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ABSTRACT 

This article introduces basic principles of first order sensitivity analysis and presents an 

algorithm that can be used to compute the sensitivity of a dynamical system to a selected 

parameter. This analysis is performed by extending with sensitivity equations the set of 

differential equations describing the dynamical system. These additional equations re­

quire the evaluation of partial derivatives, and so a technique known as the table 

algorithm, which can be used to exactly and automatically compute these derivatives, is 

described. A C++ class which can be used to implement the table algorithm is pre­

sented along with a driver routine for evaluating the output of a model and its sensitivity 

to a single parameter. The use of this driver routine is illustrated with a specific applica­

tion from environmental hazards modeling. © 1994 John Wiley & Sons, Inc. 

1 INTRODUCTION 

\Vhen modeling complex systems with large num­

bers of parameters. it is important to know how 

the model is affected by uncertainties in the pa­

rameters. Standard techniques of first order sensi­

tivity analysis such as those described by Frank 

[1 j can be employed to study the effects of param­

eter changes on a system. This article presents a 

C++ routine for evaluating the sensitivity of a dy­

namical system to its parameters. One key feature 

of this routine is that the partial derivatives 

needed to estimate the first order sensitivitv are 

computed exactly using the well-known "table al­

gorithm" described by Kalab a and Tischler [ 2]. 

First, the system error of a model is defined and 
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a method for computing this error for a dynamical 

system is presented. Then an algorithm for simul­

taneously computing the solution to the model 

and sensitivity equations arising from a dynamical 

system is developed. The table algorithm used to 

compute derivatives required by sensitivity equa­

tions is illustrated. Finally, a complete C++ im­

plementation of the algorithm used to solve model 

and sensitivity equations is given, along with an 

implementation of the table algorithm. 

The methods developed in this article arose 

from the need to understand the uncertainty asso­

ciated with a model developed by the :Modeling 

and Simulations Studies Branch (:MASS) of the 

1\'ational Oceanic and Atmospheric Administra­

tion (1\'0AA). This model estimates ground-level 

concentrations of toxic vapors resulting from acci­

dental discharges of hazardous chemicals. As a 

final example in our article, we calculate the un­

certainty in the "footprint" of a plume generated 

by evaporation of phosgene from a puddle, based 

on estimated uncertainty in environmental and 

chemical parameters. 

157 
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2 FIRST ORDER SENSITIVITY ANALYSIS 

The mathematical model used to represent a dy­

namical svstem is a differential equation of the 

form 

y'(t: a)= f(y(t; a), t: a) y(t 0
: a)= y 0 (1) 

where 

y~(t, y(t; a); a) 

y~(t, y(t: a); a) 

y'(t, y(t; a): a) = 

y;,(t, y(t; a); a) 

Although in general, a may be a vector of parame­

ters in f!km, for this article, it is assumed that a is a 

scalar in f!k. The equations given by (1) are called 

the model equations. 

The aim of sensitivity analysis is to quantify 

how small changes in the value of the parameter a 

about some nominal value ao E ~affect the out­

put of the model equations. Formally, these 

effects are expressed as the quantity 

~y(t: a) = y(t; ao + ~a) - y(t; a 0 ) 

where y(t; a) is the solution to (1). In first order 

sensitivity analysis, ~y is commonly approximated 

bv 

A ( ) ay(t; ao) A 
uy l: ao = ua . aa 

where J~aJ ~ JaoJ. This quantity is referred to as 

the parameter-induced system error. This formu­

lation is essentially that described by Frank [ 1]. In 

what follows, the term system error will refer to the 

parameter-induced system error. 

For a model described by the differential equa­

tions (1 ), the partial derivatives needed to com­

pute the system error are not readily available. 

