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Abstract: This paper presents the alternative training strategies we tested for an Artificial Neural
Network (ANN) designed to detect JWH synthetic cannabinoids. In order to increase the model
performance in terms of output sensitivity, we used the Neural Designer data science and machine
learning platform combined with the programming language Python. We performed a comparative
analysis of several optimization algorithms, error parameters and regularization methods. Finally,
we performed a new goodness-of-fit analysis between the testing samples in the data set and the
corresponding ANN outputs in order to investigate their sensitivity. The effectiveness of the new
methods combined with the optimization algorithms is discussed.
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1. Introduction

Artificial neural networks (ANN) contain a set of parameters that can be adjusted to
perform different tasks. These structures have universal approximation properties, which
means that they can approximate any function in any size and, generally, up to a desired
degree of accuracy [1–4].

In this article, we present a series of deep learning training and optimization strategies
that have been applied to improve the performance of an ANN identifying JWH-synthetic-
cannabinoid-class membership. In order to increase the system sensitivity, we trained and
optimized an initial model on four new architectures. For this purpose, we used the data
science and machine learning platform Neural Designer. The best version was implemented
in the Python 3.10 programming language for further development and improvement.

The classification efficiencies (output results) obtained for several combinations of
algorithms, error parameters and regularization methods were compared. The good fit
between the test samples and the corresponding ANN outputs was also analyzed. The
effectiveness of the methods was analyzed and is presented in detail.

2. Materials and Methods

The initial input database of 150 synthetic chemicals included JWH synthetic cannabi-
noids, others synthetic cannabinoids and other substances of abuse. These designer drugs
were divided into three classes referred to as “Class 1—JWH”, “Class 2—non-JWH Cannabi-
noids” and “Class 3—Others”. The group of positives contained 50 JWH synthetic cannabi-
noids, while the group of negatives included 100 compounds, i.e., 50 non-JWH cannabinoids
and 50 other substances of forensic interest [5].

We used the quantitative structure–activity relationship (QSAR) method to estimate
and predict the pharmacokinetics, drug-likeness and medicinal chemistry friendliness of
each input compound by calculating a number of 300 molecular descriptors in terms of
their physical and chemical properties, as well as 50 indices characterizing their chemical
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absorption, distribution, metabolism, excretion and toxicity activity (ADMET). The descrip-
tors were selected from three blocks, i.e., topological, 3D-MoRSE (molecule representation
of structure based on electron diffraction) and toxicity [6].

Only the first 150 most relevant descriptors were selected and used for the final com-
putational and modelling stage. Hence, the input database was a matrix consisting of
150 samples × 150 variables. The shape, feature and target types of the data set, includ-
ing the list of the computed and tested input molecular descriptors was presented in a
previously published article [7].

The data set was divided into three subsets of samples: training, selection and testing.
Hence, we used 90 training samples (60%), 30 selection samples (20%) and 30 testing
samples (20%). To discover redundancies between the input variables, we used a correlation
matrix, which represents a numerical value between −1 and 1 that expresses the strength
of the relationship between two variables [8]. The types of layers the most frequently used
in our classification model were the perceptron layer, the probabilistic layer and the scaling
and bounding layers. The objective of the selection was to find the best-performing network
architecture in terms of system sensitivity.

To avoid underfitting and overfitting, the neuron selection algorithm responsible for
finding the optimal number of neurons in the networks was the Growing neurons algo-
rithm [9]. The Neural Designer data science and machine learning platform was used to
generate the mathematical expression represented by ANNs in order to export and incor-
porate them into the programming language Python 3.10 in the so-called production mode.

Our general training strategy consisted of two different concepts, i.e., the loss index
and the optimization algorithms. The error was the essential term in the loss expression.
The most important errors that we estimated were the sum squared error, the mean squared
error, the root mean squared error, the normalized squared error and the Minkowski error.
We used the L1 and L2 regularization methods, which involve the sum of the absolute
values of all parameters and the square sum of all the parameters in the ANN. The loss
index was measured on the data set and could be represented as a hyper-surface with the
parameters as coordinates (see Figure 1) [10].
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Figure 1. Loss index viewed as a hyper-surface with parameters as coordinates.

In order to train the ANN, we generated a sequence of parameter vectors so that the
loss index was reduced at each iteration of the algorithm.

3. Results

Five different optimization algorithms were used and compared, each with a variety
of different calculation and storage requirements: gradient descent [11], conjugate gradi-
ent, quasi-Newton method, Levenberg-Marquardt algorithm [12] and adaptative linear
momentum [13].
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In order to scale the inputs, we calculated the following parameters: the minimum,
the maximum, the mean and the standard deviation (see Table 1). The ANN architecture
is presented in Figure 2 for version 1. The architectures of the following versions (2, 3
and 4) were also with one hidden layer perceptrons and had the same input and output
layers as version 1. On the other hand, their hidden layers contained three (version 2), one
(version 3) and six (version 4) nodes respectively.

Table 1. Values used for scaling the inputs for all ANN versions.

Input Minimum Maximum Mean Deviation Scaler

Topological 4.300000 7.900000 5.843330 0.828066 Mean St. Dev.
3D-MoRSE 2.000000 4.400000 3.054000 0.433594 Mean St. Dev.

