time period t

changes in response to an additional vehicle of type k at location i at time period t, whereas the

second and third terms capture how much the cost incurred at time periods {t + 1, . . . , T} changes

in response to an additional vehicle of type k at location i at time period t.

F π
t+1

(·, dt+1, . . . , dT

)
is not necessarily a separable function. However, we propose using (29) as

an approximation to Φπ
t (ek

i , d) even when F π
t+1

(·, dt+1, . . . , dT

)
is not separable.

4 Computational Experiments

This section focuses on the results of Sections 2.2 and 3, and numerically establishes the accuracy

of the methods proposed to compute Ψπ
t (eijl, d) and Φπ

t (ek
i , d). In particular, we use a variety of

test problems to show that (26) and (29) can approximate Ψπ
t (eijl, d) and Φπ

t (ek
i , d) accurately even
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when F π
t+1

(·, dt+1, . . . , dT

)
is not a separable function. The method proposed to compute Φπ

t (ei, d)

in Section 2.1 is exact and does not require numerical validation.

Our test problems involve 40 locations and 41 movement modes (40 load types and one movement

mode for empty repositioning). We label our test problems by (T,D, K, R, e), where T is the length

of the planning horizon, D is the expected number of loads over the planning horizon, K is the

number of vehicle types, R is the number of available vehicles and e is the empty repositioning cost

applied on a “per-mile” basis.

Accuracy of the policy gradients with respect to load availabilities. We start by testing the

accuracy of the method proposed to compute Ψπ
t (eijl, d). Our experimental setup is as follows. For

each test problem, we first obtain a “good” vehicle allocation policy π by using the sampling-based

method of Godfrey & Powell (2002a). Having obtained a policy π, we sample N load realizations, say

d1, . . . , dN . For each load realization dn, we approximate Ψπ
1 (eijl, d

n) for all i, j ∈ I, l ∈ L by using

(26). We let {Ψ̃π
1 (eijl, d

n) : i, j ∈ I, l ∈ L, n = 1, . . . , N} be these approximations. Since the method

given in Section 2.2 requires simulating the behavior of policy π under load realization dn, at this

point we can also compute F π
1

(
r1, d

n
1 , dn

2 , . . . , dn
T

)
as

∑
t∈T ct · xπdn

t . We then physically increase the

number of loads of type l on lane (i, j) at time period 1 by 1 and compute F π
1

(
r1, d

n
1 +eijl, d

n
2 , . . . , dn

T

)

by simulating the behavior of policy π under load realization dn+eijl1. In this way, we can accurately

compute Ψπ
1 (eijl, d

n) in a “brute force” fashion as F π
1

(
r1, d

n
1 +eijl, d

n
2 , . . . , dn

T

)−F π
1

(
r1, d

n
1 , dn

2 , . . . , dn
T

)
.

Our aim is to compare the approximation Ψ̃π
1 (eijl, d

n) that is computed through (26) with Ψπ
1 (eijl, d

n)

that is computed in a “brute force” fashion.

Table 1 summarizes our findings. The first set of columns give the average percent deviation and

the coefficient of correlation between {Ψπ
1 (eijl, d

n) : i, j ∈ I, l ∈ L, n = 1, . . . , N} and {Ψ̃π
1 (eijl, d

n) :

i, j ∈ I, l ∈ L, n = 1, . . . , N}. The second set of columns give a histogram for the percent deviations

that shows what fraction of the percent deviations is less than 2.5%, 5%, 10% and 25%. The next

column gives the average time to compute {Ψ̃π
1 (eijl, d

n) : i, j ∈ I, l ∈ L} for a particular load

realization dn. This time includes the time spent simulating the behavior of policy π under load

realization dn. The last set of columns give summary statistics for the coefficients of variation of

{Ψπ
1 (eijl, D) : i, j ∈ I, l ∈ L}. We estimate the coefficient of variation of Ψπ

1 (eijl, D) as µijl/σijl where

µijl and σ2
ijl are the sample mean and sample variance of {Ψπ

1 (eijl, d
n) : n = 1, . . . , N}. Using this

estimate of coefficient of variation, one can have an idea of how many load realizations are needed to

estimate E
{
Ψπ

1 (eijl, D)
}

with a certain precision (see Law & Kelton (2000)). Since µijl/σijl depends

on i, j ∈ I, l ∈ L, we give the mean, and the 20-th and 80-th percentiles of {µijl/σijl : i, j ∈ I, l ∈ L}.
We note that the coefficient of variation estimates are highly problem-specific and one should not

draw general conclusions from them.
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Corr. Avg. Histogram Time Coeff. of variation
Problem coeff. % dev. 2.5% 5% 10% 25% (sec.) Avg. 20 pr. 80 pr.

