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a b s t r a c t

Sensitivity Analysis (SA) investigates how the variation in the output of a numerical model can be

attributed to variations of its input factors. SA is increasingly being used in environmental modelling for a

variety of purposes, including uncertainty assessment, model calibration and diagnostic evaluation,

dominant control analysis and robust decision-making. In this paper we review the SA literature with the

goal of providing: (i) a comprehensive view of SA approaches also in relation to other methodologies for

model identification and application; (ii) a systematic classification of the most commonly used SA

methods; (iii) practical guidelines for the application of SA. The paper aims at delivering an introduction

to SA for non-specialist readers, as well as practical advice with best practice examples from the liter-

ature; and at stimulating the discussion within the community of SA developers and users regarding the

setting of good practices and on defining priorities for future research.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Sensitivity Analysis (SA) investigates how the variation in the

output of a numerical model can be attributed to variations of its

input factors. Within this broad definition, the type of approach,

level of complexity and purposes of SA vary quite significantly

depending on the modelling domain and the specific application

aims.

In contexts where very complex simulation models are used, for

instance climate or atmospheric sciences, the term SA often refers

to a ‘what-if’ analysis where the input factors of the simulation

procedure, e.g. the model parameterization or the forcing scenario,

are varied one at a time. Typically, the induced variations are

assessed by visual comparison of model predictions. The goal is to

verify the consistency of the model behaviour (e.g. Devenish et al.,

2012) or to assess the robustness of the simulation results to

uncertain inputs or model assumptions (e.g. Paton et al., 2013). The

increasingly common practice in weather and climate science of

producing sets (ensembles) of forecasts and simulations (e.g.

Stephenson and Doblas-Reyes, 2000; Collins et al., 2012 and ref-

erences therein) can be regarded as a type of SA exercise. Here,

forecast uncertainty due to the imperfect knowledge of initial

conditions is addressed via ensembles of weather forecasts starting

from perturbed initial model states, while the sensitivity of climate

simulations to model parameters is addressed using perturbed

physics ensembles where simulations are made with different

choices of model parameter values.

When simulation results can be associated with a summary

scalar variable, for instance a measure of model performance like

the sum of squared errors or some aggregate statistic of simulated

variables, e.g. the mean streamflow, a more formal approach is to

measure sensitivity as the variability induced in such a scalar var-

iable via a set of quantitative sensitivity indices. Depending on

whether output variability is obtained by varying the inputs around

a reference (nominal) value, or across their entire feasible space, SA

is either referred to as local or global. Local SA applications typically
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consider model parameters as varying inputs, and aim at assessing

how their uncertainty impacts model performance, i.e. how model

performance changes when moving away from some optimal or

reference parameter set. Partial derivatives or finite differences are

used as sensitivity indices in the context of local approaches (e.g.

Hill and Tiedeman, 2007). The spatio-temporal evolution of local

sensitivity can also be investigated by adjointmethods (e.g. Vautard

et al., 2000) or algebraic SA (Norton, 2008).

Global SA applications may consider model parameters but also

other input factors of the simulation procedure, for instance the

model's forcing data (e.g. Hamm et al., 2006) or its spatial resolu-

tion (e.g. Baroni and Tarantola, 2014) simultaneously. Different

types of sensitivity indices can be used, ranging from correlation

measures between inputs and output to statistical properties of the

output distribution, e.g. its variance, and many others. Since

analytical computation of these indices is impossible for most

models, sensitivity indices are usually approximated from a sample

of inputs and output evaluations. Global SA is used for a range of

very diverse purposes, including: to support model calibration,

verification, diagnostic evaluation or simplification (e.g. Sieber and

Uhlenbrook, 2005; Harper et al., 2011; Nossent et al., 2011; Kelleher

et al., 2013; Shin et al., 2013; Butler et al., 2014); to prioritize efforts

for uncertainty reduction (e.g. Hamm et al., 2006); to analyse the

dominant controls of a system (e.g. Pastres et al., 1999); to support

robust decision-making (e.g. Nguyen and de Kok, 2007; Singh et al.,

2014; Anderson et al., 2014).

In this paper we provide a systematic review and structuring of

the SA literature across different environmental modelling domains

with three specific objectives:

1. To provide a comprehensive view of SA purposes and ap-

proaches by clarifying terminology (e.g. quantitative versus

qualitative, local versus global, one-at-a-time versus all-at-a-

time) and by discussing the connections between SA and

other methodologies for model identification and application

(e.g. uncertainty analysis, model calibration and diagnostic

evaluation, model-based decision-making, emulation model-

ling). The goal is to illustrate the broad spectrum of aims for

which SA can be used, and thus stimulate its effective use in the

environmental modelling community.

2. To provide a systematic review of the SA approaches most

widely used in environmental modelling. The goal here is

twofold: to provide non-expert readers with a broad enough

background to engage with the SA literature while suggesting

references for further reading; and to propose a classification

system to support SA users in the choice of the most appropriate

SA method depending on the characteristics of their case study.

3. To provide practical guidelines for the application of SA. To this

end, we develop aworkflow for the application of SA and discuss

the key choices that SA users must make at each step of this

workflow.We also provide practical suggestions on how to make

these choices, how to assess their impacts on SA results and how

to revise them, with good practice examples from the literature.

The paper is intended for a broad audience including re-

searchers and practitioners who want to gain a general introduc-

tion to SA purposes and approaches, and to obtain practical advice

on SA applications with best practice examples from the literature.

The paper also aims at stimulating the discussion within the

community of SA developers and users on good practice in SA

application and on setting priorities for future research.

The paper is divided into three main sections that reflect the

three objectives discussed above. Section 2 introduces common

definitions and concepts used in the SA literature and clarifies the

link between SA and related topics. Section 3 illustrates our

classification system of SA methods with a short description of the

underlying key assumptions, scope of application, advantages and

limitations of each class of methods. Finally, Section 4 illustrates

and discusses our proposed workflow for the application of SA.

Section 3 and 4 build on some initial thoughts presented in the

conference paper by Pianosi et al. (2014), however, both the clas-

sification system and the workflow have been significantly

expanded and improved with respect to the earlier version dis-

cussed in that conference paper.

2. Conceptualization

2.1. Definition of model, input factors and outputs

In this paper we use the term model to refer to a numerical

procedure (often implemented in a computer program) that sim-

ulates the behaviour of an environmental system, for instance by

solving a set of algebraic equations (static model) or integrating

differential equations over a spatial-temporal domain (dynamic

model). We call input factor any element that can be changed before

model execution, and output a variable that is obtained after the

model execution. Examples of input factors are the parameters

appearing in the model equations, the initial states, the boundary

conditions or the input forcing data of a dynamic model; as well as

non-numerical factors like the model equations themselves or, in

the case of dynamic models, the time/spatial grid resolution for

numerical integration. For dynamic models, the term ‘output’

usually does not refer to the entire range of temporal and spatial

variables produced by the model simulation, but to a summary

variable that is obtained by a scalar function of the simulated time

series. Using the terminology proposed by Shin et al. (2013), we can

distinguish two types of scalar functions:

� objective functions (also called loss or cost functions), which are

measures of model performance calculated by comparison of

modelled and observed variables (for instance, the Root Mean

Squared Error);

� prediction functions, which are scalar values that are provided to

themodel-user for their practical use (for instance, the value of a

variable at given time in given location, or its average over a

spatial and temporal domain), and that can be computed even in

the absence of observations.

Fig. 1 gives a practical example of possible inputs and outputs of

SA in the case of a dynamic simulation model. While the aggrega-

tion of temporally and/or spatially distributed variables into a

scalar output can induce a significant loss of information, such a

loss can be recovered by considering multiple definitions of the

summary output or analysing the temporal or spatial patterns of

the output sensitivity. This issuewill be further discussed in Section

4.1.

Given the above definitions, we can assume for the purposes of

this paper that one can always resort to the general formulation:

y ¼ gðxÞ ¼ gðx1; x2;…; xMÞ (1)

where y is the output, x ¼ ½x1; x2;…; xM � is the vector of input fac-

tors, which belongs to the input variability space X , and g is the

function that maps the input factors into the output. This

inputeoutput relation is sometimes referred to as response surface

ormodel's response, rather than ‘model’, to avoid confusionwith the

underlying simulation model which, as stated earlier, might have

more inputs and outputs than x and y (see again Fig. 1). As the

model's response function g is hardly ever available in analytic

form, we will assume hereafter that a numerical procedure is
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available to evaluate it for any given combination of input factor

values.

2.2. Types of Sensitivity Analysis

Sensitivity analysis investigates how the variation in the output

y can be attributed to variations in the different input factors x1, x2,

…, xM . Typical questions addressed by SA are: What input factors

cause the largest variation in the output? Is there any factor whose

variability has a negligible effect on the output? Are there in-

teractions that amplify or dampen the variability induced by indi-

vidual factors? We can distinguish different types of sensitivity

analysis depending on how these questions are formulated and

addressed.

