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Abstract

Sensitivity and elasticity analyses have become central to the analysis of models in population biology

and ecology. While much work has been done applying sensitivity and elasticity analysis to study density-

independent (linear) matrix and integral projection models, little work has been done to study the sensitivity

and elasticity of density-dependent models, especially integral projection models. In this paper we derive

sensitivity and elasticity formulas for the equilibrium population n∗ of a structured population modeled by

a Lur’e system, which consists of a linear system plus a nonlinearity modeling density-dependent fecundity.

Sensitivity and elasticity formulas are easy to interpret ecologically, and we apply these formulas to published

models for Chinook Salmon and Platte thistle (Cirsium canescens). In the C. canescens example we show

that models with identical equilibrium populations can have sensitivities that are an order-of-magnitude

apart, depending on the functional form for the nonlinearity.

Keywords: Sensitivity Analyses, Elasticity Analyses, Population Dynamics, Integral Projection Models,

Lur’e Systems, Equilibiria

1. Introduction

Sensitivity and elasticity analyses have become ubiquitous in the analysis of models in population biology

and ecology, beginning with Caswell [5] on the sensitivity of the asymptotic population growth rate λ for

linear population projection matrix models (PPMs, also see Caswell [7]). Easterling et al. [21] provided

analogous formulas for the sensitivity and elasticity of λ for linear integral projection models (IPMs, also
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see [23], [25]). Sensitivity and elasticity of λ in these cases is an application of linearization techniques

combined with spectral analysis, and describes the effects of small changes in model parameters on asymptotic

growth rate. These sensitivity and elasticity analyses are important in making management and conservation

decisions about ecosystems, and thus have been explored in the cases where one is either not working with a

deterministic linear model and/or one is instead interested in the sensitivity of something other than the long-

term growth rate. For example, one may be interested in the sensitivities and elasticities of the stochastic

growth rate λs [45], [29], the population size in a stably growing population [30], a stable equilibrium in

a density-dependent environment [27], [28], [47], [9], [11], [12], the growth rate for models accounting for

varying sex ratios [31], some measurement of transient dynamics [29], [10], [46], [43], [16], or invasion speed

[8], [35].

In many single-species structured models in population ecology, it is assumed that density-dependent feed-

backs influence survival and/or reproduction between individuals as a result of competition for food, space,

or other resources [14], [39], [15], [11], [12], [36]. Density-dependent feedbacks lead to models that are non-

linear, which often predict that the population converges to an equilibrium as t → ∞, rather than having

an asymptotic constant growth rate [14], [9], [12], [37], [44], [18]. There have been some recent studies

performing sensitivity and elasticity analyses for deterministic density-dependent population models [28],

[47], [9], [12]. These studies have thus far been restricted to finite dimensional models, often using matrix

calculus calculations. In recent years, many population models in the literature have been IPMs (see, for

example, [38], [23], [24], [16], [13], [17], [19], [20], [25]), and a matrix analysis is not possible for these systems.

Furthermore, the recent results of Caswell [12], while true for general nonlinear PPMs, are often difficult to

interpret from an ecological point of view. This is in contrast to the relatively straightforward interpretation

of the sensitivity (and thus elasticity) of the population growth rate λ for linear population models, which has

contributed to its widespread use throughout the theoretical ecology community. In this paper, we consider

a useful class of nonlinear systems, called Lur’e systems, for which the sensitivity analysis of the asymptotic

population can be straightforwardly interpreted ecologically.

Lur’e systems have been used to study the dynamics of plant and fish populations (see, for example, [38],

[37], [44], [18]). These systems are of the form

nt+1 = Ant + bf(cTnt). (1.1)

Here nt is the population at time t ∈ N, A describes density-independent (linear) survival and growth, f is

a nonlinear function describing density dependence in reproduction, b is the distribution of newborns, and

cTnt models the density of possible newborns at time t. Given some ecologically realistic assumptions on the

nonlinear function f , Townley et al. [44], Rebarber et al. [37], Eager et al. [18], Franco et al. [26], Eager [20]

and Bill et al. [4] have established the existence of a globally asymptotically stable equilibrium population n∗
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under general conditions on (A, b, c). Smith and Thieme [40] have provided comprehensive results concerning

both the attractors and persistence of a more general system. A closed-form expression for the equilibrium

n∗ exists in terms of (A, b, c) and f . In this paper we show how small changes in model parameters affect

the equilibrium population, as well as the “effective” equilibrium density Ñ . We obtain expressions for the

sensitivity and elasticity of n∗ and Ñ to changes in (A, b, c) and f that are rather straightforward from an

ecological point of view.