However, they can be easily computed by apply­

ing basic rules of calculus. Differentiating both 

sides of (1) with respect to a and interchanging the 

order of differentiation on the left side results in a 

new differential equation whose solution is ay(t: 

a )I a a, the term needed to compute the system er­

ror. This new differential equation, defined as the 

sensitivity equation, has the form 

w' (t, w(t, a); a) 

= ~ aj(t, y(t; a); a) ( \ 
L.., a Wk t; a; 
k~l ~Yk 

where w? is 1 if the initial conditiony0 depends on 

a and 0 ify0 does not depend on a. The solution to 

(2) is 

( ) ay(t; a) 
w t; a = aa 

Note that the equation given by (2) describes a 

system of equations, because 

aj(t, y(t; a); a) 

ayk 

aj1 (t, y(t; a); a) 

ayk 

a/2(L y(t; a): a) 

an 

afn(t,y(t; a); a) 

an 

aj1 (t, y(t: a); a) 

a a 

d 
aj(t, y(t; a); a) 

an aa 

a/2(t,y(t: a); a) 

a a 

afn(t, y(t; a); a) 

a a 

An important observation in (2) is that in order to 

evaluate the terms 

aj(t, y(t; a); a) 

ayk 
and 

aj(t, y(t; a); a) 

a a 

thevaluesy(t: a)= (y1(t: a),y2(t; a), ... ,yn(t; 

a) f will be required. As a consequence, the model 

and the sensitivity equations must be solved si­

multaneously. 

3 DESIGN OF ROUTINES FOR 
COMPUTING MODEL SENSITIVITY 

A set of routines to compute model sensitivity 

should compute the numerical solution to the 



model and sensitivity equations and related sys­

tem error. Ideally, such a set of routines should 

only require definitions of the model equations, a 

time interval over which to compute the solution to 

these equations, a time step, initial conditions, 

parameters, and Aa, an estimate of deviation of 

the parameter a from its expected value. In partic­

ular, the user of these routines should not have to 

be involved in the details of formulating the sensi­

tivity equations. 

3.1 Solving the Model and Auxiliary 
Equations 

In general, the model and sensitiVIty equations 

must be solved numerically. As was noted above, 

in order to evaluate the right hand side of the 

equation (2) at a particular time step t1
, it is neces­

sary to know the solution to ( 1) at time step t1
• 

Although it is possible to first compute the solu­

tion to (1) on a given time interval, store these 

results, and then solve (2) on that interval, a better 

approach is to solve the two equations simulta­

neously. 

To solve (1) and (2) simultaneously, it is neces­

sary to construct a new differential equation: 

where 

and 

u'(t, u(t; a); a) = F(t, u(t; a); a) 

(
y(t; a)) 

u(t: a) = -------
. w(t; a) 

Yn(l; a) 
-;;;ct~-a) 

Wn(t; a) 

F(t, u(t; a); a) 

/1 (t, y(t; a); a) 

fn(t, y(t; a): a) 

(3) 

:f aj, (t, y(t; a); a) wk(t: a) + aj1 (t, y(t; a); a) 
k=1 ayk . aa 
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The differential equation given by (3) can be 

solved using any suitable numerical differential 

equation solver. In the algorithm presented below, 

a generic routine called Integrate is used. The vec­

tors y 1
, w 1 E 1!/t" and u1 E 'lft~n represent the numeri­

cal solutions to (1), (2), and (3), respectively, at 

time t1 = t0 + i * h. The vector syserr1 E 1!/t" repre­

sents the svstem error at time t 1
• 

The algorithm used to solve (1) and (2) simulta­

neouslv is: 

for j = 1, ... , n 

0- 0 
Uj - Yi 

0 - 0 
Uj+n - Wj 

0 _ 0 A 
syserri - Uj+nua 

end 

t 1 = t0 

for i = 0, 1, . . . , N - 1 

u1+ 1 = lntegrate(F, t1
, u 1

, h) 

for j = 1, ... , n 

1+1 - 1+1 
Yi - Uj 

1+1 - 1+1 
Wj - Uj+n 

1+1 - 1+1 
syserri - Uj+nAa 

end 

t 1+ 1 = t 1 + h 

end 

3.2 Automatic Differentiation 

(4) 

The issue central to the design of routines for sen­

sitivity analysis is that of derivative evaluation. In 

particular, the derivatives of the right hand side of 

the model equations must be evaluated with re­

spect to both the dependent variables and param­

eters. The routines developed here use the table 

algorithm for computation of these derivatives. 

