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(ABSTRACT) 

A coefficient sensitivity measure for state space recursive, finite wordlength, digital filters is devel-

oped and its relationship to the filter output quantization noise power is derived. The sensitivity 

measure is simply the sum of the Li norm of all first order partials of the system function with re-

spect to the system parameters; alternatively, the measure may be viewed as the output variance 

of the error system created by the inherent parameter quantization. Since the measure uses only 

the first order partials, it is a lower bound approximation to the output quantization noise power. 

During analysis, numerically unstable conditions may occur because ideal filter characteristics imply 

system poles which are almost on the unit circle in the z-plane; therefore, it is proposed to scale the 

radii of the pole and zero magnitudes. Thus, the scaled system has the same frequency information 

as the original system, but performs better numerically. The direct II form sensitivity, which is 

shown to be inversely proportional to the p;oduct of the system pole and zero distances, can be 

reduced by the judicious placement of added pole/zero cancellation pairs which increase the order 

of the system but do not change the system function. 
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1.0 Introduction 

Recently, much effort has been concentrated on the development of filters with low, or minimum, 

output quantization noise power. L. B. Jackson [11), M. Kawamata and T. Higuchi [15), V. 

Tavsanoglu and L. Thiele [23) and D. V. B. Rao [22] have all noted the relationship between co-

efficient sensitivity and output quantization noise power; they are directly related and the minimi-

zation of one implies the minimum of the other. Mullis and Roberts [19) and Hwang [10) 

developed, by different methods, the theoretical aspects of minimum noise filters as well as the 

practical computation of this optimal form. Further, recognizing that this optimal form has, in 

general, a full state space description, Mullis and Roberts developed a block-optimal form which 

is near optimal and has approximately 4n coefficients instead of the approximately n(n + 2) coeffi-

cients of the optimal form. The block-optimal form has sub-filters which have been cascaded or 

placed in parallel. 

Later, L. B. Jackson, A. G. Lindgren and Y. Kim [12] developed a set of design equations for op-

timal second-order filter sections. Easily computed, this section-optimal filter type is identical to 

the block-optimal form for parallel sub-filters, while for cascaded sub-filters the section-optimal 

form is less optimal than the block-optimal form. However, its performance is still quite good in 

most cases. Continuing this process, B. W. Bomar and J.C. Hung [2] and B. W. Bomar [3,4) have 

developed near optimal second-order structures with constraints placed on the coefficients to further 
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reduce the total number of coefficients in the system description. These constraints force some of 

the coefficients to be structural ones and zeros, while others are forced to be exact powers of two 

(thus making multiplications equivalent to shifts of the binary point) . 

From an alternative viewpoint, several researchers have devised design methods for filters using 

structures with known low sensitivity properties. Among these are the wave digital filters of 

Fettweis [8] and their special case, the wave lattice digital filters [9). Constantinides [5,6) noted the 

applicability of using all-pass functions to implement these filter types. Then, realizing the low 

pass-band sensitivity of these forms, P. P. Vaidyanathan, S. K. Mitra and Y. Neuvo [24] developed 

a synthesis approach suitable for the design of low-pass digital filters which have low output 

quantization noise power in the filter pass-band; however, the stop-band sensitivity may be ex-

tremely poor. This form requires about the same number of parameters as the direct II state space 

form but has lower output quantization noise power, although the noise power is not optimal. 

Clearly, much interest exists in the implementation of reduced sensitivity filters with the constraints 

that this lower sensitivity filter not have too many added coefficients and that it is reasonably easy 

to compute. This thesis looks at the concept of increasing the order of the system for the purpose 

of reducing the sensitivity of the filter without changing the input/output relationship of the filter 

(i.e. adding pole/zero cancellation pairs). This freedom leads to a design methodology for produc-

ing low sensitivity filters for low-pass, high-pass, band-pass and band-stop functions consisting of , 

the following steps: 

1. Determine the required filter specifications. 

2. Find the proper low-pass prototype filter specifications with the constraint that the band-width 

of the low-pass prototype be the band-width of the desired filter. 

3. Find the location of the pole/zero cancellation pair(s) for minimum sensitivity. 

4. Frequency translate the low-pass prototype filter to the desired filter function. 
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Our design methodology is developed along the lines of the followin~ organization. In Chapter 2, 

the background and interpretation of the sensitivity measure is developed and then the method of 

its calculation is presented. Chapter 3 contains the description of several state space forms which 

are analyzed later. The relationship of pole and zero sensitivities to the sensitivity measure of direct 

II filter implementations is shown in Chapter 4, as well as how to use this knowledge to advantage 

with respect to low sensitivity designs for low-pass and high-pass filters . In Chapter 5, the effects 

of frequency transformations of low-pass filters to band-pass and band-stop filters are studied with 

an eye on sensitivity. We close with summarizing our conclusions and recommendations for further 

study. 
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2.0 The Sensitivity Calculation 

Since this work deals with roundoff noise of digital filters described in state space form, some nec-

essary background in the mathematics of state space is provided first. Next the sensitivity measure 

is described, and then the strong relationship between the sensitivity measure and the filter output 

quantization noise power is shown. Two methods for calculating estimates of the output 

quantization noise power are derived. Finally the numerical algorithms required in computing both 

the filter sensitivity measure and the filter output quantization noise power are described; the asso-

ciated numerical problems are discussed and some solutions to reduce their effect are proposed. 

2.1 The State Space Filter Description 

As is well known, a digital filter with impulse response h,, and rational transfer function H(z) can 

be described in the state space form: 

(2.1.1) 

(2.1.2) 
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where xis the state vector, u is the input and y is the output. Note that A is an (mm) matrix, B 

is an (nxl) vector, C is a (lxn) vector and dis a scalar. Taking the z transform of (2.1.1) yields 

zX(z) - zx(O) = AX(z) + BU(z) (2.1.3) 

Rearranging terms gives 

(2.1.4) 

For causal systems initially at rest, x(O) is O and (2.1.4) becomes 

(2.1.5) 

And substituting equation (2.1.5) into the z transform of (2.1.2) yields 

Y(z) = [C(zl - A)- 1 B + d]U(z) (2.1.6) 

and thus, 

H(z) = Y(z) = C(zl - A)- 1B + d 
U(z) · 

(2.1. 7) 

It is well known that the state space representation {A, B, C, d} is not unique. This property can 

be seen by defining a new state vector, xk = r-1xh where T is any nonsingular (nxn) matrix. 

Substitution into equations (2.1.1) and (2.1.2) yields 

(2.1.8) 

(2.1.9) 

which reduces to 

(2.1.10) 
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(2.1.11) 

with the algebraically equivalent state space description {T- 1AT, r- 1B, CT, d} . 

2.2 The Sensitivity Measure 

Two different interpretations, one deterministic and the other probabilistic, exist for determining the 

sensitivity measure. In the deterministic view, the classic linearization procedure is used to ap-

proximate the non-linear quantization effects. In the probabilistic view, the non-linear quantization 

effects are modeled by injected noise sources. Both of these interpretations have merit and since 

they both generate the same final sensitivity measure, they lend credence to each other. 

First, we examme the deterministic case. The filter H(z) is a function of the parameter set 

y = [y1, y2, •• • , y1), where both I and y depend on the particular implementation used. The set y is 

the quantization of the set Yoo, which is the set of ideal coefficients. If we expand the filter using a 

Taylor series around the ideal filter, the actual filter H(z) which is implemented can be represented, 

as in Figure 1 on page 7, by the parallel combination of the ideal transfer function H00 (z) described 

by y00 and the error or stray transfer function H,iray(z) . 

