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Abstract

An essential step in the analysis of agent-based simulation is sensitivity analysis, which

namely examines the dependency of parameter values on simulation results. Although a

number of approaches have been proposed for sensitivity analysis, they still have limitations

in exhaustivity and interpretability. In this study, we propose a novel methodology for sensi-

tivity analysis of agent-based simulation, MASSIVE (Massively parallel Agent-based Simu-

lations and Subsequent Interactive Visualization-based Exploration). MASSIVE takes a

unique paradigm, which is completely different from those of sensitivity analysis methods

developed so far, By combining massively parallel computation and interactive data visuali-

zation, MASSIVE enables us to inspect a broad parameter space intuitively. We demon-

strated the utility of MASSIVE by its application to cancer evolution simulation, which

successfully identified conditions that generate heterogeneous tumors. We believe that our

approach would be a de facto standard for sensitivity analysis of agent-based simulation in

an era of evergrowing computational technology. All the results form our MASSIVE analysis

are available at https://www.hgc.jp/~niiyan/massive.

Introduction

Agent-based simulation is a useful tool to address questions regarding real-world phenomena

and mechanisms and widely employed in the natural sciences and engineering disciplines as

well as in the social sciences [1, 2]. An agent-based model assumes autonomous system com-

ponents called agents and defines rules that specify behaviors of the agents as well as interac-

tions between the agents, and between the agents and environments. One of the major

difficulties in agent-based modeling is determining the values of system parameters, which

controls the agent behaviors and interactions. Except for simple physical systems where precise

values of the system’s parameters are available, it is often the case that estimated parameter val-

ues are used for simulation. In such cases, sensitivity analysis is mandatory; namely, we need

to perform simulations with various parameter settings to confirm the robustness of the
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conclusion that was obtained based on the estimated parameter values. Moreover, sensitivity

analysis could provide insights into the modeled system as well as identify parameters that are

critical for the system dynamics.

So far, a number of approaches have been proposed for sensitivity analysis of agent-based

simulation [3]. For example, one-factor-at-a-time (OFAT) sensitivity analysis selects a base

parameter setting and varies a target parameter at a time while keeping all other parameters

fixed [4]. We then plot the relationship between the target parameter and a summary statistic

to examine the dependency of the summary statistic on the target parameter. However, since

an agent-based model generally involves nonlinear interactions between agents and enviro-

ments, it is desirable to examine multiple combinations of parameters in sensitivity analysis.

Global sensitivity analysis aims to address this point by sampling a summary statistic over a

wide parameter space involving multiple parameters [5]. The sampled summary statistic is fit

to parameters by in a similar fashion as regular regression is done, for instance by means of

ordinary least squares. Otherwise, we employ Sobol’s method, which estimates the contribu-

tions of different combinations of parameters to the variance of the summary statistic while

making the assumption that all parameters are independent [6]. However, these global sensi-

tivity analyses still appears to be insufficient to comprehensively grasp how the parameters that

were judged to be influential control behaviors of the agent model.

This paper proposed a new approach to sensitivity analysis termed MASSIVE (Massively

parallel Agent-based Simulations and Subsequent Interactive Visualization-based Explora-

tion). MASSIVE conquers the limitation in existing methods by taking advantage of two cur-

rently rising technologies: massively parallel computation and interactive data visualization

(Fig 1). MASSIVE employs a full factorial design involving a multiple number of parameters

(i.e, test every combination of candidate values of the multiple parameters), which could

broadly cover a target parameter space but needs a huge computational cost. To deal with this

problem, we utilized a supercomputer, in which agent-based simulations with different

Fig 1. A flow chart of MASSIVE.Agent-based simulations and the following-post processing step are performed in
parallel by employing a supercomputer. Results are then collected and subjected to interactive data visualization.

https://doi.org/10.1371/journal.pone.0210678.g001
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parameter settings and the following post-processing step of simulation results are performed

in parallel. The massively parallel simulations generate massive results, which then poses a

problem for interpretation. This problem was solved by developing a web-based tool that

interactively visualizes not only values of multiple summary statistics but also results from sim-

ulations with each parameter setting. MASSIVE realizes sensitivity analysis targeting four

parameters at once, and we show the utility by analyzing an agent-based model of cancer

evolution.