This algorithm is discussed briefly and then illus­

trated on a sample function. 

The well-known table algorithm. developed by 

Kalab a and described by others [2-81, is a chain 

rule-based technique used to obtain numerical 

values for the derivatives of a function simulta­

neously with the function evaluation without ap­

pealing to numerical or symbolic differentiation 

[3J. To compute the derivative of a function using 

the table algorithm, it is necessary to decompose 

the function into a finite sequence of algebraic op­

erators and elementary functions. A step in the 

algorithm consists of applying a function or opera­

tor to results obtained in a previous step. In prin-
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ciple, this is no different from normal procedure 

used to evaluate a function. Where the table algo­

rithm differs from routine function evaluation is 

that at each step in the computation, not only is 

the value of the operator or function computed, 

but the derivative of that operator or function is 

also calculated. 

Table 1 shows the steps needed to apply the 

table algorithm to the sample function 

J(x) = a sin(x) + ex
2 

Computations in the first column of Table 1 corre­

spond to the steps needed to evaluate (5 ). Compu­

tations in the second column of Table 1 corre­

spond to the steps needed to evaluate derivatives 

of the operation or function applied in the first 

column. 

The results of applying the table algorithm to 

(5) are stored in F and F x' which correspond to 

f(x) and f' (x), respectively. The table algorithm 

can be applied to any function that can be decom­

posed into a finite sequence of elementary func­

tions and operations. For a complete discussion of 

the conditions under which the table algorithm 

can be applied, see Rall [ 6]. 

The table algorithm can be implemented by 

constructing length 2 vectors of the form x = (x1, 

x 2), which can be used to store the results of 

column 1 and column 2 of Table 1. The first ele­

ment of this vector stores the value of the opera­

tion or function and the second element stores the 

derivative of the operation or function. Algebraic 

operators and elementary functions can then be 

defined for this vector so that the computations 

required by both columns of Table 1 are carried 

out in a single application of the operator or func­

tion. 

Table 2 shows how operations in Table 1 can 

be redefined for length 2 vectors A = (A 1, A2), B = 

(B1, B2), ... , F = (F1, F:z). Column 1 of Table 2 

is identical to column 1 of Table 1, except that 

operations and functions have been redefined for 

the length 2 vectors. The manner in which these 

Table 1. Table Algorithm Applied to f(x) = 
a sin(x) + e""

2 

Sequence of Steps 

A=x 

B = sin(A) 

C = a*B 

D = A*A 

E = exp(D) 

F=E+C 

Derivative d/dx 

A,= 1 

B, = cos(A)*A, 

C, = a*B, 

D, = 2*A*A, 

E, = exp(D)*D, 

F, = E, + C, 

Table 2. Table Algorithm in Vector Form 

Operations and 

Functions Redefined 

for A= (A1, A2) 

etc. 

A=x 

B = sin(A) 

C = a*B 

D = A*A 

E = exp(D) 

F=E+C 

Operations and Functions 

Defined as: 

Al =X 

B1 = sin(AJ) 

C1 = a*B1 

D1 = A1*A1 
E1 = exp(D1) 

F1 = E1 + C1 

A2 = 1 

B2 = cos(A1)*A2 

C2 = a*B2 

D2 = 2*A1*A2 

E2 = exp(DJ)*D2 

F2 = E2 + C2 

operations and functions are redefined is illus­

trated by the remaining two columns of Table 2. 

The variables x and a are real valued scalars, as in 

Table 1. Other operators and elementary func­

tions are defined in a similar manner. For a com­

plete set of rules used to define several more ele­

mentary operations and functions, see Jerrell [3] 

and [81. 

41MPLEMENTATION 

The algorithm given by ( 4) has been implemented 

in C++. The derivatives required by the differen­

tial equation (3) are computed using the table al­

gorithm, which has been implemented as a C++ 

class. 

4.1 Array Types 

In the routines implemented here .. one-dimen­

sional double arrays (or vectors) are represented 

bv the class DoubleVec*. Two-dimensional dou­

ble arrays (or matrices) are represented by the 

class DoubleGenMat. It is beyond the scope of this 

article to present a full description of DoubleVec 

and DoubleGenMat, so it is suggested that the in­

terested reader consult Keffer [ 9] and Vermeulen 

et al. [ 1 0] for more information on these classes. 

