
Sensitivity Analysis of a Dynamical System

Using C++

DONNA CALHOUN1 AND ROY OVERSTREET2

1Computer Sciences Corporation, Seattle, WA 98115
2National Oceanic and Atmospheric Administration, Seattle, WA 98115

ABSTRACT

This article introduces basic principles of first order sensitivity analysis and presents an

algorithm that can be used to compute the sensitivity of a dynamical system to a selected

parameter. This analysis is performed by extending with sensitivity equations the set of

differential equations describing the dynamical system. These additional equations re­

quire the evaluation of partial derivatives, and so a technique known as the table

algorithm, which can be used to exactly and automatically compute these derivatives, is

described. A C++ class which can be used to implement the table algorithm is pre­

sented along with a driver routine for evaluating the output of a model and its sensitivity

to a single parameter. The use of this driver routine is illustrated with a specific applica­

tion from environmental hazards modeling. © 1994 John Wiley & Sons, Inc.

1 INTRODUCTION

\Vhen modeling complex systems with large num­

bers of parameters. it is important to know how

the model is affected by uncertainties in the pa­

rameters. Standard techniques of first order sensi­

tivity analysis such as those described by Frank

[1 j can be employed to study the effects of param­

eter changes on a system. This article presents a

C++ routine for evaluating the sensitivity of a dy­

namical system to its parameters. One key feature

of this routine is that the partial derivatives

needed to estimate the first order sensitivitv are

computed exactly using the well-known "table al­

gorithm" described by Kalab a and Tischler [2].

First, the system error of a model is defined and

Received April 1993
Revised June 199.3

© 1994 by John Wiley & Sons. Inc.

Scientific Programming, Yo!. 2, pp. 157-169 (1993)

CCC 1058-9244/94/040157-1.3

a method for computing this error for a dynamical

system is presented. Then an algorithm for simul­

taneously computing the solution to the model

and sensitivity equations arising from a dynamical

system is developed. The table algorithm used to

compute derivatives required by sensitivity equa­

tions is illustrated. Finally, a complete C++ im­

plementation of the algorithm used to solve model

and sensitivity equations is given, along with an

implementation of the table algorithm.

The methods developed in this article arose

from the need to understand the uncertainty asso­

ciated with a model developed by the :Modeling

and Simulations Studies Branch (:MASS) of the

1\'ational Oceanic and Atmospheric Administra­

tion (1\'0AA). This model estimates ground-level

concentrations of toxic vapors resulting from acci­

dental discharges of hazardous chemicals. As a

final example in our article, we calculate the un­

certainty in the "footprint" of a plume generated

by evaporation of phosgene from a puddle, based

on estimated uncertainty in environmental and

chemical parameters.

157

158 CALHOU~ A~D OVERSTREET

2 FIRST ORDER SENSITIVITY ANALYSIS

The mathematical model used to represent a dy­

namical svstem is a differential equation of the

form

y'(t: a)= f(y(t; a), t: a) y(t 0
: a)= y 0 (1)

where

y~(t, y(t; a); a)

y~(t, y(t: a); a)

y'(t, y(t; a): a) =

y;,(t, y(t; a); a)

Although in general, a may be a vector of parame­

ters in f!km, for this article, it is assumed that a is a

scalar in f!k. The equations given by (1) are called

the model equations.

The aim of sensitivity analysis is to quantify

how small changes in the value of the parameter a

about some nominal value ao E ~affect the out­

put of the model equations. Formally, these

effects are expressed as the quantity

~y(t: a) = y(t; ao + ~a) - y(t; a 0)

where y(t; a) is the solution to (1). In first order

sensitivity analysis, ~y is commonly approximated

bv

A () ay(t; ao) A
uy l: ao = ua . aa

where J~aJ ~ JaoJ. This quantity is referred to as

the parameter-induced system error. This formu­

lation is essentially that described by Frank [1]. In

what follows, the term system error will refer to the

parameter-induced system error.

For a model described by the differential equa­

tions (1), the partial derivatives needed to com­

pute the system error are not readily available.