Methods

Agent-based simulation of cancer evolution

Cancer is an evolutionary disease, where a normal cell transforms to a malignant cell popula-

tion by repeating steps of driver mutation acquisition and subsequent natural selection.

Recent genomic studies have demonstrated that multiple cell populations that have different

genomes are generated during the tumor evolution. This phenomenon is called intratumor

heterogeneity and we can use agent-based simulation for understanding mechanisms that

generate intratumor heterogeneity [7, 8]. As an example of the application of MASSIVE, we

analyze an agent-based model of cancer evolution, where an agent corresponds to each cell

in a tumor (Fig 2). The simulation starts from one cell without mutations. In a unit time, a

cell divides into two daughter cells with a probability g (we assume the cell is immortalized

and just divides without dying). In each cell division, each of the two daughter cells acquires

k* Pois(m/2) mutations. We assumed mutations acquired by different division events

occur at different genomic positions and each cell can accumulate Nmutations at maximum.

In this study, we assumed that all mutations are driver mutations which increase the cell divi-

sion rate. When the cell acquires mutations, the cell division rate increases f fold per muta-

tion. In addition to the effect of mutations, we also consider an effect of spatial resource

limitation. The simulation is performed on a one-dimensional lattice with free-ends, where a

cell divides while pushing out neighboring cells (namely, the model can be regarded as a cel-

lular automaton model). We assumed a resource bias; i.e., resources that are needed for cell

division are provided from both the ends of the one-dimensional lattice and are subject to

exponential decay. In the presence of the resource bias, the cell division probability for the

cell that has n (= ∑k) mutations and is positioned at the i-th site in a one-dimensional popu-

lation composed of p cells (1� i� p) is defined as follows: g = g0 � f
n � (2−(i−1)/d + 2−(p−i)/d)/2

Fig 2. An agent-based model of cancer evolution. (A) A flowchart of the simulation. In each time step, a cell divides into two daughter cells with a
probability g. In each cell division, each of the two daughter cells acquires k* Pois(m/2) mutations. (B) A growth rule on a one-dimensional lattice.
Cell divides while pushing out neighboring cells on a one-dimensional lattice with free-ends. Resources are provided from both the ends and subject to
exponential decays with a half-distance parameter d.

https://doi.org/10.1371/journal.pone.0210678.g002
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(where g0 is a base division probability and d is a half-distance of the exponential decay). In

each time step, every cell is subject to a cell division trial, which is repeated until population

size p reaches at P or time reaches at T. The variables and parameters used in the model are

listed listed in Tables 1 and 2, respectively.

Post-processing of simulation results

A result from the cancer evolution simulation was evaluated by visualizing the mutation profile

and calculating summary statistics from the mutation profile. From a simulated tumor, we

randomly sampled 1000 cells and obtained their mutation profiles, which are represented as a

binary matrix whose row and column index mutations and cells, respectively. The mutation

profile matrix was visualized as a heat map in Fig 3, where columns were ordered based on the

original cell positions and rows were reordered by hierarchical clustering. We attached colored

bands indicating mutation types and the distribution of the resources on the left and top of the

heat map, respectively. For mutation type, we defined mutations whose frequency is more

than 0.95 as clonal mutations and the others as subclonal mutations. To quantitatively

evaluate the simulation result, we also calculated a number of summary statistics from the

mutation matrix. We obtained several statistics for evaluating intratumor heterogeneity as

well as other basic statistics (Table 3). For example, after removing mutations whose frequency

less than 0.1 or 0.05, proportions of different subclones (cell subpopulations with different

mutations) were obtained and Shannon index H was calculated by the following formula:

H ¼ �
Pn

i¼1
pi logðpiÞ, where n is the total number of the different subclones and pi is the pro-

portion of each subclone. Simpson index D ¼ 1�
Pn

i¼1
p2i was similarly calculated for each of

the two mutation frequency cutoffs.