4.2 Automatic Differentiation Using the 
Class doubleTT 

To compute the derivatives required by the differ­

ential equation F given by (3), a class named 

doubleTT (for double table type) has been imple-

* The classes DoubleVec and DoubleGeniV!ot arc taken 

from Rof(ue Wave's Math.h + + Librarv. ""lore information 

about the Rogue \rave math libraries can be obtained from 

Rogue Wave Software. P.O. Box 2:328. Corvallis. OR 9?:3:39. 

(50~) 7S4-3010. 



mented. The class presented here can be used to 

compute the derivatives of a variety of functions 

encountered in dynamical systems. It should be 

noted, however, that this class was not designed 

as a general implementation of the table algo­

rithm. It is not, for example, implemented for a 

single precision type. 

II Special functions 
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The first two are used to access the class member 

variables v and d, respectively, of a doubleTT. 

The second two are needed to compute the value 

and derivative of an expression. 

Finally, all operators and elementary functions 

are overloaded so that they are defined for 

doubleTT. 

friend doubleTT cos(doubleTT); 

friend doubleTT exp(doubleTT); 

II sin, tan, pow, And other needed special functions 

II Algebraic operators 

friend doubleTT operator+(doubleTT, doubleTT); 

friend doubleTT operator+(double, doubleTT); 

friend doubleTT operator+(doubleTT, double); 

II etc. 

The class doubleTT has two private member 

variables: 

class doubleTT 

{ 

private 

double v; 

double d; 

public 

}; 

The class member variables v and d store the 

value and derivative, respectively, of a function 

returning a variable of type doubleTT. 

There are two constructors for doubleTT. They 

are: 

doubleTT () ; 
doubleTT(double val, double dv = 0.0) 

The first sets class member variables v and d to 0. 

The second sets class member variable v to val 

and the class member variable d to dv. This sec­

ond constructor allows a double object to be pro­

moted to a doubleTT object in assignment opera­

tors. 

Two access member functions and two global 

functions are defined for doubleTT: 

double& value(); 

double& deriv(); 

friend double value(doubleTT); 

friend double deriv(doubleTT); 

Special functions are overloaded in a manner il­

lustrated by this example using sin(x): 

doubleTT sin(doubleTT x) 

{ 

} 

doubleTT t; 

t.v = sin(x.v); 

t.d = cos(x.v)*x.d; 

return t; 

Similarly, arithmetic operators are defined as il­

lustrated by this example: 

doubleTT operator*(doubleTT 

{ 

} 

a,doubleTT b) 

doubleTT t; 

t.v = a.v*b.v; 

t.d = a.v*b.d + a.d*b.v; 

return t; 

l'lote that for binary operators it is necessary to 

consider the three combinations (double, 

doubleTT), (doubleTT, double), and (doubleTT, 

doubleTT). 

Relational operators are defined only for the 

value of a doubleTTobject. For example, opera­

tor<=() is defined as: 
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II Relational operators. 

friend short operator <=(doubleTT 
a, doubleTT b) {return (a.value() 
< = b. value () ) ; } 

The following example illustrates how to use the 

class doubleTTto compute the derivative of a sca­

lar valued function. First, the function to be dif­

ferentiated must be defined using the type 

doubleTT. 

doubleTT f (doubleTT t) 
{ 

return 3.0*sin(t) + exp(t*t); 
} 

Then a variable a of type doubleTT is declared: 

doubleTT a(l.2,1); 

Note that to compute the derivative of f with re­

spect to a, it is necessary to set deriv(a) = 1. The 

function f is then called and the result stored as a 

doubleTT: 

doubleTT result = f (a); 

Finally, the values f(a) and f'(a) are obtained from 

the variable result using the doubleTT member 

functions value() and deriv(): 

double fa= result. value(); 

I I fa = f (a) 
double dfa = result.deriv(); 

I I dfa = f' (a) 

4.3 The Class DoubleTTVEc 

To store an array of objects of type doubleTT, a 

class DoubleTTVec has been implemented.t This 

class, which is an array class for the type 

doubleTT, has all of the functionality of the anal­

ogous class DoubleVec. Two extra functions are 

added to complete the class DoubleTTVec. 

t The class DoubleTTVec was generated using Rogue 

·wave· s template for creating vectors of an arbitrary arithmetic 

type. 