However, they can be easily computed by apply­

ing basic rules of calculus. Differentiating both

sides of (1) with respect to a and interchanging the

order of differentiation on the left side results in a

new differential equation whose solution is ay(t:

a)I a a, the term needed to compute the system er­

ror. This new differential equation, defined as the

sensitivity equation, has the form

w' (t, w(t, a); a)

= ~ aj(t, y(t; a); a) (\
L.., a Wk t; a;
k~l ~Yk

where w? is 1 if the initial conditiony0 depends on

a and 0 ify0 does not depend on a. The solution to

(2) is

() ay(t; a)
w t; a = aa

Note that the equation given by (2) describes a

system of equations, because

aj(t, y(t; a); a)

ayk

aj1 (t, y(t; a); a)

ayk

a/2(L y(t; a): a)

an

afn(t,y(t; a); a)

an

aj1 (t, y(t: a); a)

a a

d
aj(t, y(t; a); a)

an aa

a/2(t,y(t: a); a)

a a

afn(t, y(t; a); a)

a a

An important observation in (2) is that in order to

evaluate the terms

aj(t, y(t; a); a)

ayk
and

aj(t, y(t; a); a)

a a

thevaluesy(t: a)= (y1(t: a),y2(t; a), ... ,yn(t;

a) f will be required. As a consequence, the model

and the sensitivity equations must be solved si­

multaneously.

3 DESIGN OF ROUTINES FOR
COMPUTING MODEL SENSITIVITY

A set of routines to compute model sensitivity

should compute the numerical solution to the

model and sensitivity equations and related sys­

tem error. Ideally, such a set of routines should

only require definitions of the model equations, a

time interval over which to compute the solution to

these equations, a time step, initial conditions,

parameters, and Aa, an estimate of deviation of

the parameter a from its expected value. In partic­

ular, the user of these routines should not have to

be involved in the details of formulating the sensi­

tivity equations.

3.1 Solving the Model and Auxiliary
Equations

In general, the model and sensitiVIty equations

must be solved numerically. As was noted above,

in order to evaluate the right hand side of the

equation (2) at a particular time step t1
, it is neces­

sary to know the solution to (1) at time step t1
•

Although it is possible to first compute the solu­

tion to (1) on a given time interval, store these

results, and then solve (2) on that interval, a better

approach is to solve the two equations simulta­

neously.

To solve (1) and (2) simultaneously, it is neces­

sary to construct a new differential equation:

where

and

u'(t, u(t; a); a) = F(t, u(t; a); a)

(
y(t; a))

u(t: a) = -------
. w(t; a)

Yn(l; a)
-;;;ct~-a)

Wn(t; a)

F(t, u(t; a); a)

/1 (t, y(t; a); a)

fn(t, y(t; a): a)

(3)

:f aj, (t, y(t; a); a) wk(t: a) + aj1 (t, y(t; a); a)
k=1 ayk . aa

SE~SITIVITY ANALYSIS USING C++ 159

The differential equation given by (3) can be

solved using any suitable numerical differential

equation solver. In the algorithm presented below,

a generic routine called Integrate is used. The vec­

tors y 1
, w 1 E 1!/t" and u1 E 'lft~n represent the numeri­

cal solutions to (1), (2), and (3), respectively, at

time t1 = t0 + i * h. The vector syserr1 E 1!/t" repre­

sents the svstem error at time t 1
•

The algorithm used to solve (1) and (2) simulta­

neouslv is:

for j = 1, ... , n

0- 0
Uj - Yi

0 - 0
Uj+n - Wj

0 _ 0 A
syserri - Uj+nua

end

t 1 = t0

for i = 0, 1, . . . , N - 1

u1+ 1 = lntegrate(F, t1
, u 1

, h)

for j = 1, ... , n

1+1 - 1+1
Yi - Uj

1+1 - 1+1
Wj - Uj+n

1+1 - 1+1
syserri - Uj+nAa

end

t 1+ 1 = t 1 + h

end

3.2 Automatic Differentiation

(4)

The issue central to the design of routines for sen­

sitivity analysis is that of derivative evaluation. In

particular, the derivatives of the right hand side of

the model equations must be evaluated with re­

spect to both the dependent variables and param­

eters. The routines developed here use the table

algorithm for computation of these derivatives.

This algorithm is discussed briefly and then illus­

trated on a sample function.