Considering only the first-order terms by truncating the higher order terms of H,1ray(z) (i.e. 

linearizing around the ideal transfer function) gives 

(2.2.1) 
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Figure t. The Linearized System 

where 

(2.2.2) 

The Li norm, as described first by V. Tavsanoglu and L. Thiele [23] and later by Rao [22], yields 

a sensitivity measure; the square of the Li norm of the error (stray filter) is given by1 

(2.2.3) 

From the probabilistic viewpoint, the exact nature of the quantization effects is uncertain, which 

leads to the statistical model of Figure 2 on page 8. Note that the quantized branch is modeled 

as the ideal branch with a quantization noise term added. This added quantization noise is such 

1 Note that in this, and all other integrations in this work, J denotes contour integration along the unit circle 
of the z-plane in the counterclockwise direction. 
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Figure 2. The Probabilistic Model 

that for the same input signal both branch models have the same output signal. The quantization 

noise terms are modeled using the following standard assumptions [21]: 

1. The sequence {oy;.,,} is a white noise process. 

2. The error sequences are uncorrelated with the other error sequences. 

3. The error sequences are uncorrelated with the input vn. 

4. The probability density function of the error process is uniform over the range of quantization 

error. 

These assumptions lead to a linear probabilistic model for coefficient quantization. Heuristically, 

the model is valid when the input signal is sufficiently complex and the quantization steps are suf-

ficiently small so that the amplitude of the input signal is likely to traverse many quantization levels 
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from sample to sample. This model is supported empirically (21], where speech signals quantized 

to as low as eight bits exhibited the properties of the above assumptions. 

The use of the above probabilistic model leads to the following state space descriptions for the effect 

of quantizing single parameter branches: 

(2.2.4a) 

(2.2.4b) 

(2.2.4c) 

where e; is the unit length vector with a 1 in the ith position and O's elsewhere. Note that assump-

tions 2 and 3 above allow the separation of the errors as described in equations (2.2.4). Clearly, the 

coefficient quantization errors in the C vector (equation (2.2.4a)) are propagated through the system 

as 

oc-e!(zl - A) - 1 B = oc- aH(z) 
I I I aci (2.2.5) 

(see equation (2.2.12)) while the coefficient quantization errors in the B vector (equation (2.2.4b)) 

are propagated through the system as 

(2.2.6) 

(see equation (2.2.11)). To separate the coefficient quantization errors in the A matrix, we use the 

Sherman-Morrison formula (25] 

Thus the output error is given by 
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By the assumptions on the quantization, the denominator is very close to one; thus the error term 

is approximately given by 

(2.2.7) 

(see equation (2.2.13)). Thus, we finally can describe the system as in Figure 3 on page 11. Taking 

the mean square value of the error ( output noise) terms gives 

(2.2.8) 

where o-; is the noise variance of a single quantizer of the system. Since the quantization assumed 

is rounding, E[8y;] = 0 and the variance is given by 

(2.2.9) 

where bis the coefficient wordlength in bits. This probabilistic criterion has been used by several 

researchers to quantify the transfer function degradation caused by finite wordlength effects. Noting 

the similarity between equations (2.2.3) and (2.2.8), Rao (22] defined the L,_ norm sensitivity 

measure S2 as 

(2.2.10) 

where the y, are the non-structural coefficients (i.e. the coefficients which are '=p O or '=f ± 1 ) of the 

{A, B, C} state space description. 
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Figure 3. The Probabilistic System 

The necessary partial derivatives are now determined. Partial derivatives, with respect to b; and C;, 

of H(z) in equation (2.1. 7) directly lead to the first order sensitivity functions: 

8H(z) = C(zl - A) - t e1 
8b1 

8H(z) ;, ef (zl - A) - 1 B 
aci 

(2.2.11) 

(2.2.12) 

Somewhat more difficult to determine are the sensitivity functions for the coefficients of the A 

matrix. Using the mathematical identity 
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gives 

or, 

which is simply, 

8H(z) = 8H(z) 8H(z) 
aaii 8b1 ac1 

(2.2.13) 

Notice that these sensitivity functions are rational functions with the same poles as the original 

transfer function, H(z); thus, the unit circle is in the region of convergence of the integrand. 

The only difference between the sensitivity measure of Tavsanoglu and Thiele [23] and that of Rao 

(22] is that the former uses the product of the norms when determining the sensitivity of the coef-

ficients of the A matrix (see equation (2.2.13)) while the latter calculates the norm of the product. 

Both use finite sum approximations of infinite series to evaluate these sensitivities. As described 

later in this chapter, an exact, closed form solution to the necessary integrations is available, thus 

the use of norm of the product (i.e. the use of the measure given by Rao) since this is an exact 

evaluation, whereas the product of the norms by the Schwarz inequality yields only an upper 

bound. This sensitivity measure is an indication of the frequency response deviation caused by 

small changes in the system coefficients, i.e. by coefficient quantization. 
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For further justification of using the S2 measure as an indication of output quantization noise 

power, L. B. Jackson [ 11] has derived roundoff noise bounds from these coefficient sensitivities. 

Of special interest is the lower bound 

(2.2.14) 

where cr; is the filter output quantization noise variance. That S2 is a lower bound for cr: is also 

evident from Figure l on page 7, remembering that S2 is the output power of a truncated form of 

the stray transfer function. Calculating the output variance of H,tray(z) (with all the terms present) 

gives an infinite sum of auto-covariance terms because all the cross terms go to zero under the as-

sumption that the quantization noise sources are statistically independent from each other and the 

input signal source. Remember that S2 is only one of these auto-covariances, although it will be 

the largest because of the order. The lower bound of equation (2.2.14) was shown empirically by 

Jackson to be a rather tight bound; thus S2 is closely related to the output noise power ( data is 

presented later in Chapter 4 to confirm the boundedness) . Since one number, i.e. the coefficient 

sensitivity measure S2, describes the filter quantization noise power, the problem of identifying low 

roundoff noise filters is made conceptually easy. 

2.3 The Roundoff Noise Power Calculation 

For completeness, it is necessary to compute an estimate for the roundoff noise power. This cal-

culation is tedious, but the results do corroborate the S2 measure (as seen in equation (2.2.14)). 

Hence the calculation of the roundoff noise power is important for verification purposes. Note that 

we are calculating the true output noise variance of the error transfer function, H,1ray(z), which was 

described in the previous section. 
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2.3.1 The Error State Space Description 

Under finite wordlength conditions, the elements of A, B and C, as well as the scalar d, are con-

strained and the corresponding state space representation becomes 

(2.3.1.1) 

(2.3.1.2) 

. 
where· denotes a quantized entity. Thus the error, e1c = Y1c - Y1c, is the difference between the ideal 

(infinite wordlength) output Y1c and the quantized (finite wordlength) output Y1c• 

The error state space filter can be constructed as follows: 

A A/\ A 

ek = Yk - Yk = Cxk - Cxk + (d - d)uk 

or, 

(2.3.1.3) 

with a corresponding system equation: 

(2.3.1.4) 

Consequently, the error transfer function H,(z) is given by 

(2.3.1.5) 

Now the output error variance is 
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cr2 = _l_ JH (z)H (z -1) dz e 2Ttj e e z (2.3.1.6) 

. 
Clearly, the quantizations which occur when forming A, B, C and din equation (2.3.1.5) depend 

on the form of the state space realization (i.e. on the form of the A, B, and C matrices). Further, 

the quantizations determine the exact form of H,(z) . Thus, the state space realization affects er; in 

equation (2.3.1.6) and we expect to be able to classify filter realizations which minimize the output 

noise power. 

2.3.2 Block Diagram View of Output Noise 

. 
Alternatively, we may view the output error as the difference in output of H(z) and H(z) when 

driven by the same input (see Figure 4 on page 16). The output noise, E{el} = er;, can be readily 

found as follows: 

or, 

CY2 = CY 2+ CY .2_ 2cr • 
e Y Y YY (2.3.2.1) 

This computation is easily performed as follows: 

(2.3.2.2) 

Thus, er; can alternatively be computed using the cross-correlation terms cry; together with the two 

auto-correlation terms cry2 and er;~ 
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Figure 4. The Error System Block Diagram 

2.4 Computing the Sensitivity Measure and Roundoff 

Noise 

The calculations of both S2 and er: require the following two basic steps: 

1. Detennining the necessary transfer functions . 

2. Calculating the variance and cross-covariance terms. 
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2.4.1 The Subroutine TRAN 

The routine for calculating the necessary transfer functions is based on code developed by James 

Melsa (17) as the routine STVARFDBK. The routines were structured, updated to FORTRAN77 

and adapted for the sole use of finding the transfer function of a given state space input--the A 

matrix, B vector and C vector (Melsa's routine calculates optimal feedback for state variable con-

trollers). The routine uses a similarity transformation to place the state space input into the direct 

II form, i.e. 

and 

0 

0 0 

0 0 

0 

0 0 0 1 

-1 t T B = (0, 0, ... , 0, 1] 

CT = (0, ... , 0, Cm, Cm - 1, •• • , ci] 

In this form, the transfer function coefficients are directly equal to the difference equation coeffi-

cients, giving the transfer function 

- 1 -2 -m 
C1Z + C2Z + ••• + CmZ H(z) = ----_-1 _____ 2 _______ n 

1 + a1 z + a2z + .. · + anz 
m n. 
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The transformation matrix T is generated in two steps. The first is to determine the characteristic 

polynomial of the A matrix, i.e. the transfer function denominator coefficients. The second is a 

recursive formulation of the form: 

i = 1,2, ... ,n - l 

Then the transformation matrix is 

The transformation matrix can always be calculated as long as the A matrix is nonsingular. This 

method is amenable to implemention on the computer and yields numerically acceptable results for 

low system orders according to Melsa[ 17]. 