The two functions are: 

DoubleVec value(DoubleTTVec& V) 
DoubleVec deriv(DoubleTTVec& V) 

and are just vector versions of the functions 

value() and deriv() defined for the base type 

doubleTT. 

4.4 Model Equations 

To take advantage of the table algorithm, model 

equations must be defined in terms of the type 

doubleTT and DoubleTTVec. The equations 

given in (1) are specified by the user in the follow­

ing general form: 

DoubleTTVec UserF(doubleTT t, 
DoubleTTVec& y) 

{ 

} 

long n = y.length(); 
DoubleTTVec f(n); 
f(O) II fl(t,y) 
f(l) = ... II f2(t,y) 

f (n-1) 
return f; 

... II fn(t,y) 

(6) 

where the vector f returned from UserF is the 

value of the right hand side of the model equations 

evaluated at y and t. A pointer to a function of the 

form given above will be named a diffEqTTVec. A 

pointer to the analogous real-valued function of 

the form 

DoubleVec f(double t, DoubleVec y); 

will be named a diffEqVec. 

Absent from function definitions represented 

by the types of diffEqTTVec and diffEqVec is an 

expression of the dependency of model equations 

on their parameters. The reason for this is that 

parameters are declared as global to model func­

tions and therefore the dependency of model 

functions on parameters is not explicit. 
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4.5 Implementation of Algorithm (4) 

It is now possible to present a C++ implementa­

tion of the algorithm given by (4). First, it is as­

sumed that a subroutine is available that can solve 

a differential equation numerically. The routine 

used here is a fourth order Runge-Kutta method 

and is called Rk4Step. Any suitable differential 

equation solver can be used, however. 

Next, it is assumed that the user has supplied a 

function of the form given by (6) that can be used 

to evaluate the right hand side of the model equa­

tions. This function is referenced by the global 

pointer gUserF. Finally, it is assumed that the 

user defined function depends on a global param­

eter that is referenced by the global pointer vari­

able gAlpha. 

The function F given by (3) can now be defined 

diffEqTTVec *gfUser; 

doubleTT *gAlpha; 

II Pointer to user defined function 

II pointer to parameter upon which user defined 

function depends. 

II These globals are assigned in a driver routine. 

DoubleVec F (double t, DoubleVec& u) 

{ 

} 

long n = u. length() 12; 

DoubleVec y(n), w(n); 

for (short i = 0; i < n; i++) 

{ 
y(i) u(i); 

w(i) u(i+n); 

} 

II Evaluate model equations 

DoubleVec uModel = value((*gfUser) (t,y)); 

II Now evaluate sensitivity equations. 

DoubleTTVec yTT = y; 

DoubleVec fSum(n,O); 

for ( i = 0 ; i < n; i + + ) 

{ 
yTT(i) .deriv() = 1.0; 

fSum += deriv( (*gfUser) (t, yTT)) *w(i); 

yTT(i) .deriv() = 0.0; 

} 

II Comput ofloa 
gAlpha->deri v () = 1. 0; 

DoubleVec dfda = deriv( (*gfUser) (t, yTT)); 

gAlpha->deriv() = 0; 

DoubleVec uSens = fSum + dfda; 

DoubleVec u (2*n); 

for(i = 0; i < 2*n; i++) 

{ 

u (i) (i < n) ? uModel (i) uSens (i-n) ; 

} 

return U; 

I I (7a) 

I I (7bl 

I I (7c) 

I I (7d) 

I I (7e) 

(7) 
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Since F is to be passed to a differential equation 

solver, which will not in general be defined for 

doubleTT and doubleTTVec, F must take and re­

turn real-valued scalars and vectors. Hence, in 

(7 a) the results from the user defined function 

must be passed to value() to obtain a real-valued 

vector. In (7b), a DoubleTTVec must be con­

structed from the Double Vee y extracted from the 

input vector u. In (7c) and (7d), results from the 

user defined function are passed to deriv() again 

to obtain a real-valued vector. Finally, in (7e) a 

real-valued vector U is constructed, assigned val­

ues from uModel and uSens, and returned from 

the procedure. 