The well-known table algorithm. developed by

Kalab a and described by others [2-81, is a chain

rule-based technique used to obtain numerical

values for the derivatives of a function simulta­

neously with the function evaluation without ap­

pealing to numerical or symbolic differentiation

[3J. To compute the derivative of a function using

the table algorithm, it is necessary to decompose

the function into a finite sequence of algebraic op­

erators and elementary functions. A step in the

algorithm consists of applying a function or opera­

tor to results obtained in a previous step. In prin-

160 CALHOCN AND OVERSTREET

ciple, this is no different from normal procedure

used to evaluate a function. Where the table algo­

rithm differs from routine function evaluation is

that at each step in the computation, not only is

the value of the operator or function computed,

but the derivative of that operator or function is

also calculated.

Table 1 shows the steps needed to apply the

table algorithm to the sample function

J(x) = a sin(x) + ex
2

Computations in the first column of Table 1 corre­

spond to the steps needed to evaluate (5). Compu­

tations in the second column of Table 1 corre­

spond to the steps needed to evaluate derivatives

of the operation or function applied in the first

column.

The results of applying the table algorithm to

(5) are stored in F and F x' which correspond to

f(x) and f' (x), respectively. The table algorithm

can be applied to any function that can be decom­

posed into a finite sequence of elementary func­

tions and operations. For a complete discussion of

the conditions under which the table algorithm

can be applied, see Rall [6].

The table algorithm can be implemented by

constructing length 2 vectors of the form x = (x1,

x 2), which can be used to store the results of

column 1 and column 2 of Table 1. The first ele­

ment of this vector stores the value of the opera­

tion or function and the second element stores the

derivative of the operation or function. Algebraic

operators and elementary functions can then be

defined for this vector so that the computations

required by both columns of Table 1 are carried

out in a single application of the operator or func­

tion.

Table 2 shows how operations in Table 1 can

be redefined for length 2 vectors A = (A 1, A2), B =

(B1, B2), ... , F = (F1, F:z). Column 1 of Table 2

is identical to column 1 of Table 1, except that

operations and functions have been redefined for

the length 2 vectors. The manner in which these

Table 1. Table Algorithm Applied to f(x) =
a sin(x) + e""

2

Sequence of Steps

A=x

B = sin(A)

C = a*B

D = A*A

E = exp(D)

F=E+C

Derivative d/dx

A,= 1

B, = cos(A)*A,

C, = a*B,

D, = 2*A*A,

E, = exp(D)*D,

F, = E, + C,

Table 2. Table Algorithm in Vector Form

Operations and

Functions Redefined

for A= (A1, A2)

etc.

A=x

B = sin(A)

C = a*B

D = A*A

E = exp(D)

F=E+C

Operations and Functions

Defined as:

Al =X

B1 = sin(AJ)

C1 = a*B1

D1 = A1*A1
E1 = exp(D1)

F1 = E1 + C1

A2 = 1

B2 = cos(A1)*A2

C2 = a*B2

D2 = 2*A1*A2

E2 = exp(DJ)*D2

F2 = E2 + C2

operations and functions are redefined is illus­

trated by the remaining two columns of Table 2.

The variables x and a are real valued scalars, as in

Table 1. Other operators and elementary func­

tions are defined in a similar manner. For a com­

plete set of rules used to define several more ele­

mentary operations and functions, see Jerrell [3]

and [81.

41MPLEMENTATION

The algorithm given by (4) has been implemented

in C++. The derivatives required by the differen­

tial equation (3) are computed using the table al­

gorithm, which has been implemented as a C++

class.

4.1 Array Types

In the routines implemented here .. one-dimen­

sional double arrays (or vectors) are represented

bv the class DoubleVec*. Two-dimensional dou­

ble arrays (or matrices) are represented by the

class DoubleGenMat. It is beyond the scope of this

article to present a full description of DoubleVec

and DoubleGenMat, so it is suggested that the in­

terested reader consult Keffer [9] and Vermeulen

et al. [1 0] for more information on these classes.

4.2 Automatic Differentiation Using the
Class doubleTT

To compute the derivatives required by the differ­

ential equation F given by (3), a class named

doubleTT (for double table type) has been imple-

* The classes DoubleVec and DoubleGeniV!ot arc taken

from Rof(ue Wave's Math.h + + Librarv. ""lore information

about the Rogue \rave math libraries can be obtained from

Rogue Wave Software. P.O. Box 2:328. Corvallis. OR 9?:3:39.

(50~) 7S4-3010.

mented. The class presented here can be used to

compute the derivatives of a variety of functions

encountered in dynamical systems. It should be

noted, however, that this class was not designed

as a general implementation of the table algo­

rithm. It is not, for example, implemented for a

single precision type.