2.4.2 The Subroutine XCOV 

The complex integration necessary in computing the variance and cross-covariance terms is per-

formed using an algorithm for the calculation of ARMA cross-covariances presented by A. A. Beex 

[I]. Note that an auto-covariance is generated if G(z) = H(z) in Figure 5 on page 19. The algo-

rithm requires four steps: 

1. lmbed the polynomials 

The Sensitivity Calculation 

A(z) = A(z)C(z) 

C(z) = A(z)C(z) 

B(z) = B(z)C(z) 

D(z) = A(z)D(z) 
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Figure 5. The Cross-Covariance Generator System 

2. With A, use scalar Levinson recursion to generate the auto-covariance of the AR part, checking 

the magnitude of the reflection coefficients to determine system stability and thus covariance 

generation sensibility. 

3. From D and B determine F where 

where the d are the coefficients of D and the b and the fare similarly defined. 

4. Convolve the AR auto-covariance with/ to get the ARMA cross-covariance sequence R(n). 
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R(O) is the variance term for auto-covariances and thus is equal to the value of the required contour 

integral. This algorithm is simple to implement on the computer and yields adequate results except 

where noted in the following section. 

2.4.3 Practical Computation Notes 

During the course of implementing and using the above sensitivity measures, two numerical prob-

lems in the cross-covariance generator were noted: 

1. Poles close to the unit circle may migrate to unstable positions outside the unit circle as a result 

of creating the higher order (imbedded) polynomials in step 1 of the algorithm. 

2. Precision error in the last convolution of the algorithm (step 4) may actually produce a re-

sulting negative auto-covariance, especially when large numbers are alternately added and 

subtracted! 

The first problem may be eliminated by progressively increasing precision since the backward 

Levinson recursion of step 2 of the algorithm may generate large errors from small errors caused 

by the polynomial multiplication of step 1. This error was studied in detail by Cybenko [7]. The 

second problem is more difficult to anticipate and so, as discussed earlier, two methods to determine 

cr; were developed. The second method described by equation (2.3.2.2) appears to be numerically 

superior to that of equation (2.3.1.6), and so is generally preferred in calculating cr; . This superi-

ority was determined empirically from the example systems of Chapter 4. 

It should be noted that these problems show up specifically when designing and analyzing filters 

approximating ideal characteristics in which poles are located almost on the unit circle. In an effort 

to alleviate this characteristic, the idea of scaling down the radii of the poles and zeros of the filter 

was considered. The effect is to replace z- 1 with ,z- 1, where r is a scaling constant which is 1 . 
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This scaling leaves the original filter frequency information intact, but the scaled filter has much 

better numerical properties; the poles have some flexibility of movement without throwing the 

system into instability. The S2 measure decreases monotonically as the scaling factor decreases 

(shown in Chapter 4) and preserves the relationship of the sensitivity measure magnitudes between 

the various implementations of the system. Analysis of the scaled system is then equivalent to 

analysis of the original system, in a relative sense. 
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3.0 Description of State Space Filter 

Implementations 

A description of several state space filter implementations is necessary because within the class of 

state space descriptions it is possible to (almost) continuously vary the filter structure in order to 

minimize filter sensitivity without changing the system transfer function. Here, several forms of 

state space digital filters are considered: 

1. Direct II 

2. Parallel 

3. Cascade 

4. Optimal 

5. Block- and Section-Optimal 

6. Dual Generalized Hessenberg Representation 
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The three primary reasons for interest in these forms are commonality, ease of use and low coeffi-

cient sensitivity designs. 

3.1 The Direct II, Parallel and Cascade Forms 

The direct II, cascade and parallel forms are the most well known forms of recursive state space 

digital filter implementations because of their direct relationships to the system transfer function, 

either one to one, factored multiplicatively or factored additively. 

3.1.1 The Direct II Form 

The direct II form is the easiest canonic state space form to implement. Given the transfer function, 

the direct II state space coefficients are the a's and the b's, i.e. 

0 

0 

0 

1 

0 

0 
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0 

0 

0 

0 

0 

0 

0 

(3.1.1.1) 

(3.1.1.2) 
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(3.1.1.3) 

3.1.2 The Cascade and Parallel Forms 

The cascade form uses a product form of H(z), i.e. 

[n+t] -- -! -2 2 Yo·+ Yt ·Z + Y2·Z H(z) = A n l l l _ -I -2 1- t 1 - auz - a21z 
(3.1.2.1) 

where [ n ; 1 ] means the largest integer which is n ; 

fraction expansion of H(z), i.e. 

The parallel form uses a partial 

[ n; 1 J 
H(z) = L (3.1.2.2) 

i= I 

In each case, the second-order sections are usually implemented in the direct II form, with the 

corresponding state space description of the system being the combination of these second-order 

sections. While the parallel form second-order sections are completely decoupled from each other, 

the cascade form second-order sections are not usually decoupled at all, thereby making the total 

state space system formulation more complex. Both of these forms require knowledge of pole lo-

cations· and can be tedious and wasteful to compute when the digital filter is, as is often the case, 

not given in factored form. 
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I 
3.2 The Optimal Form 

Recently the optimal form has received much attention because it minimizes the quantization noise 

and thus the coefficient sensitivity, producing filters with more robust quantization noise power 

characteristics. Mullis and Roberts [ 19) have shown in their paper that the output quantization 

noise is proportional to the products of the diagonal elements of the controllability grammian ma-

trix, K, and the observability grammian matrix, W, that is, 

2 n 
creoc L kuwu 

I=! 
(3.2.1) 

The formulation of the transformation matrix required to convert the filter to its optimal form is 

then a matter of finding a transformation matrix T which will minimize this sum. One formulation 

for the construction of the transformation matrix T required to convert the direct II state space form 

to the optimal state space structure is presented by S. Y. Hwang [ 10). In the transformation, Hwang 

forces the controllability grammian diagonals, the ku, to be equal to 1. Thus, the problem has been 

reduced to that of minimizing 

n 
L Wu 

i=l 
(3.2.2) 

which is equivalent to minimizing the trace of W, tr(W). Alternatively, given the non-optimized 

system grammian W0 , find the transformation matrix T which minimizes 

(3.2.3) 

noting that K0 and W0 are the solutions of the following Lyapunov equations: 

(3.2.4) 

and 
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(3.2.5) 

K and W satisfy the equivalent Lyapunov equations of the transformed ( optimal) system. 

Interestingly, these Lyapunov equations need not be solved directly. The controllablility grammian, 

K, is just the covariance matrix given by [ 19) 

_ l JI aH(z) ,2 k-ld 
rk - -2 . a z z 

7tj Ci 
k = 0, ... , n - I (3.2.6) 

where i is any valid subscript (since K is a covariance matrix). The observability grammian, W, can 

be evaluated as [ 19) 

i s: n, j s: i (3.2.7) 

Note that since Wis symmetric, we need only calculate the limits of equation (3.2.7) to identify the 

complete matrix. Since the diagonal elements of W are variances and the off-diagonal elements are 

cross-covariances and K is a covariance matrix, both K and W can be solved for via a closed form 

solution by using the cross-covariance generator described in Chapter 2. This closed form solution 

is an important result, as the Lyapunov equations need not be directly solved (which is usually done 

by a finite sum approximation to an infinite sum). Thus, both K and W can be efficiently com-

puted. 