We first start by providing an overview of the current theory of the long-term behavior of populations modeled

with Lur’e systems and how the assumptions needed to achieve these results are reasonable ecologically. We

then derive the formula for the sensitivity of n∗ and Ñ to changes in the linear data (A, b, c) and interpret

these formulas ecologically. We do this both for PPMs and IPMs. Finally, we illustrate the utility of our

analysis first by applying it to a simple nonlinear population projection matrix model for Chinook Salmon

found in Morris and Doak [34] and analyzed in Townley et al. [44]. We find that the equilibrium age class

that is the most sensitive to changes in the model parameters is the first age class, and that the equilibrium

population is most sensitive to the probability of transitioning from the first age class to the second. We

then use a nonlinear integral projection model for Platte thistle (Cirsium canescens) from [38] and [16] to

show how different functional forms for the nonlinearity f can elicit identical conclusions with regard to

the size and structure of the equilibrium population n∗, but can predict drastically different sensitivities of

this equilibrium to small perturbations in the linear data (A, b, c). Using a power function for f elicits an

equilibrium population n∗ that is less robust with respect to changes in (A, b, c) than a Michaelis-Menten

function yielding the same n∗, even though the nonlinearity that would have been chosen if we used AIC

criterion alone is the power function [2], [16]. This complements the results in Eager et al. [16], which showed

that the transient dynamics elicited in the model using a power function for f are much more pronounced

than those elicited in the model using a Michaelis-Menten function.

2. The Model

For PPMs, the population nt is a non-negative vector in R
n, while for IPMs we will consider populations

which are non-negative vectors in L1(L,U), the space of integrable functions on the interval (L,U). Let X

denote either R
n or L1(L,U), depending on which setting we are working with. We say that a population

in R
n is non-negative if all entries are non-negative. We say that a population in L1(L,U) is non-negative

if it is non-negative on (L,U) almost everywhere. We let X+ denote the set of non-negative elements of X.

Because biological populations are (at least) non-negative, X+ is the natural setting to work in. The space

X+ is sometimes called the state space for the system. We say that an operator A : X → X is non-negative

if Au is non-negative for any non-negative u.
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We start with a general nonlinear population model of the form

nt+1 = M(nt), (2.1)

where the sequence {nt}
∞

t=0 evolves in X+. We now motivate our use of the Lur’e system (1.1). We assume

that density dependence enters into the model in one (or both) of two ways: fecundity and recruitment.

Both of these processes are in the reproductive stage of the life-cycle. Therefore, we follow the approach of

[14], [37], [44], [17] and [40] and decompose the operator M into the sum of two operators M = A+B, where

A is linear and models survival and movement between stages, and B is nonlinear and models reproduction.

In those papers it is further assumed that the stage of a juvenile is independent of its parent’s stage. For

example, in the case of a plant population modeled by (1.1), b is the distribution of juvenile plants and cT

is the functional such that cTn is the abundance of seeds produced by the population n. The nonlinearities

are modeled by a function k : [0,∞) → [0,∞) such that k(x) is the density of juveniles that are a result of x

possible recruits (e.g. seeds or seedlings), or a function h : [0,∞) → [0,∞) such that h(x) is the total number

of possible recruits (seeds or seedlings) that result from x possible reproductive events. If one includes both

of these nonlinearities, Bn = bk(h(cTn)) =: bf(cTn). With these, one can write (2.1) as (1.1).

We assume that the linear data (A, b, c) satisfies the following realistic ecological assumptions from [37] and

[44]:

(E1) If X = R
n, then A ∈ L(X) is a non-negative matrix with spectral radius r(A) < 1; if X =

L1(L,U), then

(Au)(x) =

∫ U

L

P (x, y)u(y)dy, (2.2)

with P ∈ C([L,U ]2), P ≥ 0, and r(A) < 1.

(E2) b is a non-negative vector;

(E3) If X = R
n, then cT : X+ → R

+ is such that A+pbcT is primitive for every p > 0. IfX = L1(L,U),

then cT : X+ → R
+ is a non-negative bounded functional, i.e.

cTn ≥ 0, for all n ≥ 0.