To set up the global pointers gAlpha and 

gfUser and to call the differential equation solver 

Rk4Step, the following driver routine has been 

written: 

void DESolve(diffEgTTVec& f,double tO,doubleTTPtrs& Ya,double tN, 

double h, doubleTT* parms, double dp, 

DoubleGenMat **y, DoubleGenMat **w, 

DoubleGenMat** sysErr) 

{ 

} 

double ti; 

long i,j,N,fNum; 

N = (long) ( (tN-tO) lh + 1. 0) ; 

fNum = Ya. length(); 

*Y =new DoubleGenMat(N,fNum); 

*w =new DoubleGenMat(N,fNum); 

*sysErr =new DoubleGenMat(N,fNum); 

gfUser 

gAlpha 

&f; 

parms; 

DoubleVec ui(2*fNum); 

II Initialize matrices needed locally. 

for (j = 0; j < fNum; j ++) 

{ 

} 

(**y) (O,j) = ui(j) = (*Ya(j)).value(); 

(**w) (0, j) = ui (j +fNum) = (parms == Ya (j)); 

(**sysErr) (0, j) = ui (j +fNum) *dp; 

for ( i = 0 ; i < (N -1) ; i + + ) 

{ 

} 

ti = to + i*h; 

DoubleVec uip1 = RK4Step(F,ti,ui,h); 

for (j = 0; j < fNum; j ++) 

{ 

} 

(**y) (i+1,j) = uip1(j); 

(**w) (i+1,j) = uip1(j+fNum); 

(**sysErr) (i +1, j) = uip1 (j +fNum) *dp; 

ui = uip1; 



where doubleTTPtrs is an array of pointers to the 

type doubleTT. 

The numerical solutions to (1) and (2) are 

stored in the matrices referenced by y and w, re­

spectively. The system error is stored in the matrix 

referenced by sysErr. 

5 AN APPLICATION 

The methods of model sensitivity are applied to a 

practical problem in which liquid phosgene spills 

onto the ground from a ruptured tank, creating an 

evaporating puddle. The vapors from this puddle 

are carried downwind in the form of a toxic plume. 

A diffusion-advection equation is used to estimate 

the size of the plume as a function of meteorologi­

cal conditions, properties of the chemicaL and the 

rate at which the pool evaporates. The ground­

level distribution of the concentration of a plume 

at time l is given by P(x,y,t), the solution to the 

partial differential equation 

aP aP a2p a2p 
at+ U(t) ax = D ax2 + D ay2 + f(x, y, t) (8) 

where x, y ED and 

f(x, y, t) = o(x - X.wurce)o(y- Ysource)Q(t) 

is the point source located at (x.wurce,Ysaurce). C(t) is 

the wind speed, which in this case is assumed to 

be constant and D is the diffusion coefficient. The 

region n over which the equation holds is as­

sumed to be large enough so that the concentra­

tion of the plume at the boundary of n is 0. 

The source is assumed to be equal to the rate at 

which mass is lost from the puddle by evapora­

tion. For simplicity, it is assumed that the puddle 

neither spreads nor shrinks during the time of in­

terest. Hence, 

Q(t) = E(t)Ao (9) 

where E is the evaporation flux (kg m - 2 s- 1
) and A0 

is the nominal puddle area (m2). The direct inte­

gration of (8) requires independent determination 

of E. The evaporation mass flux is given by 

(10) 

where Mw = molecular weight, (kg/kmol); Pv = 

vapor pressure of chemical, (Pa); T" = pool tern-
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perature, (K); R = universal gas constant, (J/kmol 

K); Km = mass transfer coefficient, (m/s). The 

mass transfer coefficient Km is determined from 

the solution given by 

k ) Pa 
Km = -u* -S (1 + n p (T ) 

eT v p 

In ( 1 - Pv~:,)) C(l;) (11) 

where 

u* is the friction velocity, k is von Karman's con­

stant. SeT is the turbulent Schmidt number, n is 

the atmospheric stability parameter, and I; is a 

nondimensional form of the pool diameter (m). 

