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Abstract 

We present an approach to global sensitivity analysis aiming at the reduction of its computational cost without 
compromising the results. The method is based on sampling methods, cubature rules, High-Dimensional Model 
Representation and Total Sensitivity Indices. The approach has a general applicability in many engineering fields 
and does not require the knowledge of the particular solver of the dynamical system. This analysis can be used as 
part of the virtual homologation procedure and to help engineers during the design phase of complex systems. 
The method is applied to a half car with a two-axle Cooperrider bogie, in order to study the sensitivity of the 
critical speed with respect to suspension parameters. The importance of a certain suspension component is 
expressed by the variance in critical speed that is ascribable to it. This proves to be useful in the identification of 
parameters for which the exactness of their values is critically important. 

1.  INTRODUCTION 

The past couple of decades have seen the advent of computer simulations for the study of deterministic dynamical 
systems arising from any field of engineering. The reasons behind this trend are both the enhanced design 
capabilities during production and the possibility of understanding dangerous phenomena. However, deterministic 
dynamical systems fall short in the task of giving a complete picture of reality: several sources of uncertainty can 
be present when the system is designed and thus obtained results refer to single realizations, that in a probabilistic 
sense have measure zero, i.e. they never happen in reality. The usefulness of these simulations is however proved 
by the achievements in Computer-Aided Design (CAD).  
The studies of stochastic dynamical systems allow for a wider analysis of phenomena: deterministic systems can 
be extended with prior knowledge on uncertainties with which the systems are described. This enables an 
enhanced analysis and can be used for risk assessment subject to such uncertainties and is useful for decision 
making in the design phase. 
In the railway industry, stochastic dynamical systems are being considered in order to include their analysis as a 
part of the virtual homologation procedure [1], by means of the framework for global parametric uncertainty 
analysis proposed by the OpenTURNS consortium. This framework splits the uncertainty analysis task in four 
steps: 

A. Deterministic modeling and identification of Quantities of Interest (QoI) and  source of uncertainties 
B. Quantification of uncertainty sources by means of probability distributions 
C. Uncertainty propagation through the system 
D. Sensitivity analysis 

Railway vehicle dynamics can include a wide range of uncertainty sources. Suspension characteristics are only 
known within a certain tolerance when they exit the manufacturing factory and are subject to wear over time that 
can be described stochastically. Other quantities that are subject to uncertainties are the mass and inertia of the 
bodies, e.g. we don’t know exactly how the wagon will be loaded, the wheel and track geometries, that are subject 
to wear over time, and also external loadings like wind gusts. 
In this work the QoI will be the critical speed of a fixed half-wagon with respect to uncertain suspension 
components (step A). The deterministic and stochastic models will be presented in section 2. Step B requires 
measurements of the input uncertainty that are not available to the authors, so the probability distribution of the 
suspension components will be assumed to be Gaussian, without losing the generality of application of the 
methods used in C and D. 
Techniques for Uncertainty Quantification (UQ) will be presented in section 3.1. They have already been applied 
in [2] and [3] to perform an analysis of Uncertainty propagation (step C). They will turn useful also in section 3.2 
and 3.3 for the sensitivity analysis technique to be presented (step D). This is based on Total Sensitivity Indices 
(TSI) obtained from the ANOVA expansion of the function associated to the QoI [4]. Section 4 will contain the 
results of such analysis. 
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2.  THE VEHICLE MODEL 

In this work we will consider a fixed half wagon equipped with a Cooperrider bogie, running on tangent track with 
wheel profile S1002 and rail UIC60. The position of the suspension components is shown in Fig. 1. In [5] a 
framework for the simulation of the dynamics of complete wagons running on straight and curved tracks has been 
implemented and tested based on the Newton-Euler formulation of the dynamical system: 
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where iF  and iM  are respectively the forces and the torques acting on the bodies, m  and  J  are the mass and 

inertia of the bodies, a


 and 


 are the acceleration and the angular acceleration of the bodies. 
In this work the wagon will be fixed in order to alleviate the lateral oscillations during the hunting motion that 
would, in some cases, break the computations. The mathematical analysis and the generality of the methods 
proposed are not weakened by this assumption, even if the results may change for different settings. The wheel-rail 
interaction is modeled using tabulated values generated with the routine RSGEO [6] for the static penetration at the 
contact points. These values are then updated using Kalker’s work [7] for the additional penetrations. The creep 
forces are approximated using Shen-Hedrick-Elkins nonlinear theory [8]. The complete deterministic system 

,),()( tt
dt

d
ufu   (2) 

is nonlinear, non-smooth, and it has 28 degrees of freedom. 