Biologically, (E1) prevents the existence of immortal individuals (i.e. individuals with infinite life expectancy).

(E2) states that the distribution of juveniles lives in the same space as the population itself. (E3) states

that the production of possible recruits is nonnegative in the X = L1(L,U) case, while in the R
n case there

exists a t > 0 where the matrix (A + pbcT )t is strictly positive for all p > 0. The former assumption is the

minimum assumption necessary for an IPM, while the latter is one that is imposed on many of the PPMs in
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the literature [41]. The positivity of (A+ pbcT )t for some t ensures individuals in every stage can eventually

contribute to individuals in every other stage.

It is often convenient to write f as the product of the establishment probability g and the number of possible

recruits, i.e.

f(y) = g(y)y, (2.3)

where g ∈ C(0,∞) and is assumed to be a decreasing continuously differentiable function on (0,∞). We

note that under these conditions, yg−1(y) is also continuously differentiable. We define

g0 := lim
y→0+

g(y)

and

g∞ := lim
y→∞

g(y),

to be the upper and lower bounds on the establishment probability of potential recruits. If f is increasing,

concave down, with f(0) = 0, the long-term dynamics of (1.1) are determined by the relationship between

the linear data (A, b, c) and the nonlinearity f . The stability radius of (A, b, c), denoted by pe, is the smallest

positive number p such that the linear operator A + pbcT has spectral radius equal to 1. It can be shown

that

pe = (cT (I −A)−1b)−1.

(see [33]). Stability results for (1.1) can be summarized in the following theorem from [37] and [44]:

Theorem 2.1. Assume that {nt}
∞

t=0 ⊂ X+ solves (1.1) and the assumptions (E1), (E2) and (E3) hold,

with f increasing, concave down, with f(0) = 0, then

1) If pe > g0, then the zero vector is a globally stable equilibrium for (1.1) in the sense that for every n0 in

X+,

lim
t→∞

nt = 0.

Furthermore, for every ǫ > 0, there exists δ > 0 such that ‖n0‖ ≤ δ implies ‖nt‖ ≤ ǫ for all t ∈ N.

2) If pe ∈ (g∞, g0) then there exists y∗ which satisfies

f(y∗) = pey
∗

(equivalently g(y∗) = pe.). The vector n∗ ∈ X+ given by

n∗ = pey
∗(I −A)−1b
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is a globally asymptotically stable equilibrium of (1.1) on X+ \ {0}, i.e.

lim
t→∞

nt = n∗,

and for every ǫ > 0, there exists δ > 0 such that ‖n0 − n∗‖ ≤ δ implies ‖nt − n∗‖ ≤ ǫ for all n ∈ N.

3) If pe < g∞, then there exists n0 ∈ X+ such that lim supt→∞
‖nt‖ = ∞.

We will assume for the purposes of this paper that g∞ = 0, i.e. as the abundance of possible recruits becomes

arbitrarily large, the probability that any one of these possible recruits establishes is arbitrarily small.

Theorem 2.1 establishes the global asymptotic stability of the equilibrium vector n∗ = pey
∗(I−A)−1b in the

case where pe < g0 and f is increasing and concave down. If f is not increasing (like the Ricker function

f(x) = αxe−βx used frequently in the fisheries sciences, for example), the results in [17], [44] and [40]

provide some conditions for asymptotic stability of n∗ in the cases where global asymptotic stability cannot

be achieved. Specifically, if f = αxe−βx, then n∗ is globally asymptotically stable for pe ∈ (αe−2, α), while

if pe ∈ (0, αe−2) asymptotic stability depends on the spectral radius of the linearized operator

A+ f ′(cTn∗)bcT = A+
pe

β
log

(

α

pe

)

bcT .

For the remainder of this paper we will assume that at least asymptotic stability of n∗ holds, and the

perturbations to (A, b, c) are such that the resulting equilibrium population is also asymptotically stable.

3. Results

In this section we derive the formula for the sensitivity of the equilibrium population n∗ and the “effective”

equilibrium populations Ñ with respect to changes in the linear data (A, b, c). An effective equilibrium Ñ

is a weighted average of the population sizes within the various stages of n∗. In particular, we look at these

sensitivities when n∗ > 0 is a positive equilibrium population (that is, g0 > pe in Theorem 2.1). We then use

these sensitivity formulas to find, in the standard way, corresponding elasticity formulas to help us correct

for differences we see in the relative sizes of parameter values we consider.