2.2.1. Local and Global SA

Local sensitivity analysis considers the output variability against

variations of an input factors around a specific value x, while global

sensitivity analysis (or GSA) considers variations within the entire

space of variability of the input factors. The application of local SA

obviously requires the user to specify a nominal value x for the

input factors. While GSA overcomes this possible limitation, it still

requires specifying the input variability space X . When the latter is

poorly known, the conclusions drawn from GSA should be taken

with care.

2.2.2. Quantitative and Qualitative SA

We use the term quantitative SA to refer to methods where each

input factor is associated with a quantitative and reproducible

evaluation of its relative influence, normally through a set of

sensitivity indices (or ‘importance measures’). In qualitative SA,

instead, sensitivity is assessed qualitatively by visual inspection of

model predictions or by specific visualization tools like, for

instance, tornado plots (e.g. Howard,1988; Powell and Baker, 1992),

scatter (or dotty) plots (e.g. Beven, 1993; Kleijnen and Helton,

1999a) or representations of the posterior distributions of the

input factors (e.g. Freer et al., 1996, see also Section 3.4 and

Appendix A). Often such visual tools are used complementary to a

more quantitative analysis.

2.2.3. One-At-a-Time (OAT) and All-At-a-Time (AAT)

Another distinction often made is between ‘One-[factor]-At-a-

Time’ (OAT) methods and what we propose to call ‘All-[factors]-At-

a-Time’ (AAT) methods. This distinction refers to the sampling

strategy used to estimate the sensitivity indices. In fact, in general,

sensitivity indices cannot be computed analytically due to the

complexity of the inputeoutput relationship of Eq. (1) and thus

they are numerically approximated from a sample of input factors

and associated output evaluations (sampling-based SA fromnowon,

see also Fig. 2). The distinction between OAT and AAT methods is

based on the approach adopted to select input samples.

Specifically:

� In OAT methods, output variations are induced by varying one

input factor at a time, while keeping all others fixed.

� In AATmethods, output variations are induced by varying all the

input factors simultaneously, and therefore the sensitivity to

each factor considers the direct influence of that factor as well as

the joint influence due to interactions.

While local SA typically uses OAT sampling, global SA can use

either OAT or AAT strategies. In general, AAT methods provide a

better characterization of interactions between input factors, and

some of them (for instance, the variance-based methods described

in Section 3.5) allow the user to analyse interactions between

specific combinations (pairs, triples, etc.) of factors. OAT methods

do not provide such detailed insights although some methods, for

instance the EET described in Section 3.2, can give an indication on

whether interactions matter or not. The drawback of AAT methods

is that they typically require more extensive sampling and there-

fore a higher number of model evaluations (see further discussion

in Sections 4.5 and 4.6).

2.2.4. Purposes (settings) of SA

Following Saltelli et al. (2008), we distinguish the following

three purposes (or ‘settings’ in their terminology):

Fig. 1. Example of input factors and output definition for the SA of a (dynamic) flood inundation model.
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� Ranking (or Factor Priorization) aims at generating the ranking of

the input factors x1, x2,…, xM according to their relative contri-

bution to the output variability.

� Screening (or Factor Fixing) aims at identifying the input factors,

if any, which have a negligible influence on the output

variability.

� Mapping aims at determining the region of the input variability

space that produces significant, e.g. extreme, output values.

The purpose of SA defines the ultimate goal of the analysis. It

therefore guides the choice of the appropriate SA method since

different methods are better suited to address different questions.

Although SA is most commonly used for the three purposes above,

our list is not exhaustive and other SA settings have been proposed.

For instance the direction (or sign) of change is a question that can be

addressed by SA (e.g. Anderson et al. (2014)). Another question is

the presence of interactions between input factors. These aspects

will be further discussed in Section 3. In the remainder of this

Section, instead, we will discuss the links between SA and other

relatedmethods that can support the identification and assessment

of environmental models.

2.3. SA and uncertainty analysis

When used for uncertainty assessment of numerical models,

Sensitivity Analysis, and in particular global SA (GSA), is closely

related to Uncertainty Analysis. Some authors (e.g. Saltelli et al.,

2008), suggest that the discrimination is that UA focuses on

quantifying the uncertainty in the output of the model, while GSA

focuses on apportioning output uncertainty to the different sources

of uncertainty (input factors). While different in focus and objec-

tives, UA and GSA often use similar mathematical techniques. The

‘forward’ propagation of uncertainty by Monte Carlo simulation,

which is commonly employed in many UA methodologies (e.g.

Vrugt et al., 2009 or Beven and Freer, 2001) is also used to perform

the initial steps of sampling-based GSA (Fig. 2). Some UA and GSA

methods have been developed in close relation to each other: for

instance the GLUE strategy for uncertainty analysis (Beven and

Freer, 2001) was derived from the basic idea of Regional Sensi-

tivity Analysis (see Section 3.4). In practice, GSA and UA often offer a

valuable complement to each other: when performing GSA, UA

should be used to verify that the output variability captured by

sensitivity indices falls within the range of ‘acceptable’ model

behaviour (see further discussion in Section 4.3); conversely, dur-

ing UA, the estimation of sensitivity indices adds little computing

effort while offering potentially valuable extra insights.

2.4. SA and model calibration

Sensitivity Analysis is also closely connected to the process of

model calibration. By ‘model calibration’wemean here the process

of estimating the model parameters bymaximizing the model fit to

(or at least consistency with) observations. SA can be used to

support and complement a model calibration exercise by providing

insights on how variations in the uncertain parameters (the input

factors x) map onto variations of the performance metric (the

output y) thatmeasures themodel fit.When an ‘optimal’ parameter

estimate x has been found, local SA can be used to investigate the

uncertainty of such a parameterization: high local sensitivity to a

parameter indicates high accuracy of its optimal estimate, while

low sensitivity suggests that the parameter is poorly identified and

uncertainty is large (an example is given by Sorooshian and Farid,

1982). A rigorous mathematical interpretation is available for the

case when the output y is the mean squared error and gradient-

based local sensitivity (see Section 3.1) is an approximation of the

curvature (Hessian matrix) of y evaluated at x (for practical exam-

ples see for instance Sorooshian and Gupta (1985) or the PEST

approach by Moore and Doherty (2005)). Most established

analytical parameter-estimation methods for linear-in-parameters

models (e.g. prediction-error method or generalized least squares

and its variations) provide such local sensitivity information jointly

with optimal parameter estimates (Ljung, 1999). SA is closely

related to Identifiability Analysis (IA), which asks if parameters of a

given model can be (uniquely or adequately) estimated from the

available set of inputs and outputs.

While local SA usually follows the model calibration exercise,

Fig. 2. The three basic steps in sampling-based Sensitivity Analysis, with an example of qualitative or quantitative results produced by the post-processing step.
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global SA and model calibration are interlaced in a more complex,

often iterative way. A model calibration based on the equifinality

principle (Beven and Freer, 2001) can be used prior to GSA in order

to constraint the input variability space X , e.g. by finding param-

eter ranges that produce an acceptable level of model performance

(e.g. Freer et al., 1996). On the other hand, GSA can be used before

calibration of a computationally intensive model in order to: (i)

identify parameters that have no influence on the model fit to

observations and therefore can be ignored during refined calibra-

tion (e.g. van Werkhoven et al., 2009); (ii) investigate the param-

eters’ influence and interactions in the regions of the parameter

space associated with higher model performance, and thus provide

the knowledge base for a more efficient local-search calibration in

those regions (e.g. Spear et al., 1994); (iii) assess the potential for

and limitations of model calibration given other uncertainty sour-

ces besides parameters, e.g. measurement errors in the observa-

tions or in the model forcing data (e.g. Baroni and Tarantola, 2014).

In the latter case, the insights provided by GSA can help to set

priorities for future efforts, for instance by investing in more so-

phisticated and computationally demanding calibration techniques

or by first improving the quality of the data.

2.5. SA and model diagnostic evaluation

In cases where observations are affected by large uncertainties,

due to observational errors, pre-processing errors, spatial averaging,

etc., it might be hard to corroborate or reject a model based on some

performance metric alone. Then, the modeller may also want to

verify the consistency of the model behaviour with his/her

perception of the real-world system (Wagener and Gupta, 2005). A

model would be considered consistent if, for example, the param-

eters that control its response at a particular time or place are

representative for physical processes that are also expected to

dominate in reality. Being confident that the modelled controls are

in line with our perceptions is particularly important if the model

will be applied outside the range of variability of the calibration data

(e.g. at different sites or for long term projections under nonsta-

tionary conditions). It is often difficult to predict when and where a

specific parameter will have a significant influence on the simula-

tion results when dealing with complex environmental models with

many interacting components. Modified SA techniques have been

used to formally address the question in what has in recent years

been referred to as ‘diagnostic model evaluation’ (Gupta et al., 2008).

