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Abstract

Background: Prokaryotic 16S ribosomal RNA (rRNA) sequences are widely used in environmental microbiology and

molecular evolution as reliable markers for the taxonomic classification and phylogenetic analysis of microbes.

Restricted by current sequencing techniques, the massive sequencing of 16S rRNA gene amplicons encompassing

the full length of genes is not yet feasible. Thus, the selection of the most efficient hypervariable regions for

phylogenetic analysis and taxonomic classification is still debated. In the present study, several bioinformatics tools

were integrated to build an in silico pipeline to evaluate the phylogenetic sensitivity of the hypervariable regions

compared with the corresponding full-length sequences.

Results: The correlation of seven sub-regions was inferred from the geodesic distance, a parameter that is applied

to quantitatively compare the topology of different phylogenetic trees constructed using the sequences from

different sub-regions. The relationship between different sub-regions based on the geodesic distance indicated

that V4-V6 were the most reliable regions for representing the full-length 16S rRNA sequences in the phylogenetic

analysis of most bacterial phyla, while V2 and V8 were the least reliable regions.

Conclusions: Our results suggest that V4-V6 might be optimal sub-regions for the design of universal primers with

superior phylogenetic resolution for bacterial phyla. A potential relationship between function and the evolution of 16S

rRNA is also discussed.
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Background

As the major players in almost all environments ex-

plored, bacteria contribute immensely to global energy

conversion and the recycling of matter. Thus, profiling

of the microbial community is one of the most import-

ant tasks for microbiologists to explore various ecosys-

tems. However, our understanding of the kingdom

Bacteria remains limited because most bacteria cannot

be cultured or isolated under laboratory conditions [1].

In the past few decades, DGGE (Denaturing gradient

gel electrophoresis) [2], T-RFLP (Terminal restriction

fragment length polymorphism) [3], FISH (fluorescent

in situ hybridization) [4] and Genechips [5] were used as

mainstream methods in studies of bacterial communities

and diversity until the development of high-throughput

sequencing technology. Recently, meta-genomic methods

provided by next-generation sequencing technology such

as Roche 454 [6, 7] and Illumina [8] have facilitated a re-

markable expansion of our knowledge regarding uncul-

tured bacteria [7].

The 16S rRNA gene sequence was first used in 1985

for phylogenetic analysis [9]. Because it contains both

highly conserved regions for primer design and hyper-

variable regions to identify phylogenetic characteristics

of microorganisms, the 16S rRNA gene sequence be-

came the most widely used marker gene for profiling

bacterial communities [10]. Full-length 16S rRNA gene

sequences consist of nine hypervariable regions that are

separated by nine highly conserved regions [11, 12].

Limited by sequencing technology, the 16S rRNA gene

sequences used in most studies are partial sequences.
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Therefore, the selection of proper primers is critical to

study bacterial phylogeny in various environments.

An early study has shown that the use of different

primers might result in different DGGE patterns [13].

Recent studies utilizing high throughput technology have

also demonstrated that the use of suboptimal primer

pairs results in the uneven amplification of certain spe-

cies, causing either an under- or over-estimation of some

species in a microbial community [10–12, 14]. Although

several studies have focused on optimal primer pairs or,

equivalently, optimal variable regions for the study of

bacterial communities [15–17], they utilized synthetic

microbial communities and the taxa that were chosen to

conduct those experiments would largely influence the

final results. Consequently, the use of different sequen-

cing technologies and targeting of different sub-regions

of 16S rRNA genes will result in a distinct composition

of a given microbial community. However, till now there

was few study focusing on comparing the phylogenetic

sensitivity of the 16S rRNA sub-regions.

Phylogenetic trees are widely used to elucidate system-

atic relationships between different species, in particular

the novel microbial lineages [9, 18–20]. However, strat-

egies to determine relationships between different 16S

rRNA sub-regions in terms of phylogenetic resolution

remain questionable. The correlation of the different hy-

pervariable regions may be inferred from the geodesic

distance of phylogenetic trees that are constructed based

on the sequences of different regions. The topological

similarity between phylogenetic trees may be estimated

by a geodesic algorithm that can project the node

structure of a tree into a multi-dimensional model

[21]. The geodesic distance has been used to quantify

discrepancies between trees [22, 23]. A recent study

took advantage of this method to quantitatively com-

pare phylogenetic trees that were reconstructed using

different essential genes [1]. Other than 16S r RNA

genes, concatenated essential marker genes are pre-

ferred for phylogenetic analyses [24]. However, as sug-

gested by the pairwise geodesic distance, the topology

of the tree based on the amino acids of translation initiation

factor 2 (IF2) is highly similar to that obtained with the

concatenated marker sequences [1], suggesting that IF2 can

be applied alone for phylogenetic reconstruction and

roughly reflects genetic relationships using all of the

other essential genes. Using the geodesic algorithm, it is

possible to quantify the sensitivity of 16S rRNA variable

regions compared with the full-length 16S rRNA se-

quences. These quantitative data also permit the ex-

ploration of correlative relationships between different

sub-regions of 16S rRNA in terms of the phylogenetic

resolution. In the present study, we designed an in

silico pipeline to evaluate the phylogenetic resolution of

different variable regions in 16S rRNA genes.