2.1 Nonlinear dynamics of the deterministic model 

The deterministic dynamics of the complete wagon with a couple of Cooperrider bogies were analyzed in [5]. The 
stability of the half-wagon model considered in this work is characterized by a subcritical Hopf-bifurcation 

at smvL /114 , as it is shown in Fig. 2a, and a critical speed smvNL /47.50 . The critical speed is found 

using a continuation method from the periodic limit cycle detected at a speed greater than the Hopf-bifurcation 
speed Lv . In order to save computational time, we try to detect the periodic limit cycle at speeds lower than Lv  

perturbing the system as described in [9]. This is the approach that we will take during all the computations of 
critical speeds in the next sections. The criterion used in order to detect the value of the critical speed is based on 
the power of the lateral oscillations in a s1  sliding window of the computed solution. Fig. 2b shows how this 
criterion is applied. 

Fig. 1 The half-wagon equipped with the Cooperrider bogie. 
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2.2 The stochastic model 

In the following we will assume that the suspension characteristics are not deterministically known. Rather, they 
are described by probability distributions stemming from the manufacturing uncertainty or the wear. 
If experimental information is available, then some standard distributions can be assumed and an optimization 
problem can be solved in order to determine the statistical parameters of such distributions (e.g. mean, variance, 
etc.). Alternatively the probability density function of the probability distribution can be estimated by Kernel 
smoothing [10]. 
Due to the lack of data to the authors, in this work the probability distributions associated with the suspension 
components will be assumed to be Gaussian around their nominal value, with a standard deviation of 5%. We 

define Z to be the d-dimensional vector of random variables  d

iiii Nz 1,(~  describing the distributions of 

the suspension components, where d is called the co-dimension of the system. The stochastic dynamical system is 
then described by  

      .,0,,,, dTtt
dt

d
RZufZu   (3) 

3.  SENSITIVITY ANALYSIS 

Sensitivity analysis is used to describe how the model output depends on the input parameters. Such analysis 
enables the user to identify the most important parameters for the model output. Sensitivity analysis can be viewed 
as the search for the direction in the parameter space with the fastest growing perturbation from the nominal 
output. 
One approach of sensitivity analysis is to investigate the partial derivatives of the output function with respect to 
the parameters in the vicinity of the nominal output. This approach goes by the name of local sensitivity analysis, 
stressing the fact that it works only for small perturbations of the system. 
When statistical information regarding the parameters is known, it can be embedded in the global sensitivity 
analysis, which is not restricted to small perturbations of the system, but can handle bigger variability in the 
parameter space. This is the focus of this work and will be described in the following sections. 

3.1 Uncertainty Quantification 

The solution of (3) is  Zu ,t , varying in the parameter space. In uncertainty quantification we are interested in 

computing the density function of the solution and/or its first moments, e.g. mean and variance: 
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(4) 
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(a) bifurcation diagram (b) Critical speed detection criteria 

Fig. 2 Left: complete bifurcation diagram where the folding point is detected by continuation (ramping) method 
from the periodic limit cycle. Right: criterion for the determination of the critical speed based on the power of the 
lateral oscillations in a sliding window. LB, LLW and LTW stand for the bogie frame, the leading wheel set and the 
trailing wheel set respectively. 



 4

where )(zZ and )(zZF  are the probability density function (PDF) and the cumulative distribution function 

(CDF) respectively. Several techniques are available to approximate these high-dimensional integrals. In the 
following we present the two main classes of these methods. 

Sampling based methods 

The most known sampling method is the Monte Carlo (MC) method, which is based on the law of large numbers. 
Its estimates are: 
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Z are realizations sampled randomly within the probability distribution of Z . The MC method has 

a probabilistic error of  MO /1 , thus it suffers from the work effort required to compute accurate estimates. 