For instance, Sieber and Uhlenbrook (2005), Reusser and Zehe

(2011) and Herman et al. (2013) used time-varying and spatially-

varying SA (see also Section 4.1) to quantify the temporal or

spatial patterns of the output sensitivity to model parameters and

therefore verify the model structure, i.e. assuming that different

model components should be active during different system states.

Similarly, the parameter screening provided by SA indicateswhether

there are ‘unnecessarily’ represented processes in the model and

thus identify potential for model simplification, i.e. processes that

are never activated in the model (e.g. Demaria et al., 2007). The

modeller has to decide though whether this problem could be

caused by limited calibration data variability and whether there is a

potential for future, maybe more extreme, conditions to still trigger

these processes (Gupta et al., 2008; Yilmaz et al., 2008).

2.6. SA, dominant controls analysis and robust decision-making

So far, we have discussed SA as a tool to investigate the propa-

gation of uncertainty through a numerical model and to under-

stand the model's intrinsic behaviour. Along the same lines, when

simulation models are applied to anticipate the effects of man-

agement actions and thus support decision-making, SA is a

recommended practice to assess the robustness of the assessment

(and thus of the final decision) with respect to uncertain model

inputs or assumptions (e.g. EC, 2009; EPA, 2009). Meaning that we

can “ascertain if the inference of a model-based study is robust or

fragile in light of the uncertainty in the underlying assumptions”

Saltelli and D'Hombres (2010). However, SA can be applied to learn

not only about models but also about systems. If the model

reasonably reflects real-world processes, the application of SA to

the model can provide insights into the dominant controls of the

system. These insights can be used in turn to support decision-

making by addressing questions like: what is the relative influ-

ence of different drivers e those that can be altered by the system

managers and those that cannot - on the system response? What

are critical values of the system drivers that induce threshold ef-

fects in the decision objectives? An early application of this type is

reported in Pastres et al. (1999), who apply SA to a shallow water

system to estimate the interactions between controllable system

drivers (e.g. nitrogen load) and uncontrollable ones (e.g. dispersion

or reaeration coefficients) in determining dramatic events such as

anoxic crisis. More recently SA has been proposed as a tool for

‘bottom-up’ or ‘vulnerability-based’ approaches for dealing with

decision-making problems under large (and often unknown levels

of) uncertainties (Wilby and Dessai, 2010) like for example climate

projections uncertainties. In such instances, Sensitivity Analysis,

and in particular mapping methods of input factors, can be used to

explore the space of possible variability of the system drivers, for

instance climate or socio-economic drivers like land use, demand

for natural resource, etc., and isolate combinations that would

exceed vulnerability thresholds (Lempert et al., 2003); or to

quantify links between the vulnerability of a system (e.g. a catch-

ment) and its properties (e.g. climate, hydrology, see for instance

Prudhomme et al. (2013)). More widely employed mapping

methods include the Patient Rule Induction Method (PRIM) and

Classification And Regression Trees (CART) (Lempert et al., 2008).

Applications of SA for this purpose are far less numerous than those

for uncertainty investigation and model calibration. However, they

are increasingly investigated, see for example Brown et al. (2011),

Singh et al. (2014) and references therein.

2.7. SA and emulators

An emulator (or emulation model, or surrogate model) is a

computationally efficient model, e.g. a polynomial or some other

algebraic relation, that is calibrated over a (small) dataset obtained

by simulation of a computationally demanding model, and that can

be used in its place during computationally expensive tasks. In the

context of SA, emulators can be used to obtain faster evaluations of

the model's response (Eq. (1)) and therefore allow for applying

computationally demanding SA methods to complex simulation

models. For specific choices of the emulator structure and the SA

method, emulators can provide analytical solutions to compute

sensitivity indices. For example Sudret (2008) presents an approach

where generalized polynomial chaos expansions (PCE) are used as

emulators and variance-based sensitivity indices (see Section 3.5)

are computed analytically as a post-processing of the PCE co-

efficients. On the other hand, the use of emulators poses a number

of numerical challenges related to their calibration and validation.

In fact, the validity of an emulator relies on the assumption that the

samples used for its identification are sufficiently representative of

the behaviour of the original simulationmodel and for the intended

model application, an assumption that is difficult if not impossible

to verify. The identification and use of emulators for SA is the topic

of a wide literature, whose review falls outside the scope of this

paper. The interested reader is referred to Forrester et al. (2008) for

a general introduction to emulation modelling, and Ratto et al.
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(2012) for a review of its application in SA.

3. Systematic review of SA methods

In this section we propose a systematic classification of SA

methods. This review does not aim at providing an exhaustive list

of all the available SA methods, which would be hardly feasible and

likely become obsolete in a short while. Rather, we group the

methodsmost widely used in the environmental modelling domain

into 5 broad classes, based on their underlying concept, which

reflect different assumptions, working principles and objectives. In

this sense our review is ‘systematic’ and hopefully open to

encompassmethods that we do not cite here explicitly as well as for

future developments within each class. The reviewed SA methods

are then placed within this classification system (shown in Fig. 3)

that can be used as an operational tool to guide the choice of the

most appropriate SA method for a problem at hand, depending on:

� the specific SA purpose (screening, ranking or mapping, as

described in Section 2.2) that each method can address;

� the method's computational complexity, measured by the

number of model evaluations required in its application.

We emphasize the role of computational complexity because

sampling-based methods requiring large sample sizes can be

impossible to apply to models with long run time and/or those

producing large input/output data files. In Fig. 3, we provide a

rough idea of the number of model evaluations required by each

class of methods. More discussion of the computational complexity

issue is given in Section 4.5. The remainder of this Section is

dedicated to a short description of the five classes of methods, their

working principles, and their advantages and limitations. The

mathematical notation used throughout the Section is summarised

in Table 1. We intentionally do not provide excessive mathematical

details on the mechanics of the various SA methods, and refer the

reader to the cited literature. A good complement of this review in

this regard are the introduction to sensitivity assessment of simu-

lation models by Norton (2015), the literature reviews (with a focus

on the chemical modelling literature) by Saltelli et al. (2005, 2012)

and the review of recent methodological advances by Borgonovo

and Plischke (2016).

3.1. Perturbation and derivatives methods

The simplest type of SA varies (perturbs) the input factors of the

simulation model from their nominal values one at a time (OAT)

and assesses the impacts on the simulation results via visual in-

spection, for instance by pair-comparison of the time series (or

spatial patterns) of simulated variables under nominal and per-

turbed inputs (e.g. Devenish et al., 2012 and Paton et al., 2013). If a

scalar output variable y can be defined, a more formal approach is

to measure the output sensitivity to the i-th input factor by the

partial derivative vg=vxi evaluated at the nominal value of the

factors x, or by the finite-difference gradient if the inputeoutput

Fig. 3. Classification system of Sensitivity Analysis methods based on computational complexity (vertical axis; M is the number of input factors subject to SA) and purposes of the

analysis. Some of the most widely used methods are reported (acronyms are defined in corresponding paragraphs of Sec. 3). Types of SA and sampling approaches are defined in Sec.

2.2. Figures about computational complexity are indicative, for a further discussion see Sec. 4.5.
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function g of Eq. (1) is not differentiable at x. Derivative-based SA

finds its rationale in the Taylor series expansion. This is well

explained in Helton (1993) and generalized later on in Borgonovo

(2008). In order to facilitate a comparison of sensitivities across

input factors that may have different units of measurements, the

partial derivatives are usually rescaled (e.g. Hill and Tiedeman,

2007). The sensitivity measure for the i-th input factor thus takes

the form

SiðxÞ ¼
vg

vxi

����
x

ci (2)

where ci is the scaling factor. Given that the functional relation of

Eq. (1) is rarely known in analytic form, partial derivatives are

usually approximated by finite differences, i.e.

bSiðxÞ ¼
gðx1;…; xi þ Di;…; xMÞ � gðx1;…; xi;…; xMÞ

Di
ci (3)

Using an approximation of Eq. (3), the computation of the

sensitivity measures for M factors requires M þ 1 model evalua-

tions. Derivative-based sensitivity measures are therefore compu-

tationally very cheap, with the drawback that they provide

information about local sensitivity only. Second derivatives can be

estimated with a relatively small number of additional model

evaluations, thus providing information about local interactions

between input factors. For more details on this issue see Norton

(2015).

3.2. Multiple-starts perturbation methods

A global extension of the perturbation approach is to compute

output perturbations from multiple points xj within the feasible

input space, and to measure the global sensitivity by aggregating

these individual sensitivities. Methods falling under this category

differ from each other in one or more of the following aspects: (i)

whether they use finite differences directly, or some trans-

formation such as their absolute or squared values; (ii) how they

select the fixed points xj and the length of the finite variation Di to

perturb the i-th input factor (design strategy); (iii) how they

aggregate individual sensitivities.