The construction requires the solution of three basic matrix equations [ 10): 

1. Solve for the orthogonal matrix R0, from 
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and noting that 

* I\. = 

where 

1 X X x-' 

X 1 X X 

X X 1 X 

X X X 1 

* A.t O O 0 

0 0 

0 0 

=K (3.2.8) 

(3.2.9) 

(3.2.10) 

and the 01 are the eigenvalues of Ko W0 • Hwang [ 10] provides an algorithm for detennining 

R0, which is difficult to compute. 

2. Solve for T0 where 

(3.2.11) 
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3. Finally, solve for the orthogonal matrix R1 where 

e1 o o o 
o e~ o o 

(3.2.12) 

o o o e~ 

The transformation matrix, T , is then given by 

(3.2.13) 

and the optimal state space structure obtained is {T- 1AT, T- 1B, CT} . Note that the grammians 

are transformed as {T- 1.KoT- 1, T 1W01} . The design trade-off is a resulting state space structure 

which has been completely filled with non-trivial coefficients, requiring the maximum number of 

multiplies and adds possible for the particular system order. This increased complexity may pro-

hibit the use of the optimal form in some cases, due to time and hardware constraints. 

3.3 The Block- and Section-Optimal Forms 

The generally increased complexity of the optimal form had already been recognized by Mullis and 

Roberts [19) and therefore they proposed a block-optimal form which is near optimal in the total 

system sense. This form is proposed to optimize the sub-sections of a parallel or cascade imple-

mentation of the original system. This form has approximately the same low roundoff noise power 

as the optimal form, but the number of non-trivial coefficients has been reduced from order n2 to 

4n. 
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L. B. Jackson, A. G . Lindgren and Y. Kim [12) have developed conditions on a second-order state 

space filter which are necessary and sufficient for an optimal second-order state space filter. From 

these conditions, a set of design equations are developed and a design method is proposed. This 

method involves the determination of the parallel or cascade form of the original system and then 

the application of the design equations to the second-order sub-sections. Using this technique on 

a parallel form yields a system equivalent to the block-optimal form of Mullis and Roberts [19] 

since the sections are decoupled; because the sections are constructed separately, a system resulting 

from a cascaded filter is not block-optimal, hence the term section-optimal. However, examples 

are provided by Jackson et al. which show that the difference in quantization noise power per-

formance between the section-optimal form and the block-optimal form for the cascaded filter is 

not significant. 

Using arguments similar to those given by Hwang [10], the second-order design equations developed 

are determined: 

1. Given the second-order transfer function 

which is usually implemented in the direct II form 

2. The optimal form can then be constructed by first calculating {A, B, C, d} where 

(3.3.1) 
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and 

" Yt 
Ct= ---

1 + Y2 

. 

(3.3.2) 

(3.3.3) 

(3.3.4) 

(3.3.5) 

(3.3.6) 

(3.3.7) 

3. The optimal form is then the scaled network {T- 1AT, r- 1B, CT, d}, where the scaling trans-

formation matrix T is 

[ 

!11 
T= 

0 
(3.3.8) 

whose diagonal elements are 

i = I, 2 (3.3.9) 

aH(z) which is the output variance of the stable system with transfer function -- driven by unit ac; 
variance white noise. 
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3.4 . The Dual Generalized Hessenberg Representation 

The Dual Generalized Hessenberg Representation or Dual G HR is a form of interest in control 

applications, Lindner [ 16). The state space representation for a single-input single-output system 

has the following scalar form: 

0 

0 

0 

0 

0 'Yn-1 an-1 ± 'Yn 

Yk = [ ± 'Yt, 0, ... ,O)xk + duk 

'Yt 

0 

0 

0 

(3.4.1) 

(3.4.2) 

Further, the similarity of this canonic form to that of the continued fraction expansion proposed 

by S. K. Mitra and R. J. Sherwood (18) and outlined by Oppenheim and Schafer (21) was discerned. 

This form may then be computed in the following manner: 

1. Given the system transfer function 

bo + b1 z - 1 + .. · + bmz - m 
H(z) = ----_-1 -----_-n-

1 + a1 z + ... + anz 

Multiply the numerator and denominator of H(z) by Z" so that the transfer function can be 

expressed as · 

bozn + b1zn-1 + ... + bmzn-m H(z) = __ n ___ n ___ l ____ _ 

z + a1z + ... + an 
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2. Divide the denominator into the numerator to obtain 

H(z) = A0 + G0(z) 

where A0 = b0 and 

3. If c1 :;c O and the numerator is divided into the denominator, G0(z) can be expressed as 

where G1(z) has the form 

4. Repeating the above process of dividing the numerator into the denominator ( assuming 

d2 * 0), G1(z) can be expressed as 

This process is repeated witil the numerator is 1. 

5. As long as the numerator of Giz) has degree n - k - 1 and the denominator of Giz) has 

degree n - k, H(z) can be expressed as 
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H(z) = A
0 

+ ____ ....;;..l ___ _ 

(3.4.3) 

The second-order section signal flow graphs are shown in Figure 6 on page 34. The Dual GHR 

canonic form can then be determined by a simple scaling transformation matrix T whose diagonal 

elements are determined in a manner which produces the form of equations (3.4.1) and (3.4.2). It 

should be noted that the Dual GHR canonic form can be computed _whether the numerators and 

denominators of the Giz) are of the proper order or not, because the more general state space form 

is only block tri-diagonal. Lindner [ 16] provides an algorithm which will transform the original state 

space description directly into the Dual GHR canonic state space form without leaving state space. 

Thus, no polynomial divisions are required as is the case with the continued fraction expansion 

algorithm given above. This transformation yields the following canonic form: 

0 

0 

where 
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0 

0 0 

0 

0 

(3.4.4) 

(3.4.5) 
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Figure 6. The Block Diagram for the Dual GHR 

(3.4.6) 

and 

(3.4.7) 

and 
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1 

0 

0 ... 0 

1 ... 0 

akp-1 0 ... 0 1 

akp O ... 0 0 

(3.4.8) 

Note that the F* are in pseudo-companion form and represent the characteristic equations of the 

dividend of steps 3 and 4 of the above procedure. This form can always be calculated, as previously 

noted, and is a canonic form. 
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4.0 Low-Pass Digital Filters 

A commonly used filter design technique is to determine the desired filter characteristics, then 

translate these characteristics to their corresponding low-pass filter equivalent, and finally design this 

normalized low-pass filter. The low-pass filter is then frequency transformed back to the desired 

type, either low-pass, band-pass, band-stop or high-pass filter. Because of this practice, it is logical 

to first look at low-pass filters and then determine the characteristics related to their sensitivity 

measure which can be used to advantage. 

4.1 Basic Low-Pass Filter Descriptioll 

Figure 7 on page 37 shows the typical pole placements of a digital low-pass filter. The fact that 

the poles are clustered near z = 1 inside the unit circle, and have magnitudes which are close to 

one is of great interest to us. The sensitivity measure, S2, of a direct II form filter is claimed to be 

inversely proportional to the system pole distances. This relationship is shown as follows (see 

Oppenheim and Schafer [21]). Given the ideal system transfer function 
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Figure 7. The Low-Pass Filter: Typical Pole and Zero Locations. 

b1z-l + f>iz- 2 + ... + bmz-m 
H(z) = d + ----_-1 _____ 2 _____ n_ 

1 - a 1z - a2z ... - an (4.1.1) 

N(z) ---
D(z) 

Express the denominator, D( z), as 

n j n 1 D(z) = 1 - , 1: a •z - = TT ( 1 - p•z - ) 
}=I 'J J=I 'J 

(4.1.2) 

where the p1 are the simple poles of H(z). From calculus, 

aH(z) I - api = 
api z- Pi aaj 

aH(z) I 
aa} z= P1 

( 4.1.3) 
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which can be rewritten as 