However the MC method is very robust because this convergence rate is independent of the co-dimensionality of 
the problem, so it’s useful to get approximate estimates of very high-dimensional integrals. 
Sampling methods with improved convergence rates have been developed, such as Latin Hypercube sampling and 
Quasi-MC methods. However, the improved convergence rate comes at the expense of several drawbacks, e.g., the 
convergence of Quasi-MC methods is dependent of the co-dimensionality of the problem and Latin Hypercube 
cannot be used for incremental sampling. 

Cubature rules 

The integrals in (4) can also be computed using cubature rules. These rules are based on a polynomial 
approximation of the target function, i.e. the function describing the relation between parameters and QoI, so they 
have superlinear convergence rate on the set of smooth functions. Their applicability is however limited to 
low-co-dimensional problems because cubature rules based on a tensor grid suffer the curse of dimensionality, i.e. 
if m is the number of points used in the one dimensional rule and d the dimension of the integral, the number of 

points at which to evaluate the function grow as )( dmO . They will however be presented here because they 

represent a fundamental tool for the creation of high-dimensional model representations that will be presented in 
the next section. 

Let Z  be a vector of independent random variables in the probability space ),,( ZBD F , where dRD  , B is 

the Borel set constructed on D  and ZF  is a probability measure (i.e. the CDF of Z ). For this probability 

measure we can construct orthogonal polynomials   iN

nin z 1)(   for di 1 , that form a basis for each 

independent dimension of D  [11]. The tensor product of such a basis forms a basis for D . From these orthogonal 

polynomials, the Gauss quadrature points and weights   d
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Golub-Welsch algorithm [11], obtaining approximations for (4): 
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Gauss quadrature rules of order N are accurate for polynomials of order up to degree 12 N . This high accuracy 
comes at the expense of the curse of dimensionality due to the use of tensor products in high-dimensional 
integration. This effect can be alleviated by the use of Sparse Grids techniques proposed by Smolyak [12] that use 
an incomplete version of the tensor product. However, in the following section we will see that we can often avoid 
working in very high-dimensional spaces. 

3.2 High-dimensional model representations 

High-dimensional models are very common in practical applications, where a number of parameters influence the 
dynamical behaviors of a system. These models are very difficult to handle, in particular if we consider them as 
black-boxes where we are only allowed to change parameters. One method to circumvent these difficulties is the 
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HDMR expansion [13], where the high-dimensional function RD :f , nRD   is represented by a function 

decomposed with lower order interactions: 
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This expansion is exact and exists for any integrable and measurable function f , but it is not unique. There is a 

rich variety of such expansions depending on the projection operator used to construct them. The most used in 
statistics is the ANOVA-HDMR where the low dimensional functions are defined by 
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where DD 
lii 1

is the hypercube excluding indices lii ,,1   and   is the product measure 
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However, the high-dimensional integrals in the ANOVA-HDMR expansion are computationally expensive to 
evaluate. 
An alternative expansion is the cut-HDMR, that is built by superposition of hyperplanes passing through the cut 

center  nyyy ,,1  : 
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where ),,(
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l
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 is the function )(xf  with all the remaining variables set to y . This expansion 

requires the evaluation of the function f on lines, planes and hyperplanes passing through the cut center. 

If cut-HDMR is a good approximation of f at order L , i.e. considering up to L -terms interactions in (7), such 

expansion can be used for the computation of ANOVA-HDMR in place of the original function. This reduces the 
computational cost dramatically: let n be the number of parameters and s the number of samples taken along each 
direction (being them MC samples or cubature points), then the cost of constructing cut-HDMR is 
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3.3 Total Sensitivity Index 

The main task of Sensitivity Analysis is to quantify the sensitivity of the output with respect to the input. In 
particular it’s important to know how much of this sensitivity is accountable to a particular parameter. With the 
focus on global sensitivity analysis, the sensitivity of the system to a particular parameter can be expressed by the 
variance of the output associated to that particular input. 
One approach to this question is to consider each parameter separately and to apply one of the UQ techniques 
introduced in section 3.1. This approach goes by the name of one-at-a-time analysis. This technique is useful to get 
a first overview of the system. However, this technique lacks an analysis of the interaction between input 
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parameters, which in many cases is important. 
A better analysis can be achieved using the method of Sobol’ [14]. Here single sensitivity measures are given by 

D

D
S l

l

ii
ii

,,
,,

1

1



          for ,1 1 nii l   (12) 

where D and
liiD ,,1 
are defined according to (9). These express the amount of total variance that is accountable to 

a particular combination lii ,,1  of parameters. The Total Sensitivity Index (TSI) is the total contribution of a 

particular parameter to the total variance, including interactions with other parameters. It can be expressed by 

,1)( iSiTS   (13) 

where iS is the sum of all
liiS ,,1 
that does not involve parameter i . 