The most established method of this type is the method of

Morris (Morris, 1991), also called the Elementary Effect Test (EET

(Saltelli et al., 2008)). Here, the mean of r finite differences (also

called ‘Elementary Effects’ or EEs) is taken as a measure of global

sensitivity, i.e.

Si ¼
1

r

Xr

j¼1

EEj

¼
1

r

Xr

j¼1

g
�
x
j
1;…; x

j
i
þ D

j
i
;…; x

j
M

�
� g

�
x
j
1;…; x

j
i
;…; x

j
M

�

D
j
i

ci (4)

Besides the above sensitivity measure, it is common practice to

also compute the standard deviation of the EEs, which provides

information on the degree of interaction of the i-th input factor

with the others. A high standard deviation indicates that a factor is

interacting with others because its sensitivity changes across the

variability space. An alternative measure proposed by Campolongo

and Saltelli (1997) takes the absolute value of the finite differences

to avoid that differences of different signs would cancel out.

Borgonovo (2010) present a method where, at the additional cost of

M þ 1 model evaluations per EE, one can estimate whether the

response of the model is predominantly additive or governed by

interactions.

As for the sampling strategy to select the points xj ðj ¼ 1;…; rÞ

and the input variations Di, different approaches have been pro-

posed. The sampling strategy originally proposed by Morris (1991)

builds r trajectories in the input space, each composed of M þ 1

points. The starting point of each trajectory is randomly selected

over a uniform grid and the subsequent M points are obtained by

moving one factor at a time of a fixed amount D, so that each tra-

jectory allows for evaluating one EE per factor. The user has to

specify the “number of levels” L, which determines the grid size

(equal to 1=ðL� 1Þ of the range of variability of the input factor) and

the size of the variation D (equal to L=ð2�ðL� 1ÞÞ). Typical values for

L ranges from 4 to 8, which means that D ranges from 4/6 ¼ 0.76 to

8/14¼ 0.57 of the range of variability. Therefore, with this setup the

EEs capture finite and rather large perturbations. On the one hand

this avoids the risk of focussing only on very local behaviours of the

model's response g (Eq. (1)). On the other hand it can produce

misleading results if g is highly non-smooth and the characteristic

length of its variations is much smaller than D.

Several variants of the sampling strategy by Morris have been

proposed, including the LH-OAT approach proposed by van

Griensven et al. (2006), where the starting points of each trajec-

tory are generated by Latin-Hypercube sampling rather than

random sampling over a grid; and the approach by Campolongo

et al. (2007), where a high number of trajectories are generated

and a subset of r trajectories is selected so to maximise the overall

spread over the input space. A different approach to OAT sampling

is the radial-based design, where the variations Di are all taken

Table 1

List of symbols used and their meaning.

E Expected value

f Probability Density Function (PDF)

F Empirical Cumulative Distribution Function (CDF)

g Relationship between the model's inputs and output investigated by SA (or model's response), as defined by Eq. (1)

M Number of input factors subject to SA

N Sample size (and thus number of model evaluations) in sampling-based SA

n Base sample size for variance-based sensitivity estimators (Saltelli et al., 2010)

r Number of local derivatives in multiple-starts perturbation methods

SD Standard Deviation

Si Sensitivity index of the i-th input factor

V Variance

x Vector of M input factors subject to SA

x Nominal value of x for local SA

X Variability space of x for global SA

xi i-th input factor subject to SA

y (Scalar) Model output

YbðYnbÞ Set of behavioural (non-behavioural) output samples in Regional Sensitivity Analysis
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starting from the same (randomly selected) point in the input

space. Campolongo et al. (2011) show that radial-based design

provides several advantages in terms of efficiency and integration

with subsequent AAT sensitivity analysis. The interested reader is

referred to that paper and references therein for a discussion of

different OAT sampling strategies.

For all of these sampling strategies, the computation of the

mean (and standard deviation) of the EEs of M input factors re-

quires rðM þ 1Þ model evaluations, a requirement that is far lower

than the majority of AAT global approaches. Therefore, the EET is

often used when the computing time of a single model run is high,

or when the number of factors is very large. The EET is particularly

suitable for screening, i.e. to detect non-influential factors that can

be discarded from a subsequent, more time-consuming global SA

(see for instance Nguyen and de Kok, 2007), and for ranking.

Other multiple-start perturbation approaches use squared finite

differences, which allow a link to be established with the variance-

based SA approach discussed in Section 3.5. For instance, Sobol' and

Kucherenko (2009) suggest use of the mean of the squared finite

differences and demonstrate that it provides an upper bound on the

total-order variance-based sensitivity index (see Section 3.5). This

sensitivity measure is especially suitable for screening since a small

value of the measure implies that the input factor is non-influential,

while the same authors show that it may give false conclusions if

used for ranking. Along a similar line of reasoning is the DELSA

approach (Distributed Evaluation of Local Sensitivity Analysis) by

Rakovec et al. (2014), which also uses the squared finite differences

as a measure of sensitivity (scaled by the ratio between the a priori

input variance and the total output variance). Here, local sensitivities

computed at different sampling points are not aggregated but their

full frequency distribution is analysed, and if aggregated, themedian

value is used rather than the mean. Another difference that is worth

mentioning with respect to the EET is that in the DELSA approach

the input variation D is set to 0.01 of the fixed value x
j
i
, so that finite

differences can be regarded as approximating local derivatives.

3.3. Correlation and Regression analysis methods

The underlying idea of these methods is to derive information

about output sensitivity from the statistical analysis of the input/

output dataset generated byMonte Carlo simulation. Early works in

the field are Iman and Helton (1988) (mainly on regression anal-

ysis) and Saltelli and Marivoet (1990) (on correlation methods). An

introduction and review of these approaches are given e.g. in

Kleijnen and Helton (1999a), Helton and Davis (2002) and Storlie et

al. (2009).

Correlation methods use the correlation coefficient between the

input factor xi and the output y as a sensitivity measure, i.e.

Si ¼ correlationðxi; yÞ (5)

Several different definitions of correlation can be used,

including Pearson correlation coefficient (CC) and partial correla-

tion coefficient (PCC), which apply when a linear relationship exists

between the input factors x and the output y, and the Spearman

rank correlation coefficient (SRCC) or partial rank correlation co-

efficient (PRCC), which can be used for nonlinear but monotonic

relationships (e.g. Pastres et al., 1999). The choice among these

different alternatives depends on the degree of acceptability of the

linearity and/or monotonicity assumption between inputs and

output. An informal though effective way to assess this is through

visual inspection of the input/output sample, for instance using

scatter plots. More sophisticated correlation methods can be used

to address specific needs. For example, Minunno et al. (2013)

demonstrate the use of Canonical Correlation Analysis (CCA) for

GSA in an application where multiple model outputs need to be

accounted for simultaneously.

Regression analysis methods instead derive the sensitivity

measure as a ‘byproduct’ of regression analysis applied to the input/

output sample. The simplest andmost widely usedmethod is linear

regression. Here, a linear relationship y ¼ ai þ bixi is assumed and

the linear least-squares estimate of the regression coefficient bi is

the sensitivity measure. The Standardised Regression Coefficients

(SRC) are used when input factors have different units of mea-

surement, i.e.

Si ¼ bi
SDðxiÞ

SDðyÞ
(6)

where SD stands for standard deviation. Multiple linear regression

can be used to obtain the sensitivities to all the individual input

factors at once. The advantage of linear regression is that it can be

easily applied to small datasets, however it can be inadequate if the

inputeoutput relationship is non-monotonic or strongly nonlinear

(e.g. Hall et al., 2009).

A particularly interesting class of nonlinear regression methods

in the context of Sensitivity Analysis is that of Classification And

Regression Trees (CART, for application examples see e.g. Harper

et al. (2011) and Singh et al. (2014)). CART provides several ad-

vantages, including that they can easily handle non-numerical in-

puts and outputs, and that they can be used for both ranking and

mapping.

3.4. Regional Sensitivity Analysis (or Monte-Carlo filtering)

Regional Sensitivity Analysis (RSA), also called Monte Carlo

filtering, is a family of methods mainly aimed at identifying regions

in the inputs space corresponding to particular values (e.g. high or

low) of the output, and that can be used for mapping and for

dominant controls analysis. The idea was first proposed and

investigated in Young et al. (1978) and Spear and Hornberger

(1980). Here, the input samples (typically parameters) are divided

into two binary sets, ‘behavioural’ and ‘non-behavioural’, depend-

ing on whether the associated model simulation exhibits the ex-

pected pattern of state variable response or not. Another way to

apply RSA is by splitting input samples depending on whether the

associated output is above or below a prescribed threshold. Then,

the two input sets are compared to gain insight on the model

behaviour and mapping. For example, QeQ plots can be used to

compare behavioural versus non-behavioural samples. Another

common analysis is to over-plot the marginal empirical cumulative

distribution functions (CDF) of the behavioural and non-

behavioural sets. Visual inspection of these distributions provides

information on factor mapping, for instance by highlighting a

reduction in the variability range for behavioural inputs. The

divergence between the two distributions, for example measured

by the KolmogoroveSmirnov statistic, can be used as a sensitivity

index, i.e.