Massively parallel simulation

To cover a sufficiently large parameter space in the sensitivity analysis, we employed a super-

computer, SHIROKANE4 (at Human Genome Center, Institute of Medical Science,

Table 1. Variables.

symbol description

k number of mutations obtained in a cell division

n number of mutations accumulated in a cell

p population size

g cell division probability

i coordinate on the one-dimensional lattice

https://doi.org/10.1371/journal.pone.0210678.t001

Table 2. Parameters.

symbol description value

m mutation rate {10−1, 10−2, 10−3}

N maximum number of mutations accumulated in a cell 3

f cell division probability increase per mutation {100.1, 100.2, 100.3, � � �, 101.0}

g0 base cell division probability 10−4

d half-distance of the exponential resource decay {101, 102, 103, 104, 105}

P maximum population size {103, 104, 105}

T maximum number of time steps 106

https://doi.org/10.1371/journal.pone.0210678.t002

A novel approach for sensitivity analysis of agent-based simulation

PLOSONE | https://doi.org/10.1371/journal.pone.0210678 March 5, 2019 4 / 10

https://doi.org/10.1371/journal.pone.0210678.t001
https://doi.org/10.1371/journal.pone.0210678.t002
https://doi.org/10.1371/journal.pone.0210678


University of Tokyo). The simulation and post-processing steps for different parameter set-

tings were parallelized on Univa Grid Engine. We employed a full factorial design involving

four parameters,m, f, P and d, while other parameters were fixed. The values of all parameters

are provided in Table 2. For convenience, we converted the parameters as follows:m0 =

−log10(m), f 0 = log10(f ), p
0 = log10(P) and d

0 = log10(d). We then tested every combination of

m0 2 {1, 2, 3}, f 0 2 {0.1, 0.2, 0.3, � � �, 1.0}, p0 2 {3, 4, 5} and d0 2 {1, 2, 3, 4, 5}, respectively. For

each parameter setting, we performed 50 Monte Carlo trials, which leads to 3 × 10 × 3 × 5 ×

Fig 3. Visualization of the mutation profile matrix. From a simulated tumor, we randomly sampled 1000 cells and
their mutation profile is presented as a mutation profile matrix. Columns corresponding to cells were ordered based
on the original cell positions and rows corresponding to mutation were reordered by hierarchical clustering. We
attached colored bands indicating mutation types and the distribution of the resources on the left and top of the heat
map, respectively. For mutation type, we define mutations whose frequency is more than 0.95 as clonal mutations and
the others as subclonal mutations.

https://doi.org/10.1371/journal.pone.0210678.g003

Table 3. Summary statistics.

name description

mutation count number of all mutations

clonal mutation count number of clonal mutations

subclonal mutation count number of subclonal mutations

clonal mutation proportion proportion of clonal mutation count to mutation count

subclonal mutation proportion proportion of subclonal mutation count to mutation count

Shannon index 0.1 Shannon index calculated with a mutation frequency cutoff of 0.1

Shannon index 0.05 Shannon index calculated with a mutation frequency cutoff of 0.05

Simpson index 0.1 Simpson index calculated with a mutation frequency cutoff of 0.1

Simpson index 0.05 Simpson index calculated with a mutation frequency cutoff of 0.05

time number of time steps when simulation is finished

population size number of cells when simulation is finished

https://doi.org/10.1371/journal.pone.0210678.t003
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50 = 22500 simulations in total. On average, each simulation took about 1046 CPU core sec-

onds. Therefore, our study needed 1046 × 22500 = 23528298 CPU core seconds� 273 CPU

core days in total. However, by parallelizing thousands of simulations, they finished within

several hours.

Interactive data visualization

To analyze massive results from massively parallel simulations, we built a new visualization

tool termed the MASSIVE viewer. After all the simulations and post-processing steps were fin-

ished, the mean of each summary statistic was calculated over 50 Monte Carlo trials for each

parameter setting. The data were then prepared as an input of MASSIVE viewer on the web

server, together with image data of mutation profile matrix heat maps. The MASSIVE viewer

reads the inputs and interactively visualizes them on web browser utilizing a javascript library,

D3.js [9]. A concept central to the MASSIVE viewer is the multilayer heat map, which was

introduced in our previous study [10]. The multilayer heat map visualizes slice matrices of a

fourth-order tensor T(i, j, k, l). A slice matrix contains tensor elements which have specified

indices in two of the four orders; namely, when a colon denotes the set of all indices for a par-

ticular order, slice matrices are represented as: T(:, :, k, l), T(:, j, :, l), T(:, j, k, :) . . . etc. (we

referred to them as i-j, i-k, i-l slice matrices etc.) Since we employed a full factorial design

involving four parameters in massively parallel simulations, each of the averaged summary sta-

tistics is represented as a fourth-order summary statistics tensor, S(x, y, z, w), where x, y, z and

w index values tested for each type of the four parameters.