8H(z) I 
aPi = 

8aj z= Pi 
(4.1.4) 

aaj 8H(z) I 
8pi z= Pi 

N(z) 8D(z) I _ 

= 
D(z)2 8aj z- P; 

N(z) 8D(z) I _ 
D(z)2 8p1 z- P; 

8D(z) I 
8a- z= P; 

= '} 

8D(z) I 
opi z= Pi 

Talcing the required derivatives using equation (4.1.2), the pole sensitivity can be rewritten as 

n-j 
_aP_i = __ P_i __ _ 
aaj 

Similarly, the numerator N(z) can be written 

n 
TT (pi - Pt) 
/= I 
/#I 

( 4.1.5) 

( 4.1.6) 

As for the denominator, the zj are the simple zeros of H(z). Parallel to equation ( 4.1.3), the zero 

sensitivity can be determined from 

8H(z) I _ OZ1 = oH(z) I 
az. z- Z; abj abj z= Z; 

(4.1.7) 

which can be rewritten as 
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oH(z) I 
OZj ob- z= Z; 

= '} ( 4.1.8) 
obj oH(z) I 

ozi z= z; 

_l_ oN(z) I 
= 

D(z) obj z= Z; 

_l_ oN(z) I 
D(z) ozi z= z; 

oN(z) I 
ob• z= z, 

= '} 

oN(z) I 
OZj z= Z; 

which from equation ( 4.1.6) reduces to 

( 4.1.9) 

It is important for us to interpret this latter result in terms of the sensitivity measure S2 • From the 

definition of the S2 sensitivity measure, an alternate way of writing S2 for the direct II state space 

form is 

' S2 = _l __ s £ I oH(z) I 2 + i I oH(z) I 2 dz 
2nJ j=I oaj i=I 8bi z 

(4.1.10) 

Equations (4.1.4) and (4.1.8), along with equation (4.1.10), show that the pole and zero sensitivities 

are proportional to the S2 sensitivity measure. Note that 

oH(z) --= N(z) -k ---z 
D\z) 

( 4.1.11) 

which can be rewritten using equation ( 4.1.2) as 
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= - N(z) zn - k 

D(z) Il (z - p ·) 
)= I 'J 

( 4.1.12) 

and similarly, 

(4.1.13) 

= N(z) zn-k 

D(z) TI (z - z•) 
)= I 'J 

Both equations ( 4.1.12) and ( 4.1.13) are similar to the pole and zero sensitivities of equations ( 4.1.5) 

and (4.1.9), with H(z) as a weighting function. Further, the S2 sensitivity measure is evaluated as 

the complex contour integral on the unit circle of the z-plane while the pole and zero sensitivities 

of equations (4.1.5) and (4.1.9) are only point evaluations at the pole and zero locations of the 

system (i.e. the sensitivity measure is essentially an integration over all z on the unit circle). In 

practice, this difference is of limited consequence because the partial derivatives of the transfer 

function appear to approximate delta functions, thus making the integration itself close to a point 

evaluation. Since the pole and zero sensitivities are inversely proportional to the system pole and 

zero distances, the S2 measure is also approximately inversely proportional to the system pole and 

zero distances. Also, since the sensitivity measure is weighted by the system transfer function, only 

that output quantization noise power in regions of practical importance (i.e. the noise power in 

frequencies passed by the filter) are considered. 

Using equation (4.1.5), J. F. Kaiser [13,14] showed that small errors in the coefficients can create 

large pole displacements from the ideal design. Coefficient quantization errors belong to the cate-

gory of small errors, and therefore one would expect large S2 sensitivities (and thus large 

quantization noise power) in narrow bandwidth low-pass filters, where the poles are tightly clus-

tered. 
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4.2 Reducing Direct II Form Low-Pass Filter Sensitivities 

Until recently, the principal method of reducing large roundoff noise power has been the classical 

analog filter design approach of breaking large order filters into cascaded or parallel second-order 

sections. In this approach, the complex conjugate poles are isolated from each other, and so the 

error in each pole is independent from its distance to all the other poles in the higher order system, 

thus reducing the overall system output quantization noise. 

However, forms have been developed which minimize the roundoff noise; these were mentioned in 

the preceding chapter. The cost of this form is increased complexity; the transformation to the 

optimal form causes the {A,B,C} state space description to be filled with non-trivial coefficients. 

Also, as noted previously, Mullis and Roberts [19] presented their block-optimal form and Jackson 

et al. [12] their section-optimal forms which have near-optimal output quantization noise power 

and reduced complexity. 

To illustrate the range of sensitivities for different implementations of the same system function, the 

third order low-pass filter used by Hwang [10] was examined. The system has transfer function 

.079306721z- 1 + .023016947z- 2 + .0231752363z- 3 
H(z) = -----------------

1 - 1.974861148z - 1 + l.556161235z - 2 - .4537681314z- 3 

The forms and their sensitivities are as follows: 

1. The direct II system is 

I 0 

Xk+ 1 = 0 

.4537681314 

0 

- 1.556161235 I IOI l xk + 0 Uk 

1.974861148 1 

0 

Yk = [.0231752363 .023016947 .07930672l]xk 
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(4.2.1) 

(4.2.2) 

(4.2.3) 
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The sensitivity measure is S2 = 93.714442. 

2. The cascade form of the system is 

xk + 1 = I -.:89750194 1.3:6988002 : ]xk + 1:1uk (4.2.4) 

- .397527345 l.607214942 .657873146 1 

Yk = [0 0 .07930672l]xk (4.2.5) 

The sensitivity measure is S2 = 43.511076. 

3. The parallel form of the system is 

- .:89750194 l.3i6988002 : ]xk + 1:1uk 

0 0 .657873146 1 

Yk = [.262118112 - .204296974 .28360369l]xk 

The sensitivity measure is S2 = 15.698915. 

4. The optimal form of the system is 

1

.6672421816 .0588820057 .1297010701 I 
1

.6221731984 l 
Xk + I = .0951152564 .6488117266 .5866572779 Xk + - .1549534962 Uk 

.089399279 -.4660588199 .6588073673 .6111579978 

Yk = [.2917887397 .2806760077 - .09612048753]xk 

The sensitivity measure is S2 = 8.816327. 

5. The block-optimal form of the system is 
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(4.2.6) 

(4.2.7) 

(4.2.8) 

(4.2.9) 
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.658494001 .684463705 0 I I 312887592 I 

.3742139062 .658494001 0 Xk + .652953035 Uk 

0 0 .657873146 .753128756 

(4.2.10) 

Yk = [ - .326470236 .156440787 .376567338)xk (4.2.11) 

The sensitivity measure is S2 = 7.338480. Note that this sensitivity is lower than the optimal 

form sensitivity of Hwang [10) in 4 above, probably because of numerical inaccuracies incurred 

by Hwang when calculating Ko and W0 • However, the representation is nearly optimal. 

6. The section-optimal form of the system is 

(4.2.12) 

Yk = [0 0 .105303004]xk (4.2.13) 

The sensitivity measure is S2 = 24.787467. 

7. The Dual GHR form of the system is 

1

2.265088088 -1.386119935 0 I 

1

.28161449

1 
Xk+ 1 = 1.386

0

119926 - .181894411 - .522032404 Xk + 0 Uk (4.2.14) 

.522032404 - .108332552 0 

Yk = [.28161449 0 0]xk (4.2.15) 

The sensitivity measure is S2 = 155.135468. 
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Figure 8. Output Quantization Noise Power 

The quantization noise estimates for the above implementations at various wordlengths are shown 

in Figure 8 on page 44 and the close relationship (refer to equation (2.2.10)) between S2 and cr; is 

shown in Figure 9 on page 45 for the direct II and the optimal forms. Clearly, for this filter, all 
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Figure 9. The Sensitivity as a Lower Bound of the Quantization Noise Power 

forms are relatively insensitive to coefficient quantization; however the direct II and the Dual GHR 

forms are an order of magnitude more sensitive than the optimal forms. The result that the Dual 

GHR implementation is more sensitive than the direct II form is surprising; this high sensitivity 

may mean that the Dual GHR form could be used to advantage in system identification. 
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Since the direct II state space form is trivial to compute, the idea of reducing its sensitivity without 

altering the form is a seemingly attractive idea. Equations ( 4.1.5) and ( 4.1. 9) suggest a procedure 

for reducing the direct II form sensitivity by adding poles and zeros; because the transfer function 

must remain unchanged, the added pole must have a corresponding zero while any 'added zero 

should also have its identically related pole. In the case of low-pass filters, all the poles are at low 

frequencies and so are grouped around z = 1 in the z-plane. Clearly, if a pole/zero cancellation pair 

is added at a high frequency (near z = -1 in the z-plane), the sensitivity must be reduced because the 

added pole distances are greater than one. Also, the newly added sensitivity term (equations 

(4.1.12) and (4.1.13)) is weighted by H(z) which at high frequencies is close to zero. 