(10, 1000, 1, 100, 2) 0.99 6.27 45 56 71 100 0.09 0.55 0.20 0.82
(10, 1000, 1, 100, 4) 0.98 8.91 58 58 61 86 0.08 0.99 0.39 1.56
(10, 1000, 1, 100, 8) 0.99 6.95 65 68 70 89 0.08 1.01 0.46 1.47
(10, 1000, 1, 200, 2) 0.99 6.31 62 65 72 92 0.08 0.27 0.14 0.36
(10, 1000, 1, 200, 4) 0.98 5.73 67 71 74 93 0.08 0.35 0.16 0.45
(10, 1000, 1, 200, 8) 0.98 2.85 87 88 89 94 0.08 0.37 0.15 0.52
(30, 3000, 1, 100, 2) 0.98 9.48 54 55 62 81 0.31 0.68 0.19 0.99
(30, 3000, 1, 100, 4) 0.99 5.71 72 72 75 90 0.28 1.07 0.45 1.47
(30, 3000, 1, 100, 8) 0.98 5.88 76 76 76 88 0.27 1.52 0.64 2.26
(30, 3000, 1, 200, 2) 0.97 9.64 43 48 59 87 0.31 0.41 0.21 0.57
(30, 3000, 1, 200, 4) 0.96 8.87 49 52 61 90 0.28 0.55 0.28 0.76
(30, 3000, 1, 200, 8) 0.98 4.52 77 77 81 92 0.28 0.81 0.36 1.11

Table 1: Accuracy of the policy gradients with respect to load availabilities. Percent deviation is
100 |Ψπ

1 (eijl, d
n)− Ψ̃π

1 (eijl, d
n)|/|Ψπ

1 (eijl, d
n)| and we ignore the data points with Ψπ

1 (eijl, d
n) = 0.

The high coefficient of correlation and the low average percent deviation figures in Table 1 show

that {Ψπ
1 (eijl, d

n) : i, j ∈ I, l ∈ L, n = 1, . . . , N} and {Ψ̃π
1 (eijl, d

n) : i, j ∈ I, l ∈ L, n = 1, . . . , N}
are in close agreement. The histograms show that, about 90% of the time, our approximations are

within 25% of the true value. If we were working on problems with deterministic load arrivals, then

Ψπ
1 (eijl, d) could also be approximated by using the optimal value of the dual variable associated with

the load availability constraint xijl1 ≤ dijl1 in the “state-time network” formulation of the problem.

Powell (1989) reports that, 10% of the time, approximating Ψπ
1 (eijl, d) by using the dual solution

brings an error of 50% or more. Therefore, our method can approximate Ψπ
1 (eijl, d) noticeably better

than the dual solution of the “state-time network” formulation.

Accuracy of the policy gradients with respect to vehicle availabilities. We now compare

the approximations obtained through (29), say {Φ̃π
1 (ek

i , d
n) : i ∈ I, k ∈ K , n = 1, . . . , N}, with the

values of {Φπ
1 (ek

i , d
n) : i ∈ I, k ∈ K, n = 1, . . . , N} obtained in a “brute force” fashion by increasing

the number of vehicles of type k at location i by 1 and simulating the behavior of policy π under

load realization dn. The results in Table 2 indicate that (29) yields accurate results.

5 Conclusions

We presented efficient methods to assess the sensitivity of a stochastic dynamic fleet management

model to fleet size and load availability. Numerical experiments indicated that these methods are

accurate and computationally tractable. Information about the cost impact of an additional vehicle

or an additional load can, in turn, be used when making fleet sizing, load evaluation and pricing

decisions. Using the method described in Section 2.2 for load pricing is the topic of another paper

(see Topaloglu & Powell (2005)).
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Corr. Avg. Histogram Time Coeff. of variation
Problem coeff. % dev. 2.5% 5% 10% 25% (sec.) Avg. 20 pr. 80 pr.