II Special functions

SE~SITIVITY A:\TAL YSIS CSING C++ 161

The first two are used to access the class member

variables v and d, respectively, of a doubleTT.

The second two are needed to compute the value

and derivative of an expression.

Finally, all operators and elementary functions

are overloaded so that they are defined for

doubleTT.

friend doubleTT cos(doubleTT);

friend doubleTT exp(doubleTT);

II sin, tan, pow, And other needed special functions

II Algebraic operators

friend doubleTT operator+(doubleTT, doubleTT);

friend doubleTT operator+(double, doubleTT);

friend doubleTT operator+(doubleTT, double);

II etc.

The class doubleTT has two private member

variables:

class doubleTT

{

private

double v;

double d;

public

};

The class member variables v and d store the

value and derivative, respectively, of a function

returning a variable of type doubleTT.

There are two constructors for doubleTT. They

are:

doubleTT () ;
doubleTT(double val, double dv = 0.0)

The first sets class member variables v and d to 0.

The second sets class member variable v to val

and the class member variable d to dv. This sec­

ond constructor allows a double object to be pro­

moted to a doubleTT object in assignment opera­

tors.

Two access member functions and two global

functions are defined for doubleTT:

double& value();

double& deriv();

friend double value(doubleTT);

friend double deriv(doubleTT);

Special functions are overloaded in a manner il­

lustrated by this example using sin(x):

doubleTT sin(doubleTT x)

{

}

doubleTT t;

t.v = sin(x.v);

t.d = cos(x.v)*x.d;

return t;

Similarly, arithmetic operators are defined as il­

lustrated by this example:

doubleTT operator*(doubleTT

{

}

a,doubleTT b)

doubleTT t;

t.v = a.v*b.v;

t.d = a.v*b.d + a.d*b.v;

return t;

l'lote that for binary operators it is necessary to

consider the three combinations (double,

doubleTT), (doubleTT, double), and (doubleTT,

doubleTT).

Relational operators are defined only for the

value of a doubleTTobject. For example, opera­

tor<=() is defined as:

162 CALHOUN AND OVERSTREET

II Relational operators.

friend short operator <=(doubleTT
a, doubleTT b) {return (a.value()
< = b. value ()) ; }

The following example illustrates how to use the

class doubleTTto compute the derivative of a sca­

lar valued function. First, the function to be dif­

ferentiated must be defined using the type

doubleTT.

doubleTT f (doubleTT t)
{

return 3.0*sin(t) + exp(t*t);
}

Then a variable a of type doubleTT is declared:

doubleTT a(l.2,1);

Note that to compute the derivative of f with re­

spect to a, it is necessary to set deriv(a) = 1. The

function f is then called and the result stored as a

doubleTT:

doubleTT result = f (a);

Finally, the values f(a) and f'(a) are obtained from

the variable result using the doubleTT member

functions value() and deriv():

double fa= result. value();

I I fa = f (a)
double dfa = result.deriv();

I I dfa = f' (a)

4.3 The Class DoubleTTVEc

To store an array of objects of type doubleTT, a

class DoubleTTVec has been implemented.t This

class, which is an array class for the type

doubleTT, has all of the functionality of the anal­

ogous class DoubleVec. Two extra functions are

added to complete the class DoubleTTVec.

t The class DoubleTTVec was generated using Rogue

·wave· s template for creating vectors of an arbitrary arithmetic

type.

The two functions are:

DoubleVec value(DoubleTTVec& V)
DoubleVec deriv(DoubleTTVec& V)

and are just vector versions of the functions

value() and deriv() defined for the base type

doubleTT.

4.4 Model Equations

To take advantage of the table algorithm, model

equations must be defined in terms of the type

doubleTT and DoubleTTVec. The equations

given in (1) are specified by the user in the follow­

ing general form:

DoubleTTVec UserF(doubleTT t,
DoubleTTVec& y)

{

}

long n = y.length();
DoubleTTVec f(n);
f(O) II fl(t,y)
f(l) = ... II f2(t,y)

f (n-1)
return f;

... II fn(t,y)

(6)

where the vector f returned from UserF is the

value of the right hand side of the model equations

evaluated at y and t. A pointer to a function of the

form given above will be named a diffEqTTVec. A

pointer to the analogous real-valued function of

the form

DoubleVec f(double t, DoubleVec y);

will be named a diffEqVec.