3.1. Sensitivity of n∗ to perturbations in (A, b, c)

We first consider changes in the equilibrium population n∗ with respect to changes in the survival/growth

operator A. Let ∆A be a bounded operator, and consider the perturbed operator Aǫ := A+ ǫ∆A for ǫ > 0.

For this perturbation to make sense ecologically, we need ǫ to be small enough such that r(Aǫ) < 1, so that
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Aǫ is still a survival/growth operator. Since ∆A is bounded, this is always true for small enough ǫ, since by

the stability radius theory in [33],

r(Aǫ) < 1 for ‖ǫ∆A‖ < (cT (I −A)−1b)−1.

We say the sensitivity of n∗(A) to ∆A is

S(∆A) := lim
ǫ→0

n∗(A+ ǫ∆A)− n∗(A)

ǫ
.

If h is a function of A, then we write

D∆Ah := lim
ǫ→0

h(A+ ǫ∆A)− h(A)

ǫ
.

When ‖∆A‖ = 1, D∆Ah is the directional derivative of h in the direction of ∆A.

The resulting change in n∗ = pey
∗(I −A)−1b can be decomposed as follows:

n∗(A+ ǫ∆A)− n∗(A) = ∆(pey
∗)(I −A)−1b+ pey

∗∆((I −A)−1b) + ∆(pey
∗)∆((I −A)−1b),

since a change in A also affects pe and y∗. Changes in n∗ are composed of changes to both the long-term

reproduction pey
∗ and long-term stage distribution (I−A)−1b. We first explore changes in pey

∗ with respect

to changes in A.

We express the term pey
∗ as a function of pe: using (2.3) and (2.1), we see that

pey
∗ = peg

−1(pe).

Since yg−1(y) is continuously differentiable,

∆(pey
∗) = (peg

−1(pe))
′∆(pe) + o(∆pe).

Since pe = (cT (I −A)−1b)−1 we can calculate ∆(pe) exactly as follows:

∆(pe) =
1

cT (I − (A+ ǫ∆A))−1b
−

1

cT (I −A)−1b
= ǫ

−cT (I − (A+ ǫ∆A))−1∆A(I − A)−1b

cT (I − (A+ ǫ∆A))−1bcT (I −A)−1b
, (3.1)

where (I − (A + ǫ∆A))−1 is defined because of our assumption that r(A + ǫ∆A) < 1. This shows that

∆pǫ = O(ǫ), so

∆(pey
∗) = (peg

−1(pe))
′∆(pe) + o(ǫ).

Dividing (3.1) by ǫ and taking the limit as ǫ → 0,

(D∆A)pe =
−cT (I −A)−1∆A(I −A)−1b

(cT (I −A)−1b)2
= −(pe)

2wT (∆A)v,
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where wT := cT (I−A)−1 and v := (I−A)−1b are the left and right eigenvectors, respectively, of the operator

A+ pebc
T , with eigenvalue λ = 1. Using a similar calculation we have that

(D∆A)(I −A)−1b = (I −A)−1∆Av.

Therefore,

(D∆A)n
∗ =

dpeg
−1(pe)

dpe
(−(pe)

2wT (∆A)v)v + peg
−1(pe)(I −A)−1(∆A)v. (3.2)

Now suppose, as in the PPM case, that X = R
n and ∆A = ∆Aij , the matrix will all zero entries except

for a 1 in the (i, j)th entry. In this case we denote D∆A as Dij . We write wT = [w1, w2, . . . wn] and

v = [v1, v2, . . . vn]
T , so the sensitivity of n∗ to a perturbation of the (i, j)th element of A is

Dijn
∗ := (D∆Aij

)n∗ =
dpeg

−1(pe)

dpe
(−(pe)

2wivj)v + peg
−1(pe)((I −A)−1)ivj , (3.3)

where (I −A)−1)i is the ith column of the matrix (I −A)−1.

Notice that the sensitivity of the equilibrium population n∗ to a change in A is the sum of the scaled change

as a result of changes in equilibrium reproduction (given by pey
∗ = peg

−1(pe)) multiplied by the equilibrium

population structure (given by v = (I − A)−1b) and the change due to changes in equilibrium population

structure v multiplied by the original equilibrium reproduction pey
∗. It is easy to see that

(peg
−1(pe))

′g′(y∗) = f ′(y∗),

so if f is increasing, peg
−1(pe) is a decreasing function of pe (since g is decreasing), and hence the sensitivity

(3.2) is positive. If f is not increasing, e.g. f is given by the Ricker function f(x) = αxe−βx, this is not

necessarily the case due to overcompensatory density dependence [42].