The constants (go, g1, g2, g3) are (1, 0.4228, 

2.824, 1.025) [11]. 

The term MwPv(0,)1RTP in (10) is the satura­

tion vapor concentration at the pool's surface. 

The functional form of Pv(Tp) is known and TP is 

determined through the use of an energy conser­

vation equation. It is assumed that the loss of 

mass of the puddle is negligible with respect to the 

size of the puddle and so a mass conservation 

equation is not used. Evaporation occurs when 

the net energy flux across the pool's top and bot­

tom surfaces overcomes the heat of vaporization. 

The formulation of each flux is known. Hence, an 

energy budget can be constructed in the form 

dT 
~ = F[Fluxes(0,; environmental parameters; 

£(0,)); chemical properties: (12) 

from which 0, and E(Tp) are found by iteration. 

Substitution of E(Tp) into (9) allows integration of 

(8) for the vapor concentration. 

5.1 Determining Sensitivity of 
Plume Concentration 

The routines developed in Section 4 can be used 

to compute the sensitivity of the plume concentra­

tion to model parameters. The sensitivity will be 

tested with respect to SeT, the turbulent Schmidt 

number. 
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using a Discrete Space-Continuous Time dif­

fering scheme (also known as the Method of 

Lines), equation (8) can be converted to a system 

of ordinary differential equations. To do this, the 

region 0 over which equation (8) is assumed to 

hold is discretized on a regular grid whose nodes 

are: 

( \ . - 0 
X;,yjh l- , . . . , n + 1, j = 0, . . . , m + 1. 

The resulting ordinary differential equations are: 

#include "puddleScenario.h" 

#include "diffEqTT.h" 

(
Pi.J+1 - 2PiJ + P;-J-1 ) 

+ D h~ + Qy(x;, Y;, t) 

where PiJ is the plume concentration at node (x;, 

Yi) and hx and hy are the mesh sizes in the x andy 

direction, respectively. Qy(t) is defined as 

_ {Q(x;, Yi' t), i = isource, j =}source 

Qy(x;, Yi, t) -
0 otherwise 

where the node (x;suurre' Yisaurce) is the source of the 

plume. 

The following program illustrates how to set up 

model equations and arguments for the driver 

routine DESol ve. 

long 

double 

gNodesN, gNodesM, gSourceX, gSourceY; 

gXMin, gYMin, gHX, gHY, gD = 0.1; 

doubleTT dTdt(doubleTT t, DoubleTTVec& tp) 

{ 

} 

long n = tp. length(); 

doubleTT temp = tp (n-1); 

return (1.0l(gLiquidDensity*gPuddleDepth*gSpecificHeat)* 

(FLUX_S() + FLUX_UP(temp) + FLUX_DWN() + FLUX_E(temp) + 

FLUX_H(temp) + FLUX_G(t,temp))); 

DoubleTTVec PlumeVec(doubleTT t, DoubleTTVec& y) 

{ 

long n = y.length(), Np1 = gNodesN+1, Mp1 gNodesM+1, sourceXidx, 

sourceYidx; 

long Np2 = gNodesN+2, Mp2 = gNodesM+2; 

doubleTT Pij, Pip1j, Pim1j, Pijp1, Pijm1, dP2dx2, dP2dy2, dPdx; 

sourceXidx = (long) (gSourceX- gXMin)lgHX; 

sourceYidx = (long) (gSourceY-gYMin)lgHY; 

DoubleTTVec P(n); 

for (long j = 1; j < Np1; j ++) 

{ 

for (long i = 1; i < Mp1; i++) 

{ 

Pij = y (j *Np2 + i) ; 

Pip1j y(j*Np2 + i+1); 

Pim1j y (j *Np2 + i -1); 

Pijp1 y((j+1)*Np2 + i); 