The MASSIVE viewer has two different modes of visualization: the focused and compara-

tive views. The focused view mode is useful for inspecting the parameter sensitivity of one

summary statistic in the whole parameter space tested. The page of the focused view mode is

divided into three parts: control, heat map and simulation instance panels (Fig 4). The top is

the control panel, which specifies the type of summary statistic to be visualized and which

parameters are indexed by each of x, y, z and w. Under the control panel, the heat map panel is

located. Heat maps at the left part of the heat map panel present all x-y slice matrices. each cell

in the heat maps corresponds to each of the tested parameter sets. At the right part of the heat

map panel, the x-y slice matrix under the mouse cursor at the left part is zoomed out. We can

click to highlight a heat map at the left part so that the highlighted one is fixedly displayed at

the right part. Under the heat map panel, a simulation instance panel displays 5 mutation pro-

files together with values of parameters and summary statistics. The mutation profiles were

produced from 5 of the 50 Monte Carlo trials with the parameter set corresponding to the heat

map cell under the mouse cursor at the heat map panel. We can fixedly display the mutation

profiles by clicking to highlight a heat map cell at the right part of the heat map panel.

The comparative view mode is used for comparing each summary statistic. Similarly to the

focused mode, the page of the comparative view mode consists of control, heat map and simu-

lation instance panels (Fig 5). In the heat map panel, we have three heat maps presenting three

x-y slice matrices of common z and w indices for three summary statistics. In addition to the

parameter and summary statistics setting employed in the focused mode, the control panel in

the comparative mode specifies the parameter values tied with the z and w indices; i.e., we can

specify the parameter values that define the third and fourth order indices of the displayed x-y

slice matrices. The control panel also specifies either of the two scale types: the absolute or

relative scales. If we select the relative scale, one color scale is used for each x-y slice matrix;

namely, the color scale of each of the three heat maps is prepared for each time the values of

the parameters associated with z and w are changed. If we select the absolute scale, the color

scale is unchanged; namely, one color scale is prepared for all elements of each summary

A novel approach for sensitivity analysis of agent-based simulation
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statistics tensor and commonly used for all x-y slice matrices from the tensor. Similarly to the

focused mode, the simulation instance panel displays mutation profiles, which we can interac-

tively explore across the tested parameter space by hovering over and clicking the heat map

cells in the heat map panels.

Results

In this section, we explain the utility of MASSIVE using the example of the agent-based simu-

lation of cancer evolution (All the results form our MASSIVE analysis are available at https://

www.hgc.jp/~niiyan/massive or https://doi.org/10.6084/m9.figshare.7435250). We examined

the behavior of the simulation model with different values of four parameters, f 0, d0,m0 and p0.

A larger f 0 means a stronger mutation effect, a larger d0 means a weaker resource bias, a larger

p0 means a larger maximum population size, and a largerm0 means a smaller mutation rate.

First, we examined different types of statistics for quantifying intratumor heterogeneity. As

shown by the comparative view mode page (we ask reader to visit the following adress and

explore the result interactively: https://www.hgc.jp/~niiyan/massive/result1), three different

statistics, Shannon index 0.1, Shannon index 0.05 and Simpson index 0.1,
shows similar profiles across the whole parameter space. Simpson index 0.05 also shows

a similar pattern. We can confirm that these heterogeneity statistics well represent actual het-

erogeneity by checking mutation profiles in the simulation instance panel. Based on these

observations, we hereafter focused on Shannon index 0.1 as a representative statistic for

a measure of intratumor heterogeneity.