Methods
Data source and pre-treatment

The pre-aligned and truncated SILVA Ref 115 16S rRNA

NR99 dataset was downloaded from SILVA online data-

base as a primary dataset [25]. The original downloaded

dataset from SILVA contains 479,726 nearly full-length

16S/18S sequences of Archaea, Bacteria and Eukaryota.

The pre-processed dataset contained 79,096 sequences

from the kingdom Bacteria. The following filtration cri-

teria were applied to the primary dataset: 1) longer than

1400 bp; and 2) SILVA annotated taxa. The full-length

bacterial 16S rRNA dataset was then processed as described

in Fig. 1. SILVA database sorted organelles sequences into

Bacterial kingdom, so the organelles sequences were

manually processed.

Fig. 1 Workflow of the data processing. As described in Materials

and methods, the sequences downloaded from the SILVA database

were filtered, randomly selected and grouped. Phylogenetic trees

were then built, and geodesic distances were calculated
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Definition of sub-regions

Referring to the previous studies [11, 12], 10 markers

located in conserved regions of the 16S rRNA genes

were selected to divide the full-length aligned 16S

rRNA sequences into nine sub-regions (Additional file

1: Table S1). Each region starts with a conserved se-

quence, and the remainder is a downstream variable

sequence. The tenth conserved region was the termin-

ation marker and was removed from the ninth sub-

region. The breakpoints of each region in the aligned

data are shown in Table 1. The sub-regions were se-

quentially marked from V1 to V9. The filtered dataset

was divided into 10 files: nine for the V1-V9 sub-regions,

and one for the combination of all of the sub-regions

(VT). After division of the sub-regions, most of the V1

and V9 sub-regions were found to be incomplete. As a

result, V1 and V9 were not included in the subsequent

analysis.

Selection of representative sequences

Sequences in the filtered dataset were annotated with

taxonomic ranks by SILVA [25]. A taxonomic list with

SILVA accession IDs was first extracted from the fil-

tered dataset. The following criteria were then applied

to select representative taxa from the taxonomic list: 1)

three sequences in each phylum were randomly se-

lected, but phyla with less than three sequences were

discarded; 2) three sequences from different sub-levels

within a phylum were preferred; 3) sequences belonging

to chloroplasts and mitochondria were avoided; 4) three

sequences were selected from different classes under

five subphyla of the Proteobacteria. The phylum Proteo-

bacteria has a huge number of sequences in the filtered

dataset, and therefore, the five major groups (alpha, beta,

gamma, epsilon and delta) of Proteobacteria were treated

as subphyla. For example, if a proteobacterial subphylum

contained five classes, the first step consisted of the ran-

dom selection of three classes in this subphylum followed

by the random collection of full-length sequences from

each of the selected classes. By abiding to these rules, 89

taxonomic lists were produced. Each of the lists corre-

sponded to a sequence file containing 93 sequences

from 31 phyla and 15 sequences from Proteobacteria,

providing a total of 108 sequences. For each of the se-

quence files, individual sub-regions V2-V8 of the 16S

sequences were extracted to create new sequence files.

Finally, a total of 76,896 sequences were distributed in

a three-dimensional array consisting of 89 taxonomic

lists, 108 full-length 16S sequences and eight regions

(V2-V8 & VT). All the data could be accessed in

SILVA database with the Sequence IDs provided in

Additional file 2.

Construction of phylogenetic trees

The phylogenetic relationships of the 16S sub-regions

were inferred using the Bayesian algorithm. The Bayesian

MCMC analysis program BEAST (version 1.8.0) [26]

was utilized to build phylogenetic trees. For a given

taxonomic list, the aligned 16S rRNA sequence files in

FASTA format from the seven sub-regions were first

converted into Nexus files. Using the BEAuti software

in the BEAST package, the nexus files were annotated

with the GTR substitution model and the Gamma &

Invariant sites heterogeneity model. Next, these files

were processed using BEAST software to build phylo-

genetic trees. The trees then were annotated using the

TreeAnnotator software in the BEAST package with

parameter “-burnin 2000”, which removed the first

20 % of the trees constructed by BEAST and provided a

more stable result. The annotated trees were then con-

verted to Newick format for geodesic analysis. For each

taxonomic list, seven trees were built for the different

sub-regions. A Bayesian tree was also constructed for

the VT for the following pairwise comparison. In this

step, a total of 712 trees were built (89 groups, each

group generated eight trees, each tree contained 108

sequences/taxa).