Absent from function definitions represented

by the types of diffEqTTVec and diffEqVec is an

expression of the dependency of model equations

on their parameters. The reason for this is that

parameters are declared as global to model func­

tions and therefore the dependency of model

functions on parameters is not explicit.

SE~SITIVITY Al\"AL YSIS USING C++ 163

4.5 Implementation of Algorithm (4)

It is now possible to present a C++ implementa­

tion of the algorithm given by (4). First, it is as­

sumed that a subroutine is available that can solve

a differential equation numerically. The routine

used here is a fourth order Runge-Kutta method

and is called Rk4Step. Any suitable differential

equation solver can be used, however.

Next, it is assumed that the user has supplied a

function of the form given by (6) that can be used

to evaluate the right hand side of the model equa­

tions. This function is referenced by the global

pointer gUserF. Finally, it is assumed that the

user defined function depends on a global param­

eter that is referenced by the global pointer vari­

able gAlpha.

The function F given by (3) can now be defined

diffEqTTVec *gfUser;

doubleTT *gAlpha;

II Pointer to user defined function

II pointer to parameter upon which user defined

function depends.

II These globals are assigned in a driver routine.

DoubleVec F (double t, DoubleVec& u)

{

}

long n = u. length() 12;

DoubleVec y(n), w(n);

for (short i = 0; i < n; i++)

{
y(i) u(i);

w(i) u(i+n);

}

II Evaluate model equations

DoubleVec uModel = value((*gfUser) (t,y));

II Now evaluate sensitivity equations.

DoubleTTVec yTT = y;

DoubleVec fSum(n,O);

for (i = 0 ; i < n; i + +)

{
yTT(i) .deriv() = 1.0;

fSum += deriv((*gfUser) (t, yTT)) *w(i);

yTT(i) .deriv() = 0.0;

}

II Comput ofloa
gAlpha->deri v () = 1. 0;

DoubleVec dfda = deriv((*gfUser) (t, yTT));

gAlpha->deriv() = 0;

DoubleVec uSens = fSum + dfda;

DoubleVec u (2*n);

for(i = 0; i < 2*n; i++)

{

u (i) (i < n) ? uModel (i) uSens (i-n) ;

}

return U;

I I (7a)

I I (7bl

I I (7c)

I I (7d)

I I (7e)

(7)

164 CALHOUN AND OVERSTREET

Since F is to be passed to a differential equation

solver, which will not in general be defined for

doubleTT and doubleTTVec, F must take and re­

turn real-valued scalars and vectors. Hence, in

(7 a) the results from the user defined function

must be passed to value() to obtain a real-valued

vector. In (7b), a DoubleTTVec must be con­

structed from the Double Vee y extracted from the

input vector u. In (7c) and (7d), results from the

user defined function are passed to deriv() again

to obtain a real-valued vector. Finally, in (7e) a

real-valued vector U is constructed, assigned val­

ues from uModel and uSens, and returned from

the procedure.

To set up the global pointers gAlpha and

gfUser and to call the differential equation solver

Rk4Step, the following driver routine has been

written:

void DESolve(diffEgTTVec& f,double tO,doubleTTPtrs& Ya,double tN,

double h, doubleTT* parms, double dp,

DoubleGenMat **y, DoubleGenMat **w,

DoubleGenMat** sysErr)

{

}

double ti;

long i,j,N,fNum;

N = (long) ((tN-tO) lh + 1. 0) ;

fNum = Ya. length();

*Y =new DoubleGenMat(N,fNum);

*w =new DoubleGenMat(N,fNum);

*sysErr =new DoubleGenMat(N,fNum);

gfUser

gAlpha

&f;

parms;

DoubleVec ui(2*fNum);

II Initialize matrices needed locally.

for (j = 0; j < fNum; j ++)

{

}

(**y) (O,j) = ui(j) = (*Ya(j)).value();

(**w) (0, j) = ui (j +fNum) = (parms == Ya (j));

(**sysErr) (0, j) = ui (j +fNum) *dp;

for (i = 0 ; i < (N -1) ; i + +)

{

}

ti = to + i*h;

DoubleVec uip1 = RK4Step(F,ti,ui,h);

for (j = 0; j < fNum; j ++)

{

}

(**y) (i+1,j) = uip1(j);

(**w) (i+1,j) = uip1(j+fNum);

(**sysErr) (i +1, j) = uip1 (j +fNum) *dp;

ui = uip1;

where doubleTTPtrs is an array of pointers to the

type doubleTT.