We now consider the sensitivity of n∗ to perturbations ǫ∆b of the vector b from (1.1). In order for the

perturbed model to make sense ecologically, ǫ and ∆b should be such that b+ ǫ∆b is a non-negative vector.

Assuming this is the case one can show that, via an analogous calculation to that for D∆An
∗, the sensitivity

of the equilibrium population n∗ to a perturbation of the vector b is

D∆bn
∗ =

dpeg
−1(pe)

dpe
(−(pe)

2wT∆b)v + peg
−1(pe)(I −A)−1∆b. (3.4)

We can similarly consider the sensitivity of n∗ to a perturbation ǫ∆cT of the functional cT . WhenX = R
n, we

can consider a perturbation to the ith component of c, so ∆ci is a vector with an 1 in the ith component and

0 everywhere else; this perturbation models the event where the per-capita production of possible juveniles

is increased in the ith stage. Employing a similar calculation to the ones for (3.2) and (3.4), one can show

that the sensitivity of the equilibrium population n∗ to a perturbation of cT is

D∆cn
∗ = −

dpeg
−1(pe)

dpe
(pe)

2((∆cT )v)v. (3.5)
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When ∆cT = ∆cTi ,

D∆cin
∗ =

dpeg
−1(pe)

dpe
(−(pe)

2vi)v.

Notice that, since the linear equilibrium population structure v = (I − A)−1b does not depend on cT , the

sensitivity D∆cn
∗ comes only from changes in the nonlinear equilibrium reproduction.

Like the sensitivity of the growth rate λ for linear models, all of these sensitivity formulas are in terms of the

right and/or left eigenvectors w, v of the operator A+ pebc
T at equilibrium (i.e. with eigenvalue equal to 1).

What makes these formulas more straightforward than those derived for other sensitivities of equilibria (for

example, [11], [12]) are the explicit formulae for the eigenvectors wT = cT (I −A)−1 and v = (I −A)−1b and

the explicit dependence of n∗ on the stability radius pe = (cT (I −A)−1b)−1, which are features of the Lur’e

system. The right eigenvector wT represents a scaled version of the “net reproduction” vector [14], the left

eigenvector v represents a scaled version of the “stable stage distribution” vector [7], and pe (which is found

via a straightforward formula in terms of (A, b, c)) determines the size of the equilibrium population via the

nonlinearity f .

3.2. Sensitivities for Integral Projection Models

To apply the formulas in the previous section to IPMs, we first need to discuss (A, b, c) for nonlinear IPMs

of the form (1.1). Recall that by assumption (E1), P is a continuous function on [L,U ]2, and defines the

survival/growth integral operator A on L1(L,U) by (2.2). The juvenile distribution vector b ∈ L1(L,U)

has an associated probability density function b(x) for the initial stage of newly reproduced members. Let

c(x) be a bounded function on (L,U) representing potential reproductive output (for instance, seeds) as a

function of the stage variable x ∈ (L,U), and let cT be the bounded functional on L1(L,U) be defined by

cTu =

∫ U

L

c(y)u(y)dy.

It will be clear from the context whether b and c denote the vector or the function of interest, so we use

the same letter for both. We assume that b and c are continuous functions on [L,U ], and recall that P is

continuous on [L,U ]2.

The formulas (3.2), (3.4) and (3.5) all hold in L1(L,U) provided that ∆A is a bounded operator on L1(L,U),

∆b ∈ L1(L,U) and ∆c is a bounded functional on L1(L,U). However, we want to be able to consider

unbounded perturbations of A, as in Ellner and Rees [23]. Specifically, we seek the analog of a matrix

perturbation Aij in the infinite dimensional space L1(L,U). To do so, we will follow Ellner and Rees [23]

and fix (x0, y0) ∈ (L,U)2. Consider the Dirac delta function δ(x−x0, y−y0) for x0, y0 ∈ (L,U). An operator
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on L1(L,U) which is analogous to ∆Aij is, formally,

(∆A(x0,y0)u)(x) =

∫ U

L

δ(x− x0, y − y0)u(y) dy = δ(x − x0)u(y0).