Table 1 Positions of the hypervariable sub-regions of the 16S rRNA sequences

Region Start position End position Start postion (E. Coli) End position (E. Coli)

V1 8 789 8 96

V2 790 2697 97 306

V3 2698 4069 307 487

V4 4070 7044 488 746

V5 7045 9533 747 885

V6 9534 10454 886 1029

V7 10455 12258 1030 1180

V8 12259 13597 1181 1372

V9 13598 14371 1373 1468

VT 8 14371 8 1468
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Geodesic distance and clustering

The geodesic distance between Bayesian phylogenetic

trees was calculated by software based on the GTP algo-

rithm [22, 23]. The topological similarity of the trees

using the sub-regions and VT could be estimated by

their relationship in agglomerative hierarchical cluster-

ing (AHC). There were 28 pairwise geodesic distances

between the sub-regions (including VT) in a taxonomic

list. The distance matrix was then applied for AHC clus-

tering analysis using the XLSTAT software. To calculate

the frequencies for the nodes of the clustering structure,

AHC analysis was performed for the other taxonomic

lists. The clustering results of the 89 lists were converted

manually into trees in Newick format. Using the Con-

sensus program in the PHYLIP (version 3.6) package

[27], an ultimate clustering relationship with supportive

probabilities for the nodes was generated. In this step,

totally 2492 geodesic distances were calculated (89

groups, each group had C8
2 = 28 geodesic distances).

Results and discussion

Geodesic distance between VT and sub-regions

The geodesic distance between sub-regions and VT is

shown in Fig. 2. Because 89 taxonomic groups were used

for the analysis, the average and standard deviations for

the distance values are also displayed. The results dem-

onstrated that the pairwise distance of V4-VT was the

smallest distance, which indicated that the topology of

the trees using V4 most closely resembled that using

VT. V5 and V6 were adjacent to V4 in terms of the geo-

desic distance to VT. The geodesic distances between

trees based on merged sub-regions V2-3-4, V3-4-5, V4-

5-6, V5-6-7 V6-7-8 and RT trees were also calculated

(Additional file 3: Figure S1). The results also supported

that V4-5-6 was the optimal region combination. In

contrast, the pairwise distances of V2-VT and V8-VT

were larger than the others, indicating that the phylo-

genetic relationships inferred from the V2 and V8 sub-

regions were very different from the VT-based results.

By calculating the geodesic distance between different

regions, the phylogenetic relationships based on the V4

sequences were closest to those based on the full-length

sequences. This result suggests that V4 ranks first in

sensitivity as a marker for bacterial and phylogenetic

analysis, which is consistent with previous taxonomic re-

sults obtained using the RDP (Ribosomal Database Pro-

ject) classifier [28]. However, the RDP classifier method,

which has been repeated using the dataset in the present

study, fails to demonstrate the best performance of V4

at phylum level. The sequences used in this project were

also analyzed by the RDP classifier in QIIME pipeline,

the results showed no significant difference in order

level (Additional file 4: Figure S2). Therefore, using geo-

desic distance to compare the performance of different

regions would be more sensitive. In addition, V1-V3

were also highly recommended by some previous studies

[15], but our results demonstrated poor performance for

V2 and V3 in terms of the phylogenetic analysis.

Geodesic distance-based AHC of sub-regions

Using the geodesic distance matrix, AHC analysis was

performed to reflect the correlative relationships be-

tween the sub-regions in terms of the phylogenetic

resolution. The consensus AHC cluster showed that V2

and V3 were always the outgroups in the AHC, which

was supported by high probabilities (> 70 %). The other

nodes of the clusters, such as V8-V7, V6-V5, and (VT-

V4)-(V6-V5), were not highly supported. However, evi-

dence for the relationships between different regions

was still obtained, thus serving as an indicator of the

correlations between different sub-regions. The closest

relationship between V4 and VT was again illustrated

by the AHC coupled with a probability of 60.2 %.

Therefore, V4 was the best sub-region for the phylo-

genetic study, particularly at the phylum level. After

combining the geodesic distance results and AHC pat-

tern, we sorted the regions into three groups in terms

of the phylogenetic resolution (Fig. 3) [9, 20, 29–32].

Class I, which included V4, V5 and V6 (Fig. 4), had the

highest sensitivity and has been suggested to represent

the optimal sub-regions for phylogenetic studies. V3

and V7 are within Class II (yellow in Fig. 3) and showed

moderate sensitivity. Class III, which was represented

by V2 and V8, was not used for phylogenetic resolution

at the phylum level or for phylogenetic analyses of di-

verse communities although Class III may still be suit-

able for the phylogenetic analysis and possibly for

classification of microbes from the same classes or

Fig. 2 Geodesic distance between trees based on sub-regions and

trees based on VT
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families. The regions ranging from 515 F to 1100R or

from V4 to V6 were more suitable for studies of ex-

treme environments with novel bacterial lineages.