These total sensitivity indices can be approximated using sampling based methods in order to evaluate the integrals 
involved in (9). Alternatively,  [4] suggests to use cut-HDMR and cubature rules in the following manner: 

1. Compute the cut-HDMR expansion on cubature nodes for the input distributions. 
2. Derive the approximated ANOVA-HDMR expansion from the cut-HDMR. 
3. Compute the Total Sensitivity Indices from the ANOVA-HDMR. 

This approach gives the freedom of selecting the level of accuracy for the HDMR expansion depending on the 

level of interaction between parameters. The truncation order L  of the ANOVA-HDMR can be selected and the 
accuracy of such expansion can be assessed using the concept of “effective dimension” of the system: for 1q , 

the effective dimension of the integrand f is an integer L such that 
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where t is a multi-index lii ,,1  and t is the cardinality of such multi-index. The parameter q  is chosen based 

on a compromise between accuracy and computational cost. 

4.  SENSITIVITY ANALYSIS ON RAILWAY VEHICLE DYNAMICS 

The study of uncertainty propagation and sensitivity analysis through dynamical systems is a computationally 
expensive task. In this analysis we adopt a collocation approach, where we study the behaviors of ensembles of 
realizations. From the algorithmic point of view, the quality of a method is measured in the number of realizations 
needed in order to infer the same statistics. Each realization is the result of an Initial Value Problem (IVP) 
computed using the program DYnamics Train SImulation (DYTSI) developed in [5], where the model presented in 
section 2 has been set up and the IVP has been solved using the Explicit Runge–Kutta–Fehlberg method ERKF34 
[15]. An explicit solver has been used in light of the analysis performed in [16], where it was found that the hunting 
motion could be missed by implicit solvers, used with relaxed tolerances, due to numerical damping. In particular 
implicit solvers are frequently used for stiff problems, like the one treated here, because their step-size is bounded 

Fig. 3: Histogram of the Critical Speed obtained using 
Latin Hypercube sampling and the estimated density 
function (KDE) obtained using Kernel Smoothing. 

Fig. 4: Pie plot of the Total Sensitivity Indices on the 
reduced stochastic model, where only the most 
influential components are analyzed. (See Table 1 for an 
explanation of the notation used) 
 



 7

by accuracy constraints instead of stability. However, the detection of hunting motion requires the selection of 
strict tolerances, reducing the allowable step-sizes and making the implicit methods more expensive than the 
explicit ones. Since the collocation approach for UQ involves the computation of completely independent 
realizations, this allows for a straightforward parallelization of the computations on clusters. Thus, 25 nodes of the 
DTU cluster have been used to speed up the following analysis. 
The first step in the analysis of a stochastic system is the characterization of the probability distribution of the QoI. 
Since the complete model has co-dimension 24, a traditional sampling method, among the ones presented in 
section 3.1, is the most suited for the task of approximating the integrals in eq. (4). Fig. 3 shows the histogram of 
the computed critical speeds with respect to the uncertainty in the suspension components. In order to speed up the 
convergence, we used 200 samples generated with the Latin Hyper Cube method [17]. Kernel smoothing [10] has 
been used to estimate the density function according to this histogram. The estimated mean and variance are 

m/sv 51.83 and 22 /07.4 smv  . 