However, this operator has domain which is smaller than L1(L,U), since u is in the domain of ∆A(x0,y0)

only if u(y0) is defined. Furthermore, the range of ∆A(x0,y0) is not in L1(L,U). In Appendix B we treat

∆A(x0,y0) as a distribution, and show that

(D∆A(x0,y0)
)n∗ = −

dpeg
−1(pe)

dpe
(pe)

2w(x0)v(y0)v + peg
−1(pe)(δ(· − x0) + (I −A)−1P (·, x0))v(y0) (3.6)

in the sense of distributions.

While D∆A(x0,y0)
is not a bounded operator, we can still discuss the change in n∗ when A changes to

A+ ǫ∆A(x0,y0). Formally, this change is approximately (to first order in ǫ)

ǫ

(

−
dpeg

−1(pe)

dpe
(pe)

2w(x0)v(y0)v + peg
−1(pe)(δ(· − x0) + (I −A)−1P (·, x0))v(y0)

)

.

While this is not a function, we can interpret this in the following way. The approximate change (to first

order in ǫ) in the size of population between a and b (where L < a < b < U) when A changes to A+ǫ∆A(x0,y0)

is

ǫ

(

−
dpeg

−1(pe)

dpe
(pe)

2w(x0)v(y0)]

∫ b

a

v(x) dx + peg
−1(pe)v(y0)

(

χ(a,b)(x0) +

∫ b

a

(I −A)−1P (·, x0)) dx

))

,

(3.7)

where χ(a,b) is the characteristic function for the interval (a, b).

We now discuss how changes in b and cT affect n∗. Let ∆b ∈ L1(L,U) be a perturbation vector, and assume

that ǫ > 0 is such that b+ǫ∆b is also a positive function (almost everywhere). In particular, b(x)+ǫ∆b(x) ≥ 0

a.e. and
∫ U

L

∆b(x)dx = 0.

Note that here we are only considering ∆b which are in L1(L,U), so the formula for the sensitivity of n∗ to

perturbations in b given by (3.4) makes sense for systems in L1(L,U).

A functional on L1(L,U) which is analogous to the perturbation ∆cTi is, in the sense of distributions,

∆cTy0
u =

∫ U

L

δ(x− x0)u(y) dy = u(y0)

for a fixed y0 ∈ (L,U). Using (3.5), and an argument similar to (but simpler than) that for changes in A,

we see that

D∆cx0
n∗ =

dpeg
−1(pe)

dpe
(−(pe)

2v(x0))v. (3.8)
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Since v is continuous, this sensitivity is well-defined and continuous.

3.3. Sensitivity of the “effective” equilibrium population size Ñ

In this section we are interested in the sensitivity of the “effective” equilibrium population Ñ ([11], [12]),

which is a weighted sum or integral of the total densities of individuals within the various stages of n∗, to

changes in the linear data (A, b, c). When this combination of population sizes is linear and Ñ is scalar,

this effective population can be written as dTn∗ for some linear functional dT on X . As an example, when

X = R
n and one only cares about the total size of the equilibrium population n∗ ∈ R

n, then dT is the

vector with 1 in all of its components, and Ñ = dTn∗ =
∑n

i=1 n
∗

i . If one only cared about the size of the

population in the ith stage, then dT would be a vector with a 1 in the ith component and zeros everywhere,

with Ñ = dTn∗ = n∗

i . As an example when X = L1(L,U), the size of the population between stages a and

b is given by

dTn =

∫ U

L

χ[a,b](x)n(x) dx,

with the size of the entire population given when χ[L,U ] replaces χ[a,b]. Since dT is linear, to compute the

sensitivities of Ñ , we simply apply dT to the formulas (3.2), (3.4) and (3.5) to obtain the desired sensitivity.

If the effective population is defined by Ñ = H(n∗), where H is a nonlinear (Frechét) differentiable function

H : X+ → R
+, then one would apply the chain rule to Ñ = H(n∗) to find the resulting sensitivity of Ñ .