To experiment, a real pole/zero pair is added to the direct II form filter of equations (4.2.2) and 

( 4.2.3). A graph of the sensitivity measure as a function of the location of a real pole/zero cancel-

lation pair is given in Figure 10 on page 47, and it reveals a minimum sensitivity comparable to the 

sensitivity of the cascade realization of equations (4.2.4) and (4.2.5) . Note that the plot shows the 

fourth-order system with the pole/zero cancellation pair at z = 0 having a sensitivity of 125, n_ot the 

93. 7 which one would expect since the filter has the same coefficients as the original third-order 

system. This increase occurs because the sensitivity was not actually calculated at this point, but 

merely interpolated. This interpolation does not take into account the fact that the fourth-order 

direct II realization with the pole/zero cancellation pair added at z = 0 has only six non-trivial co-

efficients in state space, not the eight which the fourth-order filters with· all other added pole/zero 

cancellation pairs require. The added pole/zero pair for minimum sensitivity has increased the 

system order by one, thus adding two non-trivial coefficients above the number required for the 

original order direct II model. 

As seen above, the sensitivity of the filter has been reduced, but has the transfer function been 

changed in the process? Ideally, a pole/zero cancellation will leave the system transfer function 

unchanged, but without infinite precision wordlengths, the impulse response will change, however 

imperceptibly. Figure 11 on page 48 shows the magnitude characteristic of the original third-order 

filter and the change which occurs when the filter has the minimum sensitivity real pole/zero added. 
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Figure 12 on page 49 shows the phase characteristic of the original third-order filter and the change 

which occurs when the filter has the same added pole/zero . Clearly, the system function has not 

been changed significantly. 
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Figure 11. The Magnitude Response of the Fourth-Order System: The Original-Order Filter and the 
Error of the Fourth-Order, Reduced Sensitivity System. 

Further improvement in sensitivity can be realized when a complex conjugate pair of pole/zero 

cancellations is added. From the sensitivity surface of Figure 13 on page 50, a location in the z-

plane is found which has a lower sensitivity than the minimum achieved by adding only a single, 

real pole/zero cancellation pair. This sensitivity is comparable to the sensitivity of the parallel de-

scription given in equations (4.2.6) and (4.2.7), while not quite twice as sensitive as the optimal 
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Figure 12. The Phase Response of the Fourth-Order System: The Original-Order Filter and the Er· 
ror of the Fourth-Order, Reduced Sensitivity System. 

form of equations (4.2.8) and (4.2.9). Again, the cost is not too great, only four non-trivial coeffi-

cients are added. For comparison of the system complexity, notice that the third-order optimal 

form has n(n + 2) ( = 15 for the third-order system) non-trivial coefficients and the block-optimal 

form has 4n ( = 12), while the fifth-order direct II form has only 2(n + 2) ( = 10). Clearly, as the 

order of the original system grows, the savings become more important. Again, the transfer func-
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Figure 13. Sensitivity Surface of Fifth-Order Implementations 

tion has not been significantly altered. Figure 14 on page 51 shows the magnitude characteristic 

of the original third-order filter and the change which occurs when the filter has the minimum 

sensitivity complex pole/zero cancellation pair added. Figure 15 on page 52 shows the phase 
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Figure 14. The Magnitude Response of the Fifth-Order System: The Original-Order Filter Response 
and the Error of the Fifth-Order, Reduced Sensitivity System. 

characteristic of the original third-order filter and the change which occurs when the filter has the 

same added pole/zero cancellation pairs. 

To summarize the improvements, Figure 16 on page 53 compares the output quantization noise 

power of the optimal and various direct II implementations of the third-order filter. Note that the 

higher-order reduced sensitivity direct II forms have lower output quantization noise power at every 
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Figure 15. The Phase Response of the Fifth-Order System: The Original-Order Filter Response and 
the Error of the Fifth-Order, Reduced Sensitivity System. 

bit wordlength than does the third-order original direct II filter. Also, both of these higher-order 

direct II forms actually have lower output quantization noise power than the optimal form at cer-

tain wordlengths. 

In an effort to help the analysis procedure numerically, the concept of scaling the pole and zero radii 

magnitudes was introduced in Chapter 2. It was claimed without any supporting evidence or proof 
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that analysis could be done on the scaled system which was applicable to the unscaled system. 

Note that this scaling does not require finding the roots of either the numerator or the denominator, 

but rather only replacing the numerator and denominator coefficients, the 'Ym with 0.95" y,,. Some 
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corroborating empirical evidence is now offered. Scaling the radii of the poles and zeros by 0.95 

produces the following filters: 

• The scaled direct II system is 

1 

0 

-1.404435515 I IOI 1 Xk + 0 Uk 

1.876118091 1 

0 

Yk = 1.0198698670 .020772794 .075341384]xk 

(4.2.16) 

(4.2.17) 

The sensitivity measure is S2 = 62.828227 as compared to the unscaled measure, 93.714442. 

• The scaled parallel form of the system is 

(4.2.18) 

Yk = l.236561596 - .194082126 .269423507]xk (4.2.19) 

The sensitivity measure is S2 = 11.790138 as compared to the unscaled measure, 15.698915. 

Notice that the relationship between the sensitivities of the filter implementations is maintained 

after the scaling occurs. When miminizing filter sensitivity by adding a pole/zero cancellation pair, 

the new, higher-order filter must first be calculated for the unscaled filter and then scaled down, 

otherwise it is possible to generate a pole/zero location of lowest sensitivity which when unscaled 

is outside the unit circle, creating an unstable system. Clearly, ihe scaling is not symmetric with 

respect to the unit circle! As for the decreasing monotonicity of the sensitivity measurement due 

to decreasing the scaling factor, see Figure 17 on page 55 which plots the sensitivity measure of the 

direct II and the parallel forms as a function of the scaling radius. 
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Figure 17. The Monotone Decreasing Sensitivity Measure 

It is not clear why the sensitivity measure decreases as a function of the scaling radius, but all ex-

periments demonstrate this characteristic. Several filters were examined specifically to provide a 

counter-example; all had the monotone decreasing sensitivity measure. Clearly, depending upon 
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pole and zero locations, the transfer function magnitude response can increase at local frequency 

ranges; however, the average system response over all frequencies is lower. How this affects the 

sensitivity measure is not clear, but filters designed expressly to exhibit this local increase over large 

frequency ranges and which have no single, dominant pole anywhere in the spectrum still exhibit 

the monotone decreasing characteristic. 

To summarize, for the wide range of filters examined, this technique yields stable and consistent 

results. It is therefore a reasonable tool when used with knowledge of the system and its overall 

behavior to the scaling of the pole and zero radii. Caution should be exercised, however, until a 

non-trivial detailed mathematical description is derived for the observed behavior. 

To ensure that the pole/zero cancellation will reduce the sensitivity for larger-order systems, a 

couple of new example filters are introduced. Larger sensitivity reductions are expected because of 

the pole placements (and thus the pole distances), but the direct II sensitivity will also be much 

higher because of the higher number of poles and corresponding pole distances which are much less 

than one. 

The first example is a sixth-order Butterworth low-pass filter designed using the impulse invariance 

technique from A. V. Oppenheim and R. W. Schafer (21] . The transfer function is 

H(z) = .00053369z- 1 + .010300044169z - 2 + .016007666515z- 3 

1 - 3.3634z - 1 + 5.06810425z - 2 - 4.27 54936z - 3 

+ .004129694086z- 4 + .000117295287z-s - .000006606018z- 6 

+ 2.106377898z- 4 - .570561512332z-s +.06606018207z- 6 

(4.2.20) 

The direct II form has S2 = 2937.38139 . Placing a complex conjugate pole/zero pair at radius 

r = 0.96 and angle 0 = ± 170 degrees reduces the sensitivity measure to S2 = 303.13565. 