The numerical solutions to (1) and (2) are

stored in the matrices referenced by y and w, re­

spectively. The system error is stored in the matrix

referenced by sysErr.

5 AN APPLICATION

The methods of model sensitivity are applied to a

practical problem in which liquid phosgene spills

onto the ground from a ruptured tank, creating an

evaporating puddle. The vapors from this puddle

are carried downwind in the form of a toxic plume.

A diffusion-advection equation is used to estimate

the size of the plume as a function of meteorologi­

cal conditions, properties of the chemicaL and the

rate at which the pool evaporates. The ground­

level distribution of the concentration of a plume

at time l is given by P(x,y,t), the solution to the

partial differential equation

aP aP a2p a2p
at+ U(t) ax = D ax2 + D ay2 + f(x, y, t) (8)

where x, y ED and

f(x, y, t) = o(x - X.wurce)o(y- Ysource)Q(t)

is the point source located at (x.wurce,Ysaurce). C(t) is

the wind speed, which in this case is assumed to

be constant and D is the diffusion coefficient. The

region n over which the equation holds is as­

sumed to be large enough so that the concentra­

tion of the plume at the boundary of n is 0.

The source is assumed to be equal to the rate at

which mass is lost from the puddle by evapora­

tion. For simplicity, it is assumed that the puddle

neither spreads nor shrinks during the time of in­

terest. Hence,

Q(t) = E(t)Ao (9)

where E is the evaporation flux (kg m - 2 s- 1
) and A0

is the nominal puddle area (m2). The direct inte­

gration of (8) requires independent determination

of E. The evaporation mass flux is given by

(10)

where Mw = molecular weight, (kg/kmol); Pv =

vapor pressure of chemical, (Pa); T" = pool tern-

SENSITIVITY ANALYSIS USING C++ 165

perature, (K); R = universal gas constant, (J/kmol

K); Km = mass transfer coefficient, (m/s). The

mass transfer coefficient Km is determined from

the solution given by

k) Pa
Km = -u* -S (1 + n p (T)

eT v p

In (1 - Pv~:,)) C(l;) (11)

where

u* is the friction velocity, k is von Karman's con­

stant. SeT is the turbulent Schmidt number, n is

the atmospheric stability parameter, and I; is a

nondimensional form of the pool diameter (m).

The constants (go, g1, g2, g3) are (1, 0.4228,

2.824, 1.025) [11].

The term MwPv(0,)1RTP in (10) is the satura­

tion vapor concentration at the pool's surface.

The functional form of Pv(Tp) is known and TP is

determined through the use of an energy conser­

vation equation. It is assumed that the loss of

mass of the puddle is negligible with respect to the

size of the puddle and so a mass conservation

equation is not used. Evaporation occurs when

the net energy flux across the pool's top and bot­

tom surfaces overcomes the heat of vaporization.

The formulation of each flux is known. Hence, an

energy budget can be constructed in the form

dT
~ = F[Fluxes(0,; environmental parameters;

£(0,)); chemical properties: (12)

from which 0, and E(Tp) are found by iteration.

Substitution of E(Tp) into (9) allows integration of

(8) for the vapor concentration.

5.1 Determining Sensitivity of
Plume Concentration

The routines developed in Section 4 can be used

to compute the sensitivity of the plume concentra­

tion to model parameters. The sensitivity will be

tested with respect to SeT, the turbulent Schmidt

number.

166 CALHOUN Al'\D OVERSTREET

using a Discrete Space-Continuous Time dif­

fering scheme (also known as the Method of

Lines), equation (8) can be converted to a system

of ordinary differential equations. To do this, the

region 0 over which equation (8) is assumed to

hold is discretized on a regular grid whose nodes

are:

(\ . - 0
X;,yjh l- , . . . , n + 1, j = 0, . . . , m + 1.

The resulting ordinary differential equations are:

#include "puddleScenario.h"

#include "diffEqTT.h"

(
Pi.J+1 - 2PiJ + P;-J-1)

+ D h~ + Qy(x;, Y;, t)

where PiJ is the plume concentration at node (x;,

Yi) and hx and hy are the mesh sizes in the x andy

direction, respectively. Qy(t) is defined as

_ {Q(x;, Yi' t), i = isource, j =}source

Qy(x;, Yi, t) -
0 otherwise

where the node (x;suurre' Yisaurce) is the source of the

plume.