Si ¼ max
xi

���Fxijybðxijy2YbÞ � Fxijynbðxijy2YnbÞ
��� (7)

where Fxijyb and Fxijynb are the empirical cumulative distribution

functions of xi when considering input samples associated with

behavioural and non-behavioural outputs respectively (i.e. falling

in the subsample Yb/Ynb of behavioural/non-behavioural outputs).

The advantage of using empirical distribution functions is that they

usually provide a robust approximation of the underlying distri-

bution even if computed over small samples. This may happen for

instance with overparameterised models where behavioural
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parameterisations are confined to small sub-regions of the

parameter space and therefore the size of the behavioural set might

be very small even if starting from a large number of model sim-

ulations (Norton, 2015). However, while useful for ranking, the

sensitivity measure of Eq. (7) cannot be used for screening. In fact, a

value of zero of the above index is a necessary but not sufficient

condition for insensitivity because input factors contributing to

output variability only through interactions may have the same

behavioural and non-behavioural distribution functions (see for

instance the example given in Section 5.2.3 of Saltelli et al. (2008)).

Oneadvantageof this approach is that it canbeapplied toany type

ofmodel output, including non-numerical ones, as long as a splitting

condition can be defined and verified, possibly also by qualitative

evaluation. On the other hand, the use of a splitting criterion can be a

limitation whenever the discrimination between behavioural and

non-behavioural outputs is not clear-cut. For instance, RSA has been

widely used in applications where the model output is an objective

function (i.e. a measure of the model accuracy against observations)

and the splitting criterion reflects the achievement of a minimum

requirement ofmodel performance (e.g. Freer et al.,1996; Sieber and

Uhlenbrook, 2005). Thedefinitionof the thresholdvalue atwhich the

model performance is deemed acceptable is usually a subjective

choice by themodeller. The problem can be especially difficult when

the scalar model output is a predictive function, unless there exists a

threshold value that has a specific meaning for the model users (for

instance a regulatory threshold value for an environmental variable).

To overcome the issue and apply RSAwithout specifying thresholds,

one option is to group the ranked output samples into a prescribed

number, e.g. 10, of equally spaced intervals, and compare the 10

resulting distribution functions of the input factors (Freer et al.,1996;

Wagener et al., 2001). For an application example and discussion see

also Tang et al. (2007b).

3.5. Variance-based methods

Variance-based SA relies on three basic principles: (i) input

factors are regarded as stochastic variables so that the model in-

duces a distribution in the output space; (ii) the variance of the

output distribution is a good proxy of output uncertainty; (iii) the

contribution to the output variance from a given input factor is a

measure of sensitivity.

Several variance-based indices can be defined. First-order indices

(or ‘main effects’) measure the direct contribution to the output

variance from individual input factors or, equivalently, the expected

reduction in output variance that can be obtained when fixing a

specific input, i.e.

SFi ¼
Vxi ½Ex�i

ðyjxiÞ�

VðyÞ
¼

VðyÞ � Exi ½Vx�i
ðyjxiÞ�

VðyÞ
(8)

where E denotes expected value, V denotes the variance, and x�i

denotes “all input factors but the i-th”. The total-order indices (or

‘total effects’) introduced by Homma and Saltelli (1996) measure

the overall contribution from an input factor considering its direct

effect and its interactions with all the other factors, which might

amplify the individual effects, i.e.

STi ¼
Ex�i

½Vxiðyjx�iÞ�

VðyÞ
¼ 1�

Vx�i
½Exiðyjx�iÞ�

VðyÞ
(9)

Total-order indices are particularly suitable for screening

because a value of zero of the total-order index is a necessary and

sufficient condition for a factor to be non-influential. First-order

indices are often used for ranking, especially if interactions are not

significantly contributors to output variance. Variance-based

sensitivity indices of intermediate order can also be defined: for

instance, second-order indices measure the contribution to output

variance from pairs of factors; third-order indices from factor tri-

ples; etc. These indices can be used to analyse interactions between

specific groups of input factors. An effective account of the devel-

opment of variance-based indices and their connections to earlier

works on ‘importance measures’ (e.g. Iman and Hora (1990)) can be

found in Borgonovo (2007).

An interesting property of first-order and higher-order indices is

that they are related with the terms in the variance decomposition

of the model output (Sobol', 1993), which “reflects the structure of

the model itself” (Oakley and O'Hagan, 2004) and holds under

relatively broad assumptions, the strongest one being that input

factors are independent. In the presence of correlations among the

input factors, instead, the tidy correspondence between variance-

based indices and model structure is lost (see e.g. discussion in

Oakley and O'Hagan (2004)) and counterintuitive results may be

obtained. For example one might observe total-order indices

smaller than first-order ones for negative correlations or total-

order indices tending to zero as correlation grows to unity

(Kucherenko et al., 2012). The mechanism of output variance

decomposition and the link to variance-based sensitivity indices

are also discussed in Norton (2015).

Another reason for the popularity of the first-order and total-

order indices is that they are relatively easy to implement since

several closed-form algebraic equations exist for their approxima-

tion. For a review of these estimators in the case of independent

input factors, see Saltelli et al. (2010); for an extension to the case of

dependent inputs, see Kucherenko et al. (2012). However, the

sample size required to achieve reasonably accurate approxima-

tions can be rather large (as further discussed in Section 4.5), which

severely affects the applicability of this approach to time-

consuming models. Several methods were proposed to reduce the

number of model evaluations in the approximation of variance-

based indices. These include: (i) methods using the Fourier series

expansion of the model output y, like the Fourier Amplitude

Sensitivity Test (FAST (Cukier et al., 1973)) for the approximation of

the first-order indices, and the extended FAST (Saltelli et al., 1999)

for the total-order indices (for an introduction to these techniques,

see Norton (2015)); and (ii) methods using an emulator like the

approach by Oakley and O'Hagan (2004).

Besides computational aspects, another limitation of variance-

based indices is that, by relying on the implicit assumption that

variance can fully capture uncertainty, they can be inappropriate

when the output distribution is multi-modal or highly-skewed and

the variance is therefore not a meaningful indicator. This issue is

discussed in the next section.

3.6. Density-based methods

The limitations of the variance-based approach have stimulated

a number of studies on ‘moment-independent’ sensitivity indices

that do not use a specific moment of the output distribution to

characterize uncertainty and therefore are applicable indepen-

dently of the shape of the output distribution. These methods are

sometimes referred to as ‘density-based’ methods because they

look at the Probability Density Function (PDF) of the model output,

rather than its variance alone.

The key idea is to measure sensitivity through the variations in

the output PDF that are induced when removing the uncertainty in

one input factor. In practice this is done by computing the diver-

gence between the unconditional output PDF, which is generated

by varying all factors, and the conditional PDFs that are obtained

when fixing individual input factor in turn to a prescribed value. If

multiple conditioning points are considered, some type of statistic
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is applied to aggregate individual results. The general form of a

density-based sensitivity index is

Si ¼ stat
xi

divergence
h
fy; fyjxi ð$jxiÞ

i
(10)

where fy and fyjxi are the unconditional and conditional output PDFs,

and ‘stat’ and ‘divergence’ denote some statistic and divergence

measure. For example, in entropy-based methods the divergence

between conditional and unconditional PDF is measured by the

Shannon entropy (Krykacz-Hausmann, 2001) or by the Kullback-

Leibler entropy (Park and Ahn, 1994; Liu et al., 2006), while the d-

sensitivity approach (Borgonovo, 2007) uses the area enclosed be-

tween the two PDFs. In the d-sensitivity approach, different condi-

tioning values are used for xi and individual results are averaged, i.e.

‘stat’ in Eq. (10) is the mean, while in entropy-based methods only

one conditioning value is typically used. Other density-based ap-

proaches, e.g. Borgonovo (2014) and the novel density-based PAWN

method by Pianosi andWagener (2015), use cumulative distribution

functions in place of PDFs. The advantage is that unconditional and

conditional CDFs can be efficiently approximated by the empirical

CDFs of output samples, which makes the density-based sensitivity

indices very simple to compute.

One advantage of density-based sensitivity indices is that they

can easily be tailored tomeasure sensitivity over the entire range of

output variability as well as a specific sub-range, for instance

extreme values (the so called Regional Response Probabilistic

Sensitivity Analysis discussed in Liu et al. (2006)). This may be very

interesting in those applications, e.g. hazard assessment, where the

tail of the output distribution is of particular interest. Other inter-

esting properties of density-based methods are that they allow for

using statistics that are monotonic transformation invariant, and

that they can be estimated from a given sample, i.e. without

requiring a tailored sampling strategy (Borgonovo (2014) and ref-

erences therein).