(10, 1000, 20, 100, 2) 0.97 3.28 88 89 91 92 0.41 0.91 0.56 1.16
(10, 1000, 20, 100, 4) 0.99 2.37 88 90 93 96 0.41 0.93 0.56 1.19
(10, 1000, 20, 100, 8) 0.99 3.46 87 89 89 93 0.41 0.93 0.57 1.23
(10, 1000, 20, 200, 2) 0.99 1.63 91 92 94 98 0.31 1.35 0.87 1.78
(10, 1000, 20, 200, 4) 0.97 3.28 88 89 91 92 0.41 1.29 0.86 1.71
(10, 1000, 20, 200, 8) 0.99 2.30 88 89 91 97 0.31 1.26 0.77 1.74
(10, 1000, 40, 100, 2) 1.00 0.77 94 95 97 99 0.59 1.14 0.67 1.55
(10, 1000, 40, 100, 4) 1.00 1.25 95 95 95 98 0.56 0.97 0.62 1.28
(10, 1000, 40, 100, 8) 1.00 0.77 94 95 97 99 0.58 1.14 0.67 1.55
(10, 1000, 40, 200, 2) 0.99 1.38 93 93 94 99 0.61 1.29 0.80 1.72
(10, 1000, 40, 200, 4) 1.00 1.11 93 94 96 99 0.60 1.26 0.75 1.68
(10, 1000, 40, 200, 8) 1.00 0.94 96 96 97 98 0.59 1.22 0.68 1.79
(30, 3000, 20, 100, 2) 0.98 6.78 55 61 67 97 0.86 1.42 0.92 1.89
(30, 3000, 20, 100, 4) 0.99 2.43 77 83 92 99 0.86 1.38 0.91 1.84
(30, 3000, 20, 100, 8) 0.99 3.74 68 70 82 98 0.85 1.56 1.01 2.06
(30, 3000, 20, 200, 2) 0.99 3.26 78 83 84 99 0.90 1.83 1.30 2.41
(30, 3000, 20, 200, 4) 0.99 4.34 64 73 82 97 0.90 1.86 1.20 2.55
(30, 3000, 20, 200, 8) 0.98 2.73 80 82 90 98 0.89 1.75 1.19 2.37
(30, 3000, 40, 100, 2) 0.98 3.90 79 79 83 94 1.66 1.06 0.70 1.32
(30, 3000, 40, 100, 4) 0.99 2.49 82 84 89 98 1.66 0.95 0.63 1.23
(30, 3000, 40, 100, 8) 0.99 3.22 77 78 85 98 1.65 0.87 0.61 1.04
(30, 3000, 40, 200, 2) 0.99 2.38 82 88 89 99 1.70 1.25 0.84 1.60
(30, 3000, 40, 200, 4) 0.99 2.40 82 84 89 99 1.71 1.37 0.92 1.84
(30, 3000, 40, 200, 8) 0.99 2.02 85 88 90 100 1.71 1.26 0.83 1.63

Table 2: Accuracy of the policy gradients with respect to vehicle availabilities.

6 Appendix

This section presents the omitted proofs. The following result is useful when proving Lemma 3.

Lemma 7 If Cπ
t (−ei, ej , d) + cijlt ≥ 0, then we have Xπ

t (rπd
t , dt + eijl) = xπd

t .

Proof of Lemma 7 Consider problem (21) and its network representation in Figure 2. In this

problem, dijlt acts as an upper bound on the decision variable xijlt and a min-cost network flow

problem with upper bounds can be converted to an equivalent problem without upper bounds by the

transformation shown in Figure 4 (see Vanderbei (1997)). Therefore, if dijlt is increased by 1, then

the change in the optimal solution of problem (21) is given by a min-cost flow augmenting path from

node j to node (i, j, l) in Figure 4.b. We denote this min-cost flow augmenting path by Q′. Since

node (i, j, l) has exactly two inbound arcs, there are two possible cases to consider for Q′. 1) Either

Q′ includes only the bold arc that connects node j to node (i, j, l). In this case, the cost of Q′ is 0.

2) Or Q′ connects node j to node i, and then, node i to node (i, j, l). We let Cπ
t (−ei, ej , d) be the

cost of the min-cost flow augmenting path from node j to node i in Figure 4.a. Then, the cost of the

min-cost flow augmenting path from node j to node i in Figure 4.b is also Cπ
t (−ei, ej , d). Hence, for

the second case, the cost of Q′ is Cπ
t (−ei, ej , d) + cijlt.
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Figure 4: a. The cost and the upper bound for the bold arc that connects node i to node j are cijlt

and dijlt. b. The min-cost network flow problem in Figure 4.a can be converted to one without the
aforementioned upper bound by a simple transformation. We introduce an extra node (i, j, l) with
supply −dijlt and set the supply of node j to +dijlt.