Fig 4. Focused view mode of the MASSIVE viewer. The page of the focused view mode consists of control, heat map and simulation instance panels. The control panel
specifies visualization settings, the heat map panels presents heat maps for a selected statistic, and the simulation instance panel presents 5 mutation profiles from the
parameter set specified by the position of the mouse cursor on the heat maps.

https://doi.org/10.1371/journal.pone.0210678.g004
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As shown by the focused view mode page (https://www.hgc.jp/~niiyan/massive/result2),

the heterogeneity measure, Shannon index 0.1 is a complex function of f 0, d0,m0 and p0.

As expected, a decrease ofm0 and an increase of p0 generally lead to an increase of the heteroge-

neity measure; i.e., the heterogeneity is enhanced as the tumor grows and the mutation rate

increases. When we focus on a parameter plain of p0 = 5 andm0 = 1, less heterogeneity is

observed at high f 0 and high d0 (i.e., with strong mutations and with less resource bias). This

observation is interpretable as follows. When no resource bias and strong driver genes are

assumed, the clone acquiring the first driver mutation rapidly expands to serially obtain more

driver mutations, which leads to a homogeneous tumor. On the other hand, a resource bias

prompts generation of independent clones at both sides on the one-dimensional lattice, which

leads to a heterogeneous tumor. With weak driver genes, before the clone that acquired the

first driver mutation becomes dominant, other clones that acquired different mutations

expand, which leads to a heterogeneous tumor even without a resource bias. Collectively, our

exemplifying analysis successfully provided insights into heterogenous cancer evolution, dem-

onstrating the utility of the MASSIVE analysis.

Discussion

In this study, we introduced a novel methodology for sensitivity analysis of agent-based simu-

lation, MASSIVE. MASSIVE takes a unique paradigm, which is completely different from

those of sensitivity analysis methods developed so far; by combining massively parallel compu-

tation and interactive data visualization, MASSIVE enables us to inspect a broad parameter

Fig 5. Comparative view mode of the MASSIVE viewer. Similarly to the focused mode, the page of the comparative view mode consists of control, heat map and
simulation instance panels. Differently from the focused mode, the heat map panels present heat maps for three selected statistics.

https://doi.org/10.1371/journal.pone.0210678.g005
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space intuitively. We demonstrated the utility of MASSIVE by its application to cancer evolu-

tion simulation, which successfully identified conditions that generate heterogeneous tumors.

However, the current version of MASSIVE still has a major limitation; it targets at most a

four-dimensional parameter space. Many if not most agent-based models are more complex

than the model studied here, and often more than 4 parameters need to be included in sensitiv-

ity analysis. Therefore, to make our approach more applicable to a broad array of agent-based

simulations, we must extend it to a higher dimensional parameter space. To realize such an

extension, methodological improvements are necessary for both massively parallel computa-

tion and interactive data visualization. In addition to the hardware advancement, it is neces-

sary to develop an approach for efficient sampling of the huge parameter space in order to

enable the massively parallel simulation that can overcome the curse of dimensionality. Results

from simulation trials in the higher dimensional space are also not easily interpretable even by

employing interactive data visualization. To conquer this limitation, the combination with

dimension reduction techniques such as principal component analysis and autoencoder [11]

might be useful.

Parameter estimation by comparing simulation trials with real data is also an essential step

in simulation analysis. both need a large number of simulation trials and it is conceivable that

results of parameter estimation are performed simultaneously with sensitivity analysis. In our

framework, such a fusion of sensitivity analysis and parameter estimation can be easily imple-

mented; the parameter subspace that generates simulation results similar to the real data can

be presented in the visualization step. Especially, Approximate Bayesian Computation (ABC)

is recently emerging as a popular tool for parameter estimation [12, 13]. Although ABC

requires a large number of simulations trials compared to conventional parameter estimation

methods, it can evaluate the confidence of estimated parameter values by computing the poste-

rior distributions of the parameter values. These features of ABC also appear to have a strong

affinity with our framework.

Collectively, this work proposes a novel approach for sensitive analysis of agent-based simu-

lation based on the combination of massively parallel computation and interactive data visuali-

zation. We believe that our approach is a de facto standard for sensitivity analysis of agent-

based simulation in an era of evergrowing computational technology.
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