Application examples in the environmental domains are

Pappenberger et al. (2008) for the entropy-based indices, Castaings

et al. (2012); Anderson et al. (2014) and Peeters et al. (2014) for the

d-sensitivity measure, and Pianosi and Wagener (2015) for PAWN.

4. Workflow for the application of SA

Despite the differences between the individual SA methods

described in the previous section, their application requires per-

forming a sequence of steps that, to some extent, can be discussed

in general terms. Here we refer to these steps as ‘workflow’. The

workflow for the application of SA is illustrated in Fig. 4. In this

section, we discuss this workflow and the choices that users have to

make at each step, with the goal of providing practical guidelines to

support users in their SA application.

4.1. Experimental set-up: define input factors and output

Any SA exercise starts from three basic choices that together

form what we call the ‘experimental setup’: (i) choosing which

input factors will be subject to SA; (ii) setting the values of other

input factors that will be kept constant throughout the SA; and (iii)

defining the model output.

When the model execution produces a temporally or spatially

varying set of outputs, the application of SA typically requires

aggregating the outputs into a scalar function, as described in

Section 2.1. An exception is the case when the input factors are the

model parameters and the mathematical form of the model allows

the derivation of algebraic solutions of the model state's sensitivity

in time (Norton (2015) and references therein). When a scalar

output function must be used, its definition obviously affects the SA

results because different scalar outputs may have different sensi-

tivities to the input factors. For instance, Pappenberger et al. (2008)

shows how the ranking of the input factors (the parameters of a

flood inundation model) vary when considering the mean of the

squared errors or the mean of the absolute errors as scalar outputs.

Often, it is convenient to define multiple scalar outputs that

summarise different aspects of the model behaviour. Their sensi-

tivity can then be analysed separately (e.g. Baroni and Tarantola,

2014) or jointly (e.g. Minunno et al., 2013), or reframed as a

multi-criteria analysis using for example Pareto ranking (e.g.

Rosolem et al., 2012).

Another option that is becoming more and more accessible with

growing computing power is that of reducing the level of aggre-

gation so to preserve more of the temporal or spatial variability of

the model. Sensitivity indices can be computed at different tem-

poral resolutions, therefore obtaining their temporal evolution over

the simulation horizon (Wagener and Harvey, 1997; Wagener et al.,

2003; Cloke et al., 2008; Reusser and Zehe, 2011; Kelleher et al.,

2013; Guse et al., 2014). A similar approach can be applied to the

aggregation of spatial patterns into a single output function, whose

resolution can be varied in order to capture the space-variability of

sensitivities across the model domain (Tang et al., 2007a; van

Werkhoven et al., 2008). Time-varying or spatially-varying SA is

especially useful to provide new insights about the dynamics of the

model (e.g. when and where a given parameter is more influential)

and/or the underlying system (e.g. what processes are mostly

influential, when and where). However, its application poses a

number of practical difficulties, for example regarding the choice of

the averagingwindow size and of appropriatemethods for complex

models (Massmann et al., 2014), which constitute an opportunity

for further research.

4.2. Choose the SA method

As discussed in Section 3, the choice of the most appropriate SA

method for a given problem is largely driven by the purpose of the

analysis (screening, ranking or mapping: see horizontal axis in

Fig. 3) and by the available computing resource (and therefore the

maximum number of model evaluations that can be used to

approximate sensitivity indices: see vertical axis in Fig. 3). Typi-

cally, the number of model evaluations N increases with the

number of input factors M subject to SA. However, the ratio be-

tween N andM significantly varies from onemethod to another and

often also from one application to another. This is illustrated in

Fig. 5, which reports some examples of combinations (M,N) taken

from the literature. The choice of the appropriate sample size will

be further discussed in Section 4.5.

The choice of the method can be also driven by other specific

features of the problem at hand, like the linearity of the

inputeoutput relationship, the statistical characteristics of the

output distribution (e.g. its skew), etc., which are handled more or

less effectively by different methods, as discussed in Section 3.

When multiple options are available, it may be advisable to

apply more than one method and to compare individual results so

to reinforce the general conclusions drawn from SA. Often, this can

be done at almost no extra computing cost because different

methods can be applied to the same inputeoutput sample without

re-running the model. This topic will be further discussed in Sec-

tion 4.8.When the number of input factors is high, another option is

to apply methods sequentially, beginning with computationally

efficient screening methods like the EET and then applying more

computer-intensive methods to a reduced number of input factors.

In such a case, a careful design of the OAT sampling strategy applied

during the screening step could help to reduce the number of new
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model evaluations required in the second step, as discussed for

instance by Campolongo et al. (2011).

4.3. Define the input variability space

Whatever the chosen SA method, the first step of SA is the

definition of the variability space of the input factors, i.e. the

‘neighbourhood’ of the nominal value x in local SA, and the input

variability space X in global SA. When using global methods where

inputs are regarded as stochastic variables, like variance-based and

density-based methods (Sections 3.5 and 3.6), their PDFs over the

support X must also be defined. In the absence of specific

Fig. 4. Workflow for the application of Sensitivity Analysis, choices to be made and recommended practice for their revision.

Fig. 5. Number of model evaluations (N) used in SA against the number of input factors (M) from the applications referenced in this paper. Green markers denote that the

convergence of the sensitivity indices was reached, red markers that it was not reached, grey markers that convergence assessment was not reported in the paper. For density-based

and variance-based (bottom right panel), squares refer first-order and total-order estimators via resampling technique (Saltelli et al., 2010), diamond denote applications of FAST/

eFAST, and stars are application of the density-based d-sensitivity method. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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information regarding this choice a common approach is to assume

independent, uniformly distributed inputs so that the problem

reverts to the definition of X only.

When the input factors x are the model parameters, feasible

ranges can often be defined based on their physical meaning or

from existing literature, and further constrained using a priori in-

formation about the specific characteristics of the case study site

(e.g. Bai et al., 2009). If observations of the simulated variables are

available, another option is to first apply a preliminary Regional

Sensitivity Analysis to assess whether literature ranges can be

narrowed down by excluding sub-ranges producing a model per-

formance below a prescribed acceptability threshold (e.g. Freer

et al., 1996).

When the input factors x are the model forcing inputs, feasible

ranges should account for the observational errors that can be ex-

pected frommeasuring devices, data pre-processing, interpolation,

etc. Approaches to quantify data uncertainty vary depending on the

type of variable under study and are gaining increasing consider-

ation in the environmental modelling community. For an example

of meteorological and water quality and quantity variables and

their uncertainties see for instance McMillan et al. (2012). When

suitable data are either unavailable or sparse, ranges or probability

distributions can be elicited from experts. Several techniques and

practical tools are discussed e.g. in O'Hagan et al. (2006) and in

Morris et al. (2014).

While a review of the available data-based or expert-based

methods to define the input variability space falls outside the

scope of this paper, here we mainly want to point out that the

definition of X (and possibly the associated probability distribu-

tion) is often one of the most delicate steps in the application of

GSA. A number of studies demonstrate how different definitions of

X , each considered equally plausible by the analyst, can dramati-

cally change the values of sensitivity measures and therefore the

conclusions drawn from GSA (e.g. Shin et al., 2013). This is espe-

cially true for variance-based and density-based methods where

the sensitivity measures are directly related to the output proba-

bility distribution, which is induced by the combination of the

model structure (Eq. (1)) and the assumed input distributions.

In the following paragraphs we discuss two other specific issues

that in our opinion deserve special attention when applying GSA to

environmental models.

4.3.1. Handling unacceptable model behaviour

When dealing with complex environmental models, it may

happen that a combination of input factors that a priori may seem

feasible, generates a model's response that the analyst would reject

as unacceptable (for instance, unacceptably large deviations from

observations), or even causes the simulation to fail (for instance

due to numerical instability). These simulations may be excluded

from further analysis by adding a ‘filtering’ step before the post-

processing step (see Fig. 2). An example is given in Pappenberger

et al. (2008), where output samples associated with model per-

formance below a prescribed threshold are discarded before the

computation of the sensitivity indices. Kelleher et al. (2013) also

compare the sensitivity estimates that are obtained before and after

applying a performance criterion to screen out unacceptable

parameter sets. Such critical look at the results of individual sam-

ples, or subsets of samples, is a practicewe recommend since it may

yield useful insights into the model behaviour and gives directions

to revise the experimental setup of the SA exercise (for instance, to

reduce or enlarge the input variability space).