Since Q′ is the min-cost flow augmenting path, if Cπ
t (−ei, ej , d) + cijlt > 0, then the first case

must hold for Q′. Thus, we have Xπ
t (rπd

t , dt + eijl) = Xπ
t (rπd

t , dt). We conclude by noting that the

possibility of having Cπ
t (−ei, ej , d) + cijlt = 0 is ruled out by the random perturbation of the costs so

that problem (21) does not have alternative optima. 2

Proof of Lemma 3 To show the first part, we consider two cases depending on the sign of

Cπ
t (−ei, ej , d) + cijlt. 1) If Cπ

t (−ei, ej , d) + cijlt ≥ 0, then by Lemma 7, an additional load of type l

on lane (i, j) does not change the solution of problem (21). Therefore, Xπ
t (rπd

t , dt + eijl) = xπd
t and

Rπ
t+1(r

πd
t , dt + eijl) = rπd

t+1 hold. 2) Following an argument similar to the proof of Lemma 7, if we

introduce an additional load of type l on lane (i, j), then the change in the solution of problem (21)

is given by the min-cost flow augmenting path from node j to (i, j, l) in Figure 4.b. Let this flow

augmenting path be Q′. If Cπ
t (−ei, ej , d) + cijlt < 0, then the second case in the proof of Lemma 7

holds. Therefore, Q′ first connects node j to node i, and then, node i to node (i, j, l). This means that

Q′ is equal to the min-cost flow augmenting path Qπ
t (−ei, ej , d) appended by the arc that connects
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node i to node (i, j, l). Then, the result follows.

The second part holds because any acyclic path from node j ∈ I in the middle section of Figure

4.a (or Figure 4.b) to node i ∈ I on the left side traverses either zero or two of the arcs corresponding

to the variables {rj,t+1 : j ∈ I}. If a path traverses two of these arcs, then one of these arcs is a

forward arc and the other is a backward arc in the path. 2

Proof of Lemma 5 We now show the second part. We first note that any acyclic path from node

(i, k) ∈ I ×K on the left side of Figure 3 to the sink node can only visit the nodes {(i, k′) : k′ ∈ K}.

Assume that the result does not hold. This means that δπ
t+1(e

k
i , d) cannot be written as a vector

whose elements are +1, −1 or 0, and hence, there exist j′ ∈ I, k′ ∈ K such that |δπk′
j′,t+1(e

k
i , d)| ≥ 2.

Assume that δπk′
j′,t+1(e

k
i , d) ≥ 2. Since we have

δπk′
j′,t+1(e

k
i , d) =

∑

ı∈I

∑

`∈L
ξπk′
ıj′`t(e

k
i , d),

there exist i′, i′′ ∈ I and l′, l′′ ∈ L such that ξπk′
i′j′l′t(e

k
i , d) = +1 and ξπk′

i′′j′l′′t(e
k
i , d) = +1. Because of our

initial observation, we must have i′ = i′′ = i. But, having ξπk′
ij′l′t(e

k
i , d) = +1 and ξπk′

ij′l′′t(e
k
i , d) = +1

implies that, on the min-cost flow augmenting path from node (i, k) to the sink node, there are two

forward arcs that leave node (i, k′). This contradicts the fact that the min-cost flow augmenting

path is acyclic. One can also reach a contradiction by assuming that δπk′
j′,t+1(e

k
i , d) ≤ −2. 2

Proofs of Propositions 4 and 6 use the following result.

Lemma 8 For a separable function G(·) : Rn → R, we have

G

(
x +

n∑

i=1

αiei

)
−G(x) =

n∑

i=1

{
G (x + αiei)−G(x)

}

where αi ∈ R for all i = 1, . . . , n and ei is the n-dimensional unit vector with a 1 in the i-th element.

Proof of Lemma 8 Letting G(x) =
∑n

i=1 gi(xi) where gi(·) : R→ R for all i = 1, . . . , n, we have

G

(
x +

n∑

i=1

αiei

)
−G(x) =

n∑

i=1

{
gi (xi + αi)− gi(xi)

}

=
n∑

i=1








i−1∑

j=1

gj(xj) + gi(xi + αi) +
n∑

j=i+1

gj(xj)


−

n∑

j=1

gj(xj)



 . 2
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