ADMET 1.000000 6.900000 3.758670 1.764420 Mean St. Dev.
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Figure 2. Network architecture, version 1: scaling layer (yellow), perceptron layer (blue), probabilistic
layer (red).

We used the adaptive moment estimation (version 1), the Levenberg–Marquardt
(version 2), the gradient descent (version 3) and the conjugate gradient optimization
algorithms, as well as the growing neuron selection (all versions) method with the L1
(versions 2, 3 and 4) and L2 (version 1) regularization methods.

4. Discussion

The confusion matrices, calculated for each architecture and 30 testing samples, are
presented in Tables 2–5 and the error results are highlighted in Table 6. The activation
functions used were the hyperbolic tangent (version 1), the rectified linear (versions 2, 3
and 4) and Softmax (all versions).

Table 2. Confusion matrix for the analyzed ANN—version 1: 29 (96.7%) tested compounds were
correctly classified and 1 (3.3%) was misclassified.

Predicted
JWH

Predicted
Non-JWH Cannabinoids

Predicted
Others

Real JWH Cannabinoids 10 0 0
Real non-JWH Cannabinoids 0 7 0
Real Others 0 1 12
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Table 3. Confusion matrix for the analyzed ANN—version 2: 27 (90.0%) tested compounds were
correctly classified and 3 (10.0%) were misclassified.

Predicted
JWH

Predicted
Non-JWH Cannabinoids

Predicted
Others

Real JWH Cannabinoids 8 0 0
Real non-JWH Cannabinoids 0 9 1
Real Others 0 2 10

Table 4. Confusion matrix for the analyzed ANN—version 3: 26 (86.7%) tested compounds were
correctly classified and 4 (13.3%) were misclassified.

Predicted
JWH

Predicted
Non-JWH Cannabinoids

Predicted
Others

Real JWH Cannabinoids 8 0 0
Real Non-JWH Cannabinoids 0 9 1
Real Others 0 3 9

Table 5. Confusion matrix for the analyzed ANN—version 4: 27 (90.0%) tested compounds were
correctly classified and 3 (10.0%) were misclassified.

Predicted
JWH

Predicted
Non-JWH Cannabinoids

Predicted
Others

Real JWH Cannabinoids 8 0 0
Real non-JWH Cannabinoids 0 10 0
Real Others 0 3 9

Table 6. Data errors for the analyzed ANNs.

Root Mean Squared Error

Number of Nodes
in the Hidden Layer ANN Training

Set
Selection

Set
Testing

Set

1 Version 3 0.187558 0.276155 0.284885
3 Version 2 0.180618 0.276762 0.284408
4 Version 1 0.178430 0.241047 0.213058
6 Version 4 0.173380 0.268222 0.280003

In order to test and compare the performances of the analyzed ANNs, we used the
weighted average derived from the confusion matrix, i.e., the accuracy, the recall and the
F1 score (see Table 7) [14].

Table 7. Classification metrics for the target variables of each analyzed ANNs.

Weighted Average

Number of Nodes
in the Hidden Layer ANN Accuracy Recall F1 Score

1 Version 3 0.876667 0.866667 0.866667
3 Version 2 0.903030 0.900000 0.900207
4 Version 1 0.970833 0.966667 0.967111
6 Version 4 0.923077 0.900000 0.899379

5. Conclusions

In terms of the system performance, the results obtained for the four ANNs designed to
recognize the class identity of JWH synthetic cannabinoids lead to the following conclusions:

1. Accuracy [(true positives + true negatives)/total instances]:
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In comparison with the accuracy (93.3%) obtained for the initial ANN model presented
in a previous article, the ANN—amended version 1—generated a higher score (96.7%),
while the other three ANNs generated a lower score (86.7% for the amended version 3 and
90.0% for the amended versions 2 and 4).

2. Sensitivity, or true positive rate (true positives/positive instances):

All the ANN architectures (the initial ANN and its four amended versions), had an
exceptional sensitivity in detecting JWH synthetic cannabinoids (class I); all the tested
JWHs were recognized as such without exception, the rate of true positives (TP) being 100%
in all cases.

3. Specificity, or true negative rate (specificity = true negative/negative instances):

Compared to the specificity (90.0%) of the initial ANN model, one of the four new
architectures recorded a higher score (95.0% for the amended version 1); the other three
were characterized by a lower specificity (81.8% for amended version 3, 86.3% for amended
version 2 and 86.3% for amended version 4).

4. Error rate [accuracy = (false positives + false negatives)/total instances]:

While the initial ANN model was characterized by an error rate of 6.6%, its amended
version 1 recorded a better (lower) error rate (3.3%), while the other three ANNs recorded a
higher error rate (10.0% for amended version 2, 3 and 4).

Regarding the goodness-of-fit analysis, the best results were recorded for the ANN—
amended version 1 (99.97%), followed by the amended version 2 (99.94%), amended
version 3 (98.41%) and amended version 4 (99.04%). Hence, we may conclude that the best
performing ANN architecture was the one that included the following elements:

• Activation function: hyperbolic tangent, Softmax;
• Loss index: normalized squared error;
• Regularization: L2;
• Neuron selection: growing neurons;
• Inputs selection: growing inputs;
• Optimization algorithm: Adaptive Moment Estimation.

The results indicate that very good classification rates were obtained although the
data set was complex. We intend to continue this study by applying various metaheuristic
algorithms on these data sets and compare the results.
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