4.3.2. Handling non-scalar or non-numerical input factors

GSA methods described in Section 3 are usually illustrated

assuming that all the input factors are numerical scalar quantities

(for instance the model parameters), so that a given combination of

inputs can be represented by a vector x ¼ ½x1; x2;…; xM �. However,

in environmental modelling applications, candidate input factors

may include entities that are not immediately represented by a

scalar number, like for example the time series of forcing inputs

(e.g. the input hydrograph in Fig. 1) or the model's spatial resolu-

tion. In order to include such input factors in SA, a link must be

established between possible realizations of the non-numerical

input factor and the values of a numerical quantity xi. Ad hoc

procedures can be used for specific types of factors: for instance, a

time series of forcing inputs can be associated with a scalar char-

acteristic used to design it (e.g. the intensity or the duration of a

design storm event as in Hamm et al. (2006)) or with the scalar

multiplier used to obtain it by perturbation of a reference time

series (e.g. Singh et al., 2014). A more flexible procedure is the one

described in Baroni and Tarantola (2014) (and references therein).

Here, the variability space of each input factor is represented by a

list of its possible realizations. Then, the index of each element in

the list is the desired scalar quantity xi, which is associated with a

discrete uniform probability distribution. Following these defini-

tions, sampling is performed with respect to the scalar indices

x1,…, xM , while the model is evaluated against the original input

factors defined by the sampled indices. This procedure can be

applied to any type of input, including non-numerical. However, it

requires that post-processing uses output samples only, like for

instance in variance-based or density-based methods, while it

cannot be applied within the Elementary Effects Test or Regional

Sensitivity Analysis, which by construction requires that the input

variability space be a metric space (see Eqs. (4) and (7)).

4.4. Choose the sampling strategy

When sensitivity indices cannot be computed analytically,

sampling-based sensitivity analysis (Fig. 2) must be used.

For OAT methods like the EET, several alternative strategies are

available for sampling (see discussion in Section 3.2). For AAT

methods like Correlation and Regression Analysis, Regional Sensi-

tivity Analysis and density-basedmethods, in principle any random

or quasi-random sampling technique can be used. Among these,

the most commonly used in the GSA literature are Latin-Hypercube

sampling and Sobol’ quasi-random sampling. A practice-oriented

introduction to these techniques can be found for example in

Forrester et al. (2008) (Section 1.4) and Press et al. (1992) (Section

7.7).

Some other GSA methods may require a tailored sampling

strategy. For example, the approximation of the first-order and

total-order variance-based indices by the estimators discussed in

Saltelli et al. (2010) (see Section 3.5) is based on a tailored two-

stage procedure. First, 2n random samples are generated (so

called base sample) using Sobol' quasi-random or Latin-Hypercube

sampling; then, otherMn input samples are built by recombination

of the vectors in the base sample. The FAST and eFAST approaches

also require a tailored sampling strategy. In fact, the use of an

efficient sampling strategy is what differentiates them from other

estimators of variance-based indices, as described in Section 3.5.

We suggest that the implications of the sampling choice should

be tested similar to the other choices made in the application of

GSA. If computationally feasible, different strategies can be

compared. However, it is likely that the definition of the input

variability space or the output definition have a larger impact on

the GSA outcome. Furthermore, independently of the chosen

sampling strategy, the robustness of the sensitivity indices can be

checked through confidence intervals, as discussed in the following

sections.
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4.5. Choose the sample size

The second choice to be made in sampling-based GSA is that of

the sample size N. This choice has a dramatic impact on the overall

computational burden, given that the execution of the model is

usually far more computationally expensive than the post-

processing step of estimating sensitivity indices. Therefore GSA

users are typically confronted with the problem of finding a

compromise between the need for keeping the sample size small

and that of obtaining reliable estimates of the sensitivity indices.

The solution to this problem is not unique and may significantly

vary depending on the complexity of themodel's response (Eq. (1)),

which, however, is generally difficult to know before running the

model.

Some suggestions for the choice of the sample size for the most

widely usedmethods are reported in the literature. For instance, for

the Elementary Effect Test, a common indication is to use r¼ 10 EEs,

which results in a total number of N ¼ rðM þ 1Þmodel evaluations.

However, to the authors’ knowledge this choice seems to be

motivatedmainly by the need of keeping the total number of model

evaluations limited rather than by a formal assessment of the

reliability of the results. For example, Campolongo and Saltelli

(1997) show that, with r ¼ 10, the confidence bounds of the

sensitivity indices obtained by bootstrapping are so large that

factor ranking is essentially meaningless; Vanuytrecht et al. (2014)

compute the EET sensitivity indices using an increasing number of

samples and conclude that r ¼ 25 is sufficient to discriminate be-

tween influential and non-influential factors (screening) while it is

still not sufficient to stabilize factor ranking.

For variance-based indices computed using the efficient esti-

mators discussed in Saltelli et al. (2010), the application of the

resampling strategy to a base random sample of size n leads to a

total of N ¼ nðM þ 2Þmodel evaluations. Common indications for n

range from 500 to 1000 (Saltelli et al., 2008). However, application

examples reported in the literature seem to suggest that the base

sample sizemay significantly vary from one application to the other

and that a much larger base sample might be needed to achieve

reliable results (see datapoints in the bottom right panel of Fig. 5).

Furthermore, the number of samples needed to reach stable

sensitivity estimates can vary from one input factor to another, with

low sensitivity inputs usually converging faster than high sensi-

tivity ones (e.g. Nossent et al. (2011)).

The use of distribution functions in RSA usually provides quite

robust sensitivity estimates even for relatively small sample sizes

(see discussion in Section 3.4), a feature that made RSA particularly

attractive when it was introduced in the early 1980s given that the

computing resource for Monte Carlo sampling was very limited at

the time. Correlation and regression methods are also generally

applied to relatively limited datasets, typically around or less than

1000M model evaluations (see again Fig. 5 for some examples).

However, it is difficult to provide general rules for these classes of

methods especially because applications of RSA and Correlation

and Regression methods rarely report a discussion of the appro-

priateness of the selected sample size (an exception is Kleijnen and

Helton (1999b)).

To summarise, we can conclude that, roughly speaking, the

number of model evaluations N increases with the number of in-

puts M by a factor in between 10 and 100 for multiple-starts de-

rivatives, between 100 and 1000 for Regional Sensitivity Analysis

and Correlation and Regression methods, and around 1000 or even

more for density-based and variance-based methods (though sig-

nificant reductions are obtained when using FAST or eFAST).

However, these proportionality coefficients are expected to in-

crease with M, and they can vary greatly from one application to

another. Therefore, rather than providing specific indications on

how to properly choose the sample size a priori, in the next sub-

section we discuss some techniques to verify a posteriori the

appropriateness of the choice made.

4.6. Assess robustness and convergence

When applying sampling-based SA, sensitivity indices are not

computed exactly but they are approximated from the available

samples. The robustness and convergence of such sensitivity esti-

mates should therefore be assessed, especially when obtained from

samples of small/medium size.

Convergence analysis assesses whether sensitivity estimates are

independent of the size of the inputeoutput sample, i.e. if they

would take similar values when using an (independent) sample of

larger size. A simple and generic technique to address this question

is to re-compute the sensitivity indices using sub-samples of

decreasing size extracted from the original sample. The advantage

of this approach is that it does not require running new model

simulations, however it might overestimate the convergence rate

because the sub-samples are not independent. Results of conver-

gence analysis can be displayed in a ‘convergence plot’ like the one

in Appendix A. Examples are given in Nossent et al. (2011) and

Wang et al. (2013).

Robustness analysis assesses whether sensitivity indices are

independent of the specific inputeoutput sample, i.e. if they would

take similar values if estimated over a different sample of the same

size. Technique to address the question without running new

model evaluations are subsampling and bootstrapping (Efron and

Tibshirani, 1993; Romano and Shaikh, 2012). A discussion of the

quality of bootstrapping-based confidence limits of some widely

used sensitivity indices can be found in Yang (2011).

If convergence has not been reached and/or the confidence

bounds are large, additional model simulations may be run and the

sensitivity indices re-estimated over the increased sample. If this is

not possible because of limited computing resources, some con-

clusionsmay still be drawn from the available results. In fact, even if

the estimates of the sensitivity indices have not reached conver-

gence, the screening of the non-influential input factors or the

factor rankingmight have stabilised (see for instance the discussion

in Ziliani et al. (2013)).

While the evaluation of convergence and/or robustness is

increasingly common in applications of variance-based methods, it

is not equally common for other methods, for instance the

Elementary Effects Test, although there is no technical reason not to

extend the above described techniques to this approach (see for

example the visualization of the EET results with bootstrapping in

Appendix A). We suggest that the assessment of convergence and

robustness of the estimated indices and the associated screening,

ranking and mapping should be standard practice in any sampling-

based SA exercise.