The second example filter is a tenth-order all-pole low-pass function. The system transfer function 

1S 
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where 

H(z) = N(z) 
D(z) 

N(z) = .211348904z - 1 

and 

D(z) = 1 - 5.24714092z - 1 

+ 14.6742367z- 2 - 27.2976798z- 3 + 37.1004172z- 4 

- 38.082725z- 5 + 29.9060915z- 6 - 17.7209547z- 7 

+ 7.66182077z- 8 - 2.20028154z- 9 + .339082688z- to 

(4.2.21) 

The direct II form has S2 = 2,109,022,068.714. Placing a complex conjugate pole/zero pair at ra-

dius r = 0.99 and angle 0 = 180 degrees reduces the sensitivity measure to S2 = 199,434,498.555. 

For narrow-bandwidth low-pass filters, the coefficient sensitivity can also be reduced using this 

method; however, because coefficient sensitivities of direct II, as well as cascade and parallel, im-

plementations increase as bandwidths decrease under frequency transformations and the optimal 

form sensitivity is invariant to frequency transformations (Mullis and Roberts [20) and M. 

Kawamata and T. Higuchi (15]), the reduced sensitivity does not approach sensitivity of the optimal 

form. For verification, consider the example used by M. Kawamata and T. Higuchi. This example 

has transfer function 

where 
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H(z) = d + N(z) 
D(z) 

(4.2.22) 
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d = .00000869 

N(z) = .000627(.108543z - I + .0067z- 2 + .104730z- 3 + .00193z- 4) 

and 

D(z) = 1 - 3.826389z- 1 + 5.516625z - 2 - 3.551099z- 3 + .86102z- 4 

This system is an extremely narrow-band filter, as shown in Figure 18 on page 59. The optimal 

form has sensitivity measure, S2, equal to 58.327987, as compared to the direct II form, which has 

a sensitivity of 18,933,029.42. Clearly, the direct II form would not normally be used when accu-

racy is important, as it is many orders of magnitude (3.25 x 105) more sensitive than the optimal 

form. Placing a double pole/zero pair at -0.98 on the real axis in the z-plane causes a reduction in 

coefficient sensitivity of the direct II form to l,857,725.657534, an improvement of one order of 

magnitude (10.2). However, the reduced sensitivity is still not close to that of the optimal form; the 

sensitivity is four orders of magnitude greater. 

4.3 Extension to High-Pass Digital Filters 

High-pass filters are mirror images of low-pass filters, therefore one would expect to achieve the 

exact same sensitivity reductions as in the low-pass filter. The-symmetry of the two forms is evident 

from the frequency transformation relationship; z- 1 of the low-pass form is transformed into 

- z- 1 of the high-pass form. For canonic state space descriptions, this transformation results at 

most in changing the sign of some of the coefficients. This symmetric sign change does not affect 

the sensitivity. For clarity, the high-pass filter derived from frequency transforming the direct II 

low-pass filter of equations ( 4.2.2) and ( 4.2.3) is 
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0 

- 1.556161235 I IOI 1 Xk + 0 Uk 

- 1.974861148 1 

0 

( 4.3.1) 

Yk = [ - .0231752363 .023016947 - .07930672l)xk (4.3.2) 
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The sensitivity measure is S2 = 93.714442, which is identical to the low-pass filter sensitivity, as 

expected. 

The above example has shown that analysis of high-pass filters is identical to analysis of low-pass 

systems when they are obtained by the transformation of z- 1 -+ - z- 1 applied to a low-pass pro-

totype. The symmetrical nature of the two filtering functions allows statements about the sensi-

tivity measurement to be identically applicable to both. This relationship is an important feature, 

as high-pass filters need not be separately analyzed, but prototype low-pass filters can be analyzed 

for proper pole/zero cancellation locations of minimum sensitivity, compared to their optimal im-

plementation sensitivities and then transformed to the desired high-pass function only when the 

filter is actually implemented. 
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5.0 Band-Pass Digital Filters 

The previous chapter shows that adding pole/zero cancellation pairs to low-pass and high-pass di-

rect II form filters can reduce the coefficient sensitivity of the implementation. The reduction in 

sensitivity was explained in terms of the system pole and zero locations, and, because of the system 

type, these locations could be exploited to reduce the sensitivity. Logically, one asks, can the pole 

and zero locations of a band-pass system be exploited in the same manner and with similar results? 

5.1 Basic Band-Pass Filter Description 

To gain an understanding of where the poles and zeros of a band-pass filter are located, note the 

following frequency transformation equations relating z- 1 of a prototype low-pass filter to its 

bandpass equivalent. 

-1 z -+ -

-2 2ak - t k - 1 
z k+lz +k+l 
k - I z-2 _ 2ak z- 1 + 1 k+l k+l 

(5.Ll) . 

Band-Pass Digital Filters 61 



where 

( CO2 + COt ) cos 
2 u=------co - co 

cos( 2 1 ) 2 

(5.1.2) 

and 

co -co e 
k = cot( 2 1 ) tan _E._ 2 2 (5.1.3) 

Note that eP is the cut-off frequency of the low-pass prototype filter, and co1 and co2 are the desired 

upper and lower cut-off frequencies of the band-pass filter. Equation (5.1.1) clearly shows that the 

system order has been doubled. However, more importantly, the poles and zeros have migrated to 

the middle frequencies, i.e. they are grouped around two locations, namely ± j . 

The third-order system of the previous chapter, see equation (4.2.1), was frequency transformed 

keeping the bandwidth of the low-pass prototype and placing the center frequency at ; . These 

conditions along with equations (5.1.2) and (5.1.3) give k = I and u = 0. Substituting these values 

into equation ( 5.1. l) gives the transformation z- 1 -+ - z- 2 • Applying this transformation yields 

the band-pass system function 

H(z) = - .079306721z- 2 + .0230169z- 4 
- .0231752363z- 6 

1 + l.974861148z- 2 + 1.556161235z - 4 + .4537681314z - 6 (5.1.4) 

The direct form of the filter is then given by 
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0 1 0 0 0 0 0 

0 0 1 0 0 0 0 

0 0 0 0 0 0 
Xk + I = Xk + Uk (5.1.5) 

0 0 0 0 0 0 

0 0 0 0 0 1 0 

- .4537681314 0 - 1.556161235 0 - 1.974861148 0 1 

Yk = [ -.0231752363 0 .023016947 0 -.079306721 0]xk (5.1.6) 

This system has the sensitivity, S2 = 93.71444 . Note that the sensitivity is the same as for the 

low-pass prototype since the bandwidth remains unchanged by the frequency transformation and 

the frequency mapping is linear. 

From the symmetry of the band-pass filter pole and zero locations, it is clear that finding locations 

for placement of pole/zero cancellation pairs which reduce the system sensitivity will be difficult to 

accomplish. However, if we frequency transform the higher-order, reduced sensitivity low-pass 

prototype filter to the desired band-pass form, the sensitivity of this function will be lower than the 

sensitivity of the band-pass implementation derived from the original-order low-pass prototype fil-

ter. For example, the system of equation (4.2.1) is implemented with an added real pole/zero 

cancellation pair at z = -0.95. Thus, the band-pass system function is given by 

- .07930672lz- 2 + .098358.13lz-4 - .45041335z - 6 

+ .022016474z -& H(z) = ---------~----------
1 + l.024861148z- 2 - .3199568565z- 4 + - l.024585042z- 6 

- .4310797234z - 8 

(5.1.7) 

The direct II form sensitivity is 36.60593, which is identical to the low-pass prototype direct II form 
I 

sensitivity. Note that the pole/zero cancellation pair is translated to z = ± 0.952 in the band-pass 

filter; typical band-pass pole and zero locations are shown in Figure 19 on page 64. Empirically, 

this implementation gives the lowest sensitivity possible. 
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Figure 19. The Band-Pass Filter: Typical Pole and Zero Locations. 