Pijm1 y((j-1)*Np2 + i); 

dPdx = (Pip1j -Pim1j) I (2*gHX); 

dP2dx2 (Pip1j 2*Pij + Pim1j) I (gHX*gHX); 

dP2dy2 = (Pijp1- 2*Pij + Pijm1)1(gHY*gHY); 



} 

} 

P(n-1) 
return 

} 
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P (j *Np2 + i) = -gWindSpeed*dPdx + gD* (dP2dx2 + dP2dy2); 

if (i == sourceXidx && j == sourceYidx) 

{ 
P(j*Np2+i) += FLillCE(y(n-1)); 

} 

dTdt(t,y); 
P· 

' 

void main() 
{ 

II Read in chemical properties 
ReadChemical(phosgene); 
PuddleDefaults(); 
gPoolDiameter = 10; 
gPuddleDepth = 0.005; 
gZO = 0. 03; 

273.15; 
273 0 15; 

and global parameters. 

gWindSpeed = 6; 
gAirTemperatureK 
gPuddleTemperature 
gLatitude = 45. 0; 
gLongitude = 93.1; 

II St. Paul Minnisota 

II Set up initial conditions. 
gNodesN = gNodesM = 29; II Number of interior nodes 
double width = 1000, length = 1000; 
gHX = gHY = lengthldouble(gNodesN+1); 

gSourceX = gSourceY = 0; 
gXMin = -length*O. 25; gYMin = -widthl2. 0; 
long numberOfNodes = (gNodesN+2)*(gNodesM+2); 
doubleTTPtrs Y0(1+numberOfNodes); 
DoubleTTVec YStart(numberOfNodes,O); 
YO(numberOfNodes) = &gPuddleTemperature; 
for (long i = 0; i < numberOfNodes; i++) 
{ 

YO(i) = &YStart(i); 
} 

double to 
double dp 

0, tN = 60, h = 0.05; 
gPuddleTemperature.value()*0.25; 

DoubleGenMat *Y, *W, *sysErr; 
DESolve(PlumeVec,tO,YO,tN,h,&gPuddleTemperature,dp,&Y,&W,&sysErr); 
long N = Y--7rows () ; 
FILE *resul tsH = fopen ("results. out", "w") ; 
FILE *sensH = fopen (*Sensitivity. out*, "w"); 
for (long j = 0; j < gNodesM+2; j ++) 
{ 

for (i = 0; i < gNodesN+2; i++) 
{ 

} 

fprintf (resul tsH, "%12. 4e\t", (*Y) (j * (N-1, gNodesN+2) + i)); 
fprintf (sensH, "%12. 4e\t", (*sysErr) (j * (N-1, gNodesN+2) + i)); 
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Sensitivity of concentration of phosgene plume at various 

locations downwind 

4 

3.5 

3 

Nominal 

+1- system error 

800 m 

1000 m 
2.5 

E Level of concern: 2 ppm .----------------------
~ 2 +-------------~-------#------~~~==============~ 
~ 

1.5 

1200 m 

0.5 

0 
ll) 0 ll) 0 ll) 0 ll) 0 ll) 0 ll) 0 ll) 0 ll) 0 ll) 0 ll) 0 

ON '<: "': c: ~ '<: "': c: ~ 
ll) "': 0 N ll) 1'- 0 

~ '<: "': c: 
0 0 0 N N N N c-i (") (") c-i '<t '<t '<t '<t ll) 

Time, minutes 

FIGURE 1 The solution to the model equations for a plume for three different down­

wind locations. 

} 

} 

fprintf (resul tsH, "\n"); 

fprintf (sensH, "\n") ; 

fclose(resultsH); 

fclose (sensH) ; 

Figure 1 illustrates how the output from this 

program can be presented. It shows the trajecto­

ries and their sensitivity to an initial puddle tern­

perature. 

6 CONCLUSION 

The method presented here simplifies the task of 

computing the sensitivity of a dynamical system to 

its parameters. The user of these routines does not 

need to be involved in formulating the sensitivity 

equations and furthermore, does not need to sup­

ply any method for computing necessary deriva­

tives. By using the table algorithm, necessary de­

rivatives are computed exactly, and hence the first 

order sensitivity is computed to the accuracy of 

the underlying numerical differential equation 

solver. 
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