4.7. Visualize results

When dealing with large sets of sensitivity indices, the inter-

pretation of SA results can be significantly enhanced by effective

visualization tools that: (i) facilitate the identification of outliers

and counterintuitive behaviours; (ii) help comparing results ob-

tained by varying some of the underlying choices, e.g. different

definitions of the input variability space or different sampling

strategy; (iii) support the identification of temporal or spatial pat-

terns in the output sensitivity; etc. Furthermore, effective visuali-

zation is key to improve the communication of SA results and

conclusions.

General suggestions for visualizing scientific data effectively are

presented in Kelleher and Wagener (2011). In Appendix A of this
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paper we provide several examples of plots that have been

employed in SA applications and that we found helpful. Some of

these plots have been proposed for specific SA methods (e.g. the

Elementary Effects Test or Regional Sensitivity Analysis) while

others are meant to handle specific challenges. For instance, pat-

terns plots (e.g. vanWerkhoven et al., 2008) can be very effective to

visualize large sets of sensitivity indices, e.g. when the number of

input factors is large or when analysing the variations of output

sensitivity across a wide temporal or spatial domain. They help

highlighting patterns and trends although they do not allow for a

detailed comparison between the exact index values.

Another challenge is to visualize multiple sensitivity attributes

simultaneously, for instance first-order sensitivity, total-order

sensitivity and interactions, in such a way that much information

is conveyed without overloading the reader. Two types of plots that

have been recently suggested to this end are Circos (Kelleher et al.,

2013) and radial convergence diagrams (Butler et al., 2014). Our

(subjective) experience is that viewers find radial convergence di-

agrams somewhat easier to interpret though both contain the same

information.

Besides visualising sensitivity indices, it is often convenient to

visualise the input and output samples for additional insights. For

example, variance-based methods do not provide any mapping of

the results into the input factors space, however some information

about this mapping can be obtained by applying RSA or other

visualization tools (e.g. scatter plots or parallel coordinate plots, see

Appendix A) to the base sample generated for VBSA, at no addi-

tional computing cost.

4.8. Assess credibility

The robustness and convergence analyses discussed in Section

4.6 aim at assessing the uncertainty in the results of a specific SA

method. Therefore they tell us about the reliability of the results

within the context of that method. A different and equally relevant

question is how much the method itself can be trusted, i.e. how

suitable it is to address the questions it is expected to answer when

applied to the problem at hand. For instance, variance-based

methods rely on the assumption that variance is a sensible proxy

for uncertainty, which may not be true for a highly-skewed output

distribution. In this case, even if one were able to derive almost

exact estimates of the variance-based sensitivity indices, they

would not provide the correct ranking (a numerical example is

given in Liu et al. (2006)). In other words, SA results may be very

robust and yet not credible, and vice versa.

A way to assess credibility is by verifying that the underlying

assumptions of a method are satisfied, for instance checking the

linearity, monotonicity or smoothness of the inputeoutput rela-

tionship of Eq (1) or the characteristics of the output distribution.

Another way is to compare SA results produced by different

methods. As discussed in Section 4.2, the application of different

GSA methods does not necessarily increase the computational

burden since multiple approaches can be applied to the same

inputeoutput sample. If the screening/ranking results remain the

same across different methods, the comparison reinforces the

conclusions of SA. If instead there are contradictory results, it

stimulates further investigations that may lead to understanding

different aspects of the model's behaviour that are captured by

different SA methods (see for instance the discussion in

Pappenberger et al. (2008)). Also, specific techniques can be applied

to validate SA conclusions, e.g. the visual test proposed by Andres

(1997) to validate factor screening or the quantitative test based

on the KolmogoroveSmirnov statistic presented in Pianosi and

Wagener (2015). Here conditional (on either sensitive or insensi-

tive parameters) and unconditional output distributions are

compared to check whether all insensitive factors have been

identified. The limitation of these validation tests is that they

require additional model runs.

Credibility assessment also involves the interpretation and

explanation of the SA results. If unexpected results are obtained, for

instance the output is highly sensitive to an input factor that was

supposed hardly influential, the interpretation of the result could

lead to either learning new aspects of the model behaviour or

revising some of the choices made in the experimental setup, for

example the definition of the output definition or of the input

variability space.

5. Conclusions

In this paper we have provided a systematic classification of

Sensitivity Analysis (SA) methods and discussed a workflow for its

application, with the aim of providing the reader with the back-

ground needed:

� to further engage with the SA literature;

� to recognise the type of questions that could be addressed

through SA;

� to choose the most suitable SA approach depending on the

questions to be addressed, the available computing resources,

and the characteristics of the problem at hand;

� to be aware of the key assumptions underlying each approach,

its scope and limitations;

� to understand the typical workflow for applying SA;

� to be aware of the most sensitive choices that are made in the

workflow and how to assess their impacts.

In doing so, we also highlighted some emerging trends in the SA

literature that we consider of particular interest to the environ-

mental modelling community. In particular:

(i) the application of SA to analyse the impact of non-numerical

uncertain factors like model resolution or structure;

(ii) the application of time-varying and space-varying SA, which

is made possible by increasing computing power and storage

space, and which is a means to overcome the limitations of

defining an ‘aggregated’ scalar output when dealing with

dynamic models;

(iii) the application of SA for dominant-control analysis and

robust decision-making, i.e. as a means to learn about the

behaviour of models or systems.

We think that, among the topics for further research in the field,

the following are of particular relevance for environmental

modellers:

� developing multi-method approaches to overcome the limita-

tions of individual SA methods;

� providing guidance and advice on convergence and robustness

of different SA approaches;

� integrating the evaluation of model behaviour/performance in

the estimation of sensitivity indices;

� improving techniques to analyse interactions between input

factors: in fact, while information about factor interactions can

be gathered as a byproduct of several SA techniques (for
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instance, by looking at the standard deviation of the EEs or at the

difference between total-order and first-order indices in

variance-based SA), to our knowledge there is no SA method

that has been specifically proposed to effectively investigate

factor interactions;

� improving tools for visualisation and effective communication

of SA results;

� reducing computing requirements for applications to complex

environmental models, including the use of emulators.
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Appendix A. Examples of helpful visualization tools for

global SA

Visualize input/output samples

1. Scatter plots (or dotty plots): output samples against samples of the i-th input factor.

One point ðxj
i
; yjÞ per input/output sample ðj ¼ 1;…;NÞ. Uniformly scattered points

like in the left panel indicate low sensitivity (to x1 here); emergence of patterns like in

the right panel denotes high sensitivity. Useful for screening and ranking.

2. Coloured scatter plots: samples of i-th input factor against samples of the k-th, with

marker colour proportional to the associated output value. One point ðxj
i
; xj

k
Þ per

input/output sample ðj ¼ 1;…;NÞ. Useful to detect interactions, which are highlighted

by the emergence of colour patterns (as for instance in the right panel).

3. Parallel coordinate plots: distribution of input factors within their variability ranges.

One line per sample xj of input factors ðj ¼ 1;…;NÞ. Ranges are standardised to allow

for comparison across factors. Lines highlighted in different colours correspond to

‘particular’ output values, for instance above a threshold. If highlighted lines cover the

entire range of a factor (for instance black lines on factor number 2) sensitivity is low. If

they concentrate in a subrange (as for instance for factor 5) then sensitivity is high.

Useful for mapping.

Elementary Effects Test

4. Average of Elementary Effects (EEs) versus their standard deviation. One point per input

factor. The more to the right a point along the horizontal axis, the more influential the

factor. The higher up a point along the vertical axis, the larger its degree of interactions

with other factors. Useful for screening and ranking.

5. Same as before but with confidence bounds derived via bootstrapping around the mean

and standard deviation of the EEs.
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(continued )

Regional Sensitivity Analysis

6. Empirical cumulative distribution function of the input samples associated with output

values above/below a given threshold. One plot per input factor. The larger the distance

between the two distribution functions, the more influential the factor. This plot can be

also used to determine sub-ranges of the input factor that have no influence on the

output above/below the threshold: these are the sub-ranges where the distribution

functions are either zero or one (e.g. x5 > 0:8 for y>10 in this example). Useful for

ranking and mapping.

7. Empirical cumulative distribution function of input factors associated to output values

within ten different ranges. Same as before without the need for specifying a

threshold value.

Visualize sensitivity indices

8. Bar plot. Value of sensitivity index for different input factors.

9. Box plot. Average value of sensitivity index over bootstrap resamples for different input

factors (black line) and 90% confidence intervals.

10. Convergence plot. Sensitivity indices estimated using an increasing sample size (one

line per factor). Dashed lines represent confidence bounds obtained at each sample

size, for instance by bootstrapping.

11. Radial convergence diagrams. For each input factor, the diagram shows: its direct

(first-order) influence (proportional to the size of the inner circle); the total

influence including interactions (size of the outer circle); the existence and extent of

interactions between pairs of factors (lines and their width). Taken from Butler et al.

(2014).

(continued on next page)
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