If the filter band-width is kept constant but tlie center frequency of the pass-band is not ; radians, 

an interesting situation occurs; the sensitivity increases. To investigate, the same low-pass filter as 

above (equation (4.2.1)) is transformed to a band-pass filter with a center frequency of 1.47 radians. 

The required frequency translation is z- 1 --. 
2

~
2--_i;:~ 1 

• The band-pass system is then 

.0079306721z- 1 - .08066268z- 2 + .011337419z- 3 

+ .021988961z- 4 +.004650876z- 5 - .02317523632- 6 
H(z) = ------------------

1 - .497486114z- 1 + 2.059919983z- 2 -.711189267z- 3 

+ 1.620646115z- 4 - .291746562z- 5 + .4537681314z- 6 

(5.1.8) 

The direct II form sensitivity is 194.49296. Note that the sensitivity is larger than the sensitivity 

of the system described by equation (5.1.4), although the only difference in the two systems is the 

location of the center frequency. Most importantly, the band-width is preserved through the 
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transformation, and yet the sensitivity has increased! Why? To help clarify the details, the low 

sensitivity low-pass prototype used to design the system of equation (5.1.7) is frequency translated 

to have a center frequency of 1.47 radians; the same as the system of equation (5. 1.8). The resulting 

system is 

.0079306721z - 1 - .080702339z - 2 + .004206594z - 3 

+ .099915337z- 4 - .006229617z- s, - .044088003z- 6 

- .004302456z - 7 + .022016474z -& H(z) = ------'--'-.;;.....;;..~...;;....;;..;;'---_,;;_;;;=.;;....;;_;;___..;;.. ___ _ 

1 - .502486114z - 1 + l.112407414z- 2 - .248877057z - 3 

- .332209894z - 4 +.37578001z- 5 - l.084386945z- 6 

+ .274890393z - 7 - .431079724z- 8 

(5.1.9) 

The direct II form sensitivity is 78.50374. Notice that the sensitivity is reduced by the same factor 

(2.5) as for the band-pass filters centered about radians. 

The explanation of why the location of the pass-band affects the sensitivity may be viewed in one 

of the two following ways: 

1. The frequency warping which occurs in transforming the low-pass filter prototype into the 

desired band-pass function is not linear unless the pass-band is centered around ; radians. 

Of more importance, for a band-pass filter centered anywhere else, the corresponding low-pass 

filter will have a smaller band-width than the prototype low-pass filter; smaller band-width has 

been shown previously to increase the sensitivity measure. 

2. With a pass-band centered at a frequency other than ; radians, the system poles are closer to 

each other than they would otherwise be. As previously shown, the sensitivity measure is ap-

proximately inversely proportional to the pole distances. 
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5.2 Extension of Band-Pass Filter Ideas to a Band-Stop 

Filter 

Just as high-pass filters are symmetrical to low-pass filters, band-stop filters are symmetrical to 

band-pass filters . Note the similarity of the frequency transformation equations to those of the 

band-pass transformation 

-! z - (5.2.1) 

where again 

( u>2 + ult ) cos 2 a=----- (5.2.2) 

and 

(t) -ro e 
k = cot( 2 1 ) tan ...L 2 2 (5.2.3) 

Again 0P is the cut-off frequency of the low-pass prototype filter, and ro1 and ro2 are the desired upper 

and lower cut-off frequencies of the band-pass filter. 

The order of the band-stop filter is twice that of the low-pass prototype, just as the band-pass filter 

order is double that of the low-pass filter prototype. Band-stop filters have two clusters of poles 

in the z-plane, one at low frequencies (i.e. near 1 in the z-plane) and one at high frequencies (i.e. 

near -1 in the z-plane). As in the band:pass filter, the locations of the pass-bands affect the sensi-
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tivity; the sensitivity is either identical to the sensitivity of the low-pass prototype or larger than the 

low pass prototype sensitivity. 

The design of low sensitivity band-pass and band-stop filters is then accomplished as follows: 

1. Design the low-pass prototype with the desired band-width. 

2. Find locations for pole/zero cancellation pairs which minimize the sensitivity. 

3. Transform the reduced sensitivity filter to the desired form, band-pass or band-stop. 

Note that because the order of the system is doubled by the frequency translation, the order of this 

low sensitivity form will be increased by either two or four over the minimum-order system instead 

of the one or two in the prototype low-pass filter. 

Another possible method of sensitivity reduction in a band-pass filter would be to implement a 

band-pass filter as the cascade combination of a high-pass filter and a low-pass filter, and then 

minimize the sensitivity of each cascade section. The order of the overall band-pass filter would 

still be twice that of a low-pass prototype, but the structure is now one that is amenable to placing 

pole/zero cancellation pair(s) to reduce the· coefficient sensitivity of the individual sections. A dual 

to the band-pass filter, the band-stop filter could possibly be implemented as the parallel combi-

nation of a high-pass and a low-pass filter. Then, the coefficient sensitivity of the individual sections 

could be reduced by adding pole/zero cancellation pair(s), thereby producing an overall filter of 

reduced coefficient sensitivity and lower output quantization noise. 
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6.0 Conclusions and Suggestions for Further Study 

6.1 Co11clusio11s 

The linear relationship between the 4, sensitivity measure and the output quantization noise power 

was shown; an efficient method for calculating both of these is given. A method for the analysis 

of filters which have poles that are almost on the unit circle is presented; this method scales the pole 

and zero radii to make th.e sensitivity analysis more stable numerically. The computation of the 

state space forms (cascade, parallel, direct II, optimal, bloc~-optimal, section-optimal and Dual ' 

GHR) used in the thesis was presented, with special emphasis on the optimal, block-optimal, 

section-optimal and Dual GHR implementations. 

Next, the direct relationship between the pole and zero sensitivities and the sensitivity measure was 

exploited to reduce the system output quantization noise power of low-pass, direct II form digital 

filters by the introduction of judiciously placed pole/zero cancellation pair(s). These cancellation 

pair(s) do not affect the system transfer function. For some filters, the present method brings the 

sensitivity down by a factor of 10, which for low-order low-pass sections approximates the optimal 

sensitivity. Further, to achieve these low sensitivities, the direct II implementation must only be 
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increased in order by one or two. Since a direct II implementation requires only 2n coefficients and 

the optimal form requires n(n + 2) coefficients, we actually have fewer coefficients even with the 

increased order. Therefore, we can increase the throughput without appreciably increasing the 

output quantization noise power of the filter. 

The effects of frequency transformations of low-pass filters are shown to be trivial in the low-pass 

to high-pass transformation, but because of the frequency warping which occurs in the low-pass to 

band-pass or band-stop transformations the analysis of these two types is somewhat more compli-

cated. However, the effects are easily understood and explained and they lead to the design tech-

nique below: 

1. Determine the required filter specifications. 

2. Find the proper low-pass prototype filter specifications with the constraint that the band-width 

of the low-pass prototype be the band-width of the desired filter. 

3. Find the location of the pole/zero cancellation pair(s) for minimum sensitivity. 

4. Frequency translate the low-pass prototype filter to the desired filter function. 

This technique always yields the best sensitivity for the desired function, under the constraint of the 

system order. 

6.2 Suggestions for Further Study 

Clearly, direct minimization of the sensitivity by variation of the pole/zero cancellation parameters 

should be examined. We have shown that ARMA cross-covariances can be efficiently evaluated, 

thus gradient based methods can be implemented with little difficulty. 
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Further, the idea mentioned in Chapter 5 of implementing the band-pass filter as the cascade 

combination of low-pass and high-pass filters and the band-stop filter as a low-pass filter in parallel 

with a high-pass filter should also be examined. Because no frequency warping would be required 

and the band-widths of the separate low-pass and high-pass sections would be large, significant 

sensitivity reductions might be possible. Problems might be encountered in the filter stop-band 

regions, however further study in this direction is warranted. 

Finally, the sensitivity measure has many properties which have not been explored in this work, 

among which are the sensitivity measure as a function of the pole and zero radii scaling factor 

(which appears to be a non-trivial problem) , the use of other norms instead of the two norm and 

the examination of the partial derivative systems used in its calculation. 
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