The underlying cause of the correlation between dif-

ferent sub-regions in terms of phylogenetic resolution

remains unknown. Because 16S rRNA itself carries out

the process of gene translation, it is quite interesting to

potentially connect these regions with the 3D structure

and functioning sites (Fig. 5). Class I regions spanning

V4, V5 and V6 are the major functional parts of the

16S rRNA because they encompass the ‘690 hairpin’

[33–35] and decoding center [36, 37]. The 690 hairpin

is a highly conserved loop in all three phylogenetic do-

mains located at the V4 region of 16S rRNA [34, 38].

This region has been reported to be related to P-site-

bound tRNA, S11 binding, IF3 binding and RNA-RNA

interactions with the 790 loop of the 16S rRNA and

domain IV of the 23S rRNA [24, 35, 39–46]. The de-

coding center is also involved in V9, but it was not con-

sidered in the present study. Therefore, whether the

positions in the decoding center determine the phylo-

genetic resolution could not be confirmed herein. The

Class II regions V3 and V7 are peripheral to the two

functional centers of the 16S rRNA [36, 37]. Important

functional roles have not yet been confirmed. Class (III)

regions V2 and V8 are located at the bottom and top,

respectively, of the 3D structure of 16S rRNA [36, 37].

They may serve as structural stabilizers of the 16S

rRNA, but no functional importance has been reported

to date. This observation is similar to the debate over

the association between the evolutionary rate and gene

dispensability [47–49]. According to this theory, genes

with a high dispensability may have evolved slowly. In

contrast, the differences in less important regions, such

as Class II, may occur at lower taxonomic levels. Simi-

larly, in our study, the functions associated with Class I

regions might evolve at a lower rate and be more stable

than the other variable regions. As a result, these re-

gions could allow the realization of a more stable

phylogenetic topology among the diverse bacterial

phyla. Class II and Class III regions are less conserved

and display more polymorphisms that may occur only

at lower taxonomic levels. Thus, these sub-regions are

less sensitive as markers for the phylogenetic resolution

Fig. 3 Illustration of different variable regions. Red regions (V2, V8) have a poor phylogenetic resolution at the phylum level. Green regions (V4,

V5, V6) are associated with the shortest geodesic distance, which suggests that they may be the best choice for phylogeny-related analyses and

the phylogenetic analysis of novel bacterial phyla. The figure refers to the primer map from Lutzonilab (http://lutzonilab.org/16s-ribosomal-dna/).

Use of this information was approved by the original authors of the website

Fig. 4 AHC results for different regions based on the geodesic

distances of the phylogenetic trees
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of a novel lineage within a community at the phylum

level. However, the functioning sites are usually quite

short in comparison with the whole sub-region and

thus, it is questionable whether the several conserved

sites determine the topology of a phylogenetic tree con-

sisting of 32 different phyla.

Conclusions

In the present study, we evaluated the sensitivity of dif-

ferent 16S rRNA sub-regions as biomarkers of different

bacterial phyla using the geodesic distance method and

the consensus AHC method. A combination of V4-V6

was determined to represent the optimal sub-regions

for the bacterial phylogenetic study of new phyla. Fur-

thermore, for the first time, we briefly evaluated the

correlation of different sub-regions of 16S rRNA in

terms of the phylogenetic resolution, which might sug-

gest a relationship between the function and evolution

of 16S rRNA genes.

Ethics

There were no human, human data or animals involved

in this study.

Additional files

Additional file 1: Table S1. Conserved Markers used to identify

sub-regions. (DOCX 12 kb)

Additional file 2: This compressed file contains all the SILVA SeqIDs and

taxonomy of the data we processed in this study. All the sequences

could be accessed from SILVA with the SeqIDs. (ZIP 358 kb)

Additional file 3: Figure S1. Geodesic distance between merged

sub-regions tree and RT trees. (TIF 1981 kb)

Fig. 5 The 2D-3D structures of the 16S rRNA gene. Individual regions are identified by the same color in both the 2D and 3D structures. Some im-

portant structures are colored with blocks
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Additional file 4: Figure S2. QIIME analysis of dataset in the manuscript.

For each sub-region, we merged 89 datasets, each contained 108

sequences, into one multi-sequence fasta file. Then different barcodes

were manually for different sub-regions. All the following analysis were

following the standard QIIME pipeline with default parameters. The

results showed no significant difference between different regions.

(TIF 249 kb)
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