Suspension 
One-at-a-time ANOVA ANOVA - Refined 

v  v  Tot. Sensitivity v  Tot. Sensitivity 

PSLL_LEFT_K1 0.00 0.03 0.01   
PSLL_LEFT_K2 0.06 0.18 0.06 0.18 0.09 
PSLL_LEFT_K3 0.02 0.13 0.04 0.14 0.07 
PSLL_RIGHT_K1 0.00 0.05 0.02   
PSLL_RIGHT_K2 0.06 0.17 0.06 0.22 0.11 
PSLL_RIGHT_K3 0.03 0.17 0.06 0.10 0.05 
PSLT_LEFT_K1 0.00 0.02 0.01   
PSLT_LEFT_K2 0.54 1.71 0.56 1.29 0.63 
PSLT_LEFT_K3 0.14 0.20 0.07 0.11 0.05 
PSLT_RIGHT_K1 0.00 0.05 0.02   
PSLT_RIGHT_K2 0.55 1.73 0.56 1.22 0.59 
PSLT_RIGHT_K3 0.03 0.13 0.04 0.17 0.08 
SSL_LEFT_K4 0.00 0.01 0.00   
SSL_LEFT_K5 0.00 0.01 0.00   
SSL_LEFT_K6 0.00 0.02 0.01   
SSL_LEFT_D1 0.00 0.02 0.01   
SSL_LEFT_D2 0.02 0.04 0.01   
SSL_LEFT_D6 0.00 0.02 0.01   
SSL_RIGHT_K4 0.00 0.01 0.00   
SSL_RIGHT_K5 0.00 0.00 0.00   
SSL_RIGHT_K6 0.00 0.02 0.01   
SSL_RIGHT_D1 0.00 0.03 0.01   
SSL_RIGHT_D2 0.00 0.04 0.01   
SSL_RIGHT_D3 0.00 0.02 0.01   
Table 1: Variances and Total Sensitivity Indices obtained using the One-at-a-time analysis, the ANOVA expansion 
of the complete model and the more accurate ANOVA expansion of the reduced model. The naming convention 
used for the suspensions works as follows. PSL and SSL stand for primary and secondary suspension of the leading 
bogie respectively. The following L and T in the primary suspension stand for leading and trailing wheel sets. The 
last part of the nomenclature refers to the particular suspension components as shown in Fig. 1. 

4.1 One-at-a-time analysis 

When each suspension component is considered independently from the others, the estimation problem in (4) is 
reduced to the calculation of a 1-dimensional integral. This task can be readily achieved by quadrature rules that 
have proven to be computationally more efficient on problems of this dimensionality than sampling methods [3]. 
Fourth order quadrature rules have been used to approximate the variances due to the single components. The 
convergence of this method enables a check of accuracy through the decay of the expansion coefficients of the 
target function [3]. 
The second column in Table 1 lists the results of such analysis. The amount of variance described by this analysis 

is given by the sum of all the variances: 22
OAT /47.1 sm . This quantity is far from representing the total 

variance of the stochastic system, suggesting that interactions between suspension components are important. 
Anyway the method is useful to make a first guess about which components are the most important: the critical 
speed of the railway vehicle model analyzed in this work shows a strong sensitivity related to the longitudinal 
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springs (K2) in the trailing wheel set. 

4.2 Total Sensitivity Analysis 

The technique outlined in section 3.3 can fulfill three important tasks: taking into account parameter interactions, 
performing the analysis with a limited number of realizations and enabling an error control in the approximation. 
In a first stage we consider the full stochastic model and we construct a cut-HDMR expansion which takes into 
account 2nd order interactions and describes the target function through 2nd order polynomials, computing the 
realizations for up to 2-dimensional cubature rules. The ANOVA-HDMR expansion of the cut-HDMR expansion 

can be quickly computed, due to the low dimensionality of the single terms in (10). At this point, the 
liiD ,,1 
values 

in (9) can be obtained and the “effective dimensionality” of the target function, given by (14) for 95.0q , is 

found to be 2L . This confirms that the 1st and 2nd order interactions are sufficient to describe most of the 
variance. The third and fourth column of Table 1 list the total variances induced by each parameter, including 
interactions with other parameters, and the Sobol’ total sensitivity indices. 
Once the first approximation of the sensitivities is obtained, the parameters with the lowest sensitivity indices can 
be fixed to their nominal values and we can perform a more accurate analysis of the remaining stochastic system. 
Longitudinal and vertical springs (K2 and K3) in the primary suspensions have shown to be very influential for the 
critical speed of the analyzed model, thus a new cut-HDMR expansion, with 2nd order interactions and 4th order 
polynomial approximation is constructed. The resulting total variances and total sensitivity indices are listed in the 
fifth and sixth column of Table 1. A visual representation of the sensitivity indices is shown in the pie chart in Fig. 
4. 
The results obtained by the one-at-a-time analysis are confirmed here by the total sensitivity analysis, but we stress 
that the latter provide a higher reliability because they describe a bigger part of the total variance of the complete 
stochastic system. 