The following program illustrates how to set up

model equations and arguments for the driver

routine DESol ve.

long

double

gNodesN, gNodesM, gSourceX, gSourceY;

gXMin, gYMin, gHX, gHY, gD = 0.1;

doubleTT dTdt(doubleTT t, DoubleTTVec& tp)

{

}

long n = tp. length();

doubleTT temp = tp (n-1);

return (1.0l(gLiquidDensity*gPuddleDepth*gSpecificHeat)*

(FLUX_S() + FLUX_UP(temp) + FLUX_DWN() + FLUX_E(temp) +

FLUX_H(temp) + FLUX_G(t,temp)));

DoubleTTVec PlumeVec(doubleTT t, DoubleTTVec& y)

{

long n = y.length(), Np1 = gNodesN+1, Mp1 gNodesM+1, sourceXidx,

sourceYidx;

long Np2 = gNodesN+2, Mp2 = gNodesM+2;

doubleTT Pij, Pip1j, Pim1j, Pijp1, Pijm1, dP2dx2, dP2dy2, dPdx;

sourceXidx = (long) (gSourceX- gXMin)lgHX;

sourceYidx = (long) (gSourceY-gYMin)lgHY;

DoubleTTVec P(n);

for (long j = 1; j < Np1; j ++)

{

for (long i = 1; i < Mp1; i++)

{

Pij = y (j *Np2 + i) ;

Pip1j y(j*Np2 + i+1);

Pim1j y (j *Np2 + i -1);

Pijp1 y((j+1)*Np2 + i);

Pijm1 y((j-1)*Np2 + i);

dPdx = (Pip1j -Pim1j) I (2*gHX);

dP2dx2 (Pip1j 2*Pij + Pim1j) I (gHX*gHX);

dP2dy2 = (Pijp1- 2*Pij + Pijm1)1(gHY*gHY);

}

}

P(n-1)
return

}

SE:"o/SITIVITY A="'ALYSIS USII"G C++ 167

P (j *Np2 + i) = -gWindSpeed*dPdx + gD* (dP2dx2 + dP2dy2);

if (i == sourceXidx && j == sourceYidx)

{
P(j*Np2+i) += FLillCE(y(n-1));

}

dTdt(t,y);
P·

'

void main()
{

II Read in chemical properties
ReadChemical(phosgene);
PuddleDefaults();
gPoolDiameter = 10;
gPuddleDepth = 0.005;
gZO = 0. 03;

273.15;
273 0 15;

and global parameters.

gWindSpeed = 6;
gAirTemperatureK
gPuddleTemperature
gLatitude = 45. 0;
gLongitude = 93.1;

II St. Paul Minnisota

II Set up initial conditions.
gNodesN = gNodesM = 29; II Number of interior nodes
double width = 1000, length = 1000;
gHX = gHY = lengthldouble(gNodesN+1);

gSourceX = gSourceY = 0;
gXMin = -length*O. 25; gYMin = -widthl2. 0;
long numberOfNodes = (gNodesN+2)*(gNodesM+2);
doubleTTPtrs Y0(1+numberOfNodes);
DoubleTTVec YStart(numberOfNodes,O);
YO(numberOfNodes) = &gPuddleTemperature;
for (long i = 0; i < numberOfNodes; i++)
{

YO(i) = &YStart(i);
}

double to
double dp

0, tN = 60, h = 0.05;
gPuddleTemperature.value()*0.25;

DoubleGenMat *Y, *W, *sysErr;
DESolve(PlumeVec,tO,YO,tN,h,&gPuddleTemperature,dp,&Y,&W,&sysErr);
long N = Y--7rows () ;
FILE *resul tsH = fopen ("results. out", "w") ;
FILE *sensH = fopen (*Sensitivity. out*, "w");
for (long j = 0; j < gNodesM+2; j ++)
{

for (i = 0; i < gNodesN+2; i++)
{

}

fprintf (resul tsH, "%12. 4e\t", (*Y) (j * (N-1, gNodesN+2) + i));
fprintf (sensH, "%12. 4e\t", (*sysErr) (j * (N-1, gNodesN+2) + i));

168 CALHOUK AND OVERSTREET

Sensitivity of concentration of phosgene plume at various

locations downwind

4

3.5

3

Nominal

+1- system error

800 m

1000 m
2.5

E Level of concern: 2 ppm .----------------------
~ 2 +-------------~-------#------~~~==============~
~

1.5

1200 m

0.5

0
ll) 0 ll) 0 ll) 0 ll) 0 ll) 0 ll) 0 ll) 0 ll) 0 ll) 0 ll) 0

ON '<: "': c: ~ '<: "': c: ~
ll) "': 0 N ll) 1'- 0

~ '<: "': c:
0 0 0 N N N N c-i (") (") c-i '<t '<t '<t '<t ll)

Time, minutes

FIGURE 1 The solution to the model equations for a plume for three different down­

wind locations.

}

}

fprintf (resul tsH, "\n");

fprintf (sensH, "\n") ;

fclose(resultsH);

fclose (sensH) ;

Figure 1 illustrates how the output from this

program can be presented. It shows the trajecto­

ries and their sensitivity to an initial puddle tern­

perature.

6 CONCLUSION

The method presented here simplifies the task of

computing the sensitivity of a dynamical system to

its parameters. The user of these routines does not

need to be involved in formulating the sensitivity

equations and furthermore, does not need to sup­

ply any method for computing necessary deriva­

tives. By using the table algorithm, necessary de­

rivatives are computed exactly, and hence the first

order sensitivity is computed to the accuracy of

the underlying numerical differential equation

solver.

ACKNOWLEDGMENTS

The authors especially wish to thank Andrzej Le­

wandowski, visiting scientist at NOAA from

Wayne State Cniversity, Detroit, Ylichigan. Dr.

Lewandowski's ideas provided the initial inspira-

tion for this article and his suggestions and com­

ments on draft versions helped immensely in clari­

fying ideas presented here.

REFERENCES

[1] P. M. Frank, Introduction to System Sensitivity

Theory. ='Jew York: Academic Press, 1978.

[2] R. Kalaba and A. Tischler. '·A computer program

to minimize a function with many variables using

computer evaluated exact higher-order deriva­

tives," Appl. Math. Comput., vol. 13, pp. 143-

172, 1983.

[3] M. E. Jerrell, "Automatic differentiation in

C++," JOOPvo!. 3, pp. 17-24, 1990.

[4] R. Kalaba, L. Tesfatsion, and J. L. Wang. "A

finite algorithm for the exact evaluation of higher

order partial derivatives of functions of many

variables,"]. J1ath. Anal. Appl.. vol. 92, pp.

552-563, 1983.

[5] R. Kalaba and L. Tesfatsion, "Automatic differ­

entiation of functions of derivatives," Comput.

J1ath. Appl., vol. 12A. pp. 1091-1103. 1986.

[6 J L. B. Rail, Automatic Differentiation Techniques

and Applications (Lecture ;'\otes in Computer

Science) Berlin: Springer, 1981 .

[7] L. C. Rich and D. Hill. "Automatic differentiation

in MATLAB,'' Appl. Numerical Math. vol. 9, pp.

33-43, 1992.

[8] R. D. Wilkens, "Investigation of a .'\lew Analytical

Method for Numerical Derivative Evaluation,"

Comm. ACM, Vol. 7, pp. 465-47L 1964.

[9] T. Keffer, "Why C++ will replace Fortran:' Dr.

Dobb's]., vol. 195, pp. 39-47, 1992 (Special

Suppl.).

[10] Rogue Wave Software, Inc., Rogue Wave

Math.h++ Class Library Version 4.1. Corvallis,

OR: Rogue Wave Software, 1992.

[11] P. W. Yl. Brighton, "Evaporation from a plane

liquid surface into a turbulent boundary laver,"].

Fluid Mech., pp. 323-345, 1985. . .

[12] P. I. Kawamura and D. Mackay, "The evapora­

tion of volatile liquids,"]. Hazardous Materials,

vol. 15, pp. 343-364 (1987).

SEI\"SITIVITY A:\IAL YSIS USI:\IG C++ 169

[13] E. Palazzi, M. De Faveri, G. Fumarola, and G.

Ferraiolo, "Diffusion from a steady source of

short duration," Atmospheric Environment, vol.

16, pp. 2785-2790, 1982.

[14] F. Pasquill and F. B. Smith, Atmospheric Diffu­

sion. Ellis Horwood Limited, 1983.

[15] R. E. Wengert, "A simple automatic derivative

evaluation program," Comm. A Ci\1, vol. 7, pp.

463-464, 1964.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