4.3 Discussion of the obtained results 

Even if the results obtained are formally correct, the interpretation of such results can raise some questions. A 
railway engineer might wonder why the yaw dampers D2 are not listed among the most important by the 
sensitivity analysis. The yaw dampers in the secondary suspension are known to provide stability to the vehicle 
ride, helping to increase its critical speed. This result is true also with the vehicle model considered here, in fact 
low values of D2 cause a drastic worsening of the ride stability. However, the total sensitivity indices embed the 
probability distributions of the uncertain parameters in the global sensitivity analysis: the impact of a component is 
weighted according to these distributions. Thus we say that the yaw damper has little influence on the riding 
stability with respect to the distributions chosen. A change in the distributions can dramatically change these 
results, thus particular care should be taken with the quantification of the source of uncertainty. 
Finally, observe that, even if they are not as important as the primary suspension components, the yaw dampers 
seem to be the most important components among the secondary suspensions. 

4.4 Remarks on sensitivity analysis on non-linear dynamics 

Uncertainty quantification and sensitivity analysis require a rigorous preliminary formulation of the stochastic 
system, its sources of uncertainty and the Quantities of Interest. We already mentioned in section 2.2 that in this 
work the characterization of the sources of uncertainty was bypassed by assuming Gaussian distributions for all the 
parameters, without loss of generality for the methods presented. The selection of the QoI, however, merits some 
more discussion. In section 2.1 the continuation method used to estimate the critical speed was presented and the 
threshold used to determine the end of the hunting motion was chosen in a conservative way, as it is shown in Fig. 
2b. However, the value of the computed critical speed will depend also on the deceleration chosen for the 
continuation method, i.e. the computed critical speed will be exact in the limit when the deceleration goes to zero. 
Of course, the exact computation of the critical speed is not computationally feasible. With the limited 
computational resources available, we then chose a fixed deceleration coefficient for the continuation method, and 
thus we introduced numerical uncertainty in the computations. Therefore, the variance expressed from the analysis 
is given both by the variance due to the stochastic system and the variance introduced by the computation of the 
QoI. This is, however, a conservative consequence, meaning that a decision taken on the basis of the computed 
results is at least as safe as a decision taken using the “exact results”. 

4.  CONCLUSIONS 

Sensitivity analysis is of critical importance on a wide range of engineering applications. The traditional approach 
of local sensitivity analysis is useful in order to characterize the behavior of a dynamical system in the vicinity of 
the nominal values of its parameters, but it fails in describing wider ranges of variations, e.g., caused by long-term 
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wear. The global sensitivity analysis aims at representing these bigger variations and at the same time it embeds the 
probability distributions of the parameters in the analysis. This enables the engineer to take decisions based on the 
risk of a certain event to happen. 
Wrongly approached, global sensitivity analysis can turn to be a computationally expensive or even prohibitive 
task. In this work a collection of techniques are used in order to accelerate such analysis for a high-co-dimensional 
problem. Each of the techniques used allows for a control of the accuracy, e.g., in terms of convergence rate for the 
cubature rules in section 3.1 and the “effective dimension” in section 3.3. This makes the framework flexible and 
easy to be adapted to problems with more diversified distributions and target functions. 
The analysis performed on the half wagon equipped with a Cooperrider bogie shows a high importance of the 
longitudinal primary suspensions, and this reflects the connection between hunting and yaw motion. Furthermore, 
the importance of the yaw damper in the secondary suspensions is confirmed, even if its influence is little 
compared to the primary suspensions. 
It is important to notice that the same settings for global sensitivity analysis can be used for the investigation of 
different Quantities of Interests, such as wear in curved tracks, angle of attack etc., once they have been properly 
defined. Furthermore, the “non-intrusive” approach taken allows the engineer to use closed software for the 
computations. The machinery for sensitivity analysis needs only to be wrapped around it, without additional 
implementation efforts. 
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