3.4. Elasticity of n∗ and Ñ

For some purposes, we are interested in the effect of a proportional change in the data on n∗ and Ñ . For

example, survival and growth probabilities in A are all going to be values between 0 and 1, while reproductive

values in cT may be much larger than 1, see [7]. It might not be reasonable to compare the sensitivity of n∗

to survival to the sensitivity of n∗ to fecundity, for example. In such a case, we look at the elasticity of n∗

and Ñ to changes in (A, b, c). As usual, this can be calculated by simply multiplying the sensitivity values

derived in Sections 3.1 and 3.2 by the numerical value of the term perturbed divided by that of the element

for which we are taking the sensitivity. For example, in the PPM case, the elasticity of n∗

i , the ith element of

n∗ to changes in Ai,j would be given by Ai,j(n
∗

i )
−1(Dijn

∗)i, where the vector of sensitivities (Dijn
∗) is from

(3.3). We will use both sensitivity and elasticity calculations to study how changes in the linear data (A, b, c)

affect the equilibrium population n∗ and effective total population size Ñ in the following two examples.
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4. Examples

4.1. PPM for Chinook Salmon

We first consider the sensitivity and elasticity of the equilibrium population n∗ for a PPM for Chinook

Salmon from Morris and Doak [34], whose stability was studied in Townley et al. [44]. As in [44], we first

assume a Michaelis-Menten type form f(x) = V x(K + x)−1 for the nonlinear fecundity function and then

discuss how our sensitivity analysis can be applied when f(x) = x exp(−βx) is a Ricker-type function.

The model is structured with five age classes, where fish with age classes 3-5 able to spawn. The linear data

is

A =























0 0 0 0 0

s1 0 0 0 0

0 s2 0 0 0

0 0 s3 0 0

0 0 0 s4 0























, b :=























1

0

0

0

0























, cT :=
[

0 0 f3 f4 f5

]

,

where si is the probability of an individual of age i surviving to age i+1 in one time-step and fi the number

of eggs produced by an individual of age i in one time-step. We use the following parameter values from

[44]:

s1 = 0.0131 s2 = 0.8 s3 = 0.7896 s4 = 0.6728

and

f3 = 2.2834 f4 = 35.1099 f5 = 277.6529.

With these parameter values it follows that the stability radius pe = 0.5376. In the first case we use the

Michaelis-Menten nonlinearity with V = 6 and K = 8, which means that g0 = 0.75 and pe < g0. This, along

with the fact that A+ pbcT is primitive for all p > 0, means that Theorem 2.1, part 2) applies. The globally

asymptotically stable equilibrium n∗ in this case is given by

n∗ = peg
−1(pe)(I −A)−1b = (V − peK)(I −A)−1b =

[

1.6996 0.0223 0.0178 0.0141 0.0095
]T

.

Since s1, s2, s3, s4, f3, f4 and f5 are the only ecologically reasonable parameters in (A, b, c) to perturb, we

will study the sensitivity of the vector n∗ to changes in these values. Since the model is a PPM, there is no

difficulty in using the formulas (3.3) and (3.5) to determine the sensitivity of n∗ in this example. We will

look at the sensitivity of each stage in the equilibrium population n∗ to changes in each of these parameters.

For example, the sensitivity of ni to changes in s1, which is the (2, 1) entry of A, is given by

D21n
∗

i = K((pe)
2w2v1)vi + (V − peK)((I −A)−1)2,iv1. (4.1)

12



Figure 1 shows how sensitive n∗ is to changes in the survival parameters s1, s2, s3 and s4. For all four

parameters the first age class is the most sensitive age class, and the equilibrium population in each age class

is most sensitive to changes in the parameter s1, the probability of survival from age class 1 to age class 2.

These results can be seen more clearly by looking at the general sensitivity formula (3.3) and the specific

sensitivity formula (4.1): The coefficient K(pe)
2 = 27.68 is much larger than V − peK = 1.699, meaning

that the first term in (3.3) is going to be the dominant value in the sensitivity. The first term is a constant

multiple of the vector v, which is weighted heavily towards the first stage. When (i, j) = (2, 1) the value v1,

the largest vi, is in both terms, eliciting the largest sensitivity of the survival parameters si for all of the age

stages.

Figure 2 shows how sensitive n∗ is to changes in the egg production parameters f3, f4 and f5. As with the

survival/growth parameters we will look at the sensitivity of each stage in the equilibrium population to

changes in each of these parameters. For example, the sensitivity of ni to changes in f3, which is the third

element of cT , is given by

D∆c3n
∗

i =
dpeg

−1(pe)

dpe
(−(pe)

2v3)vi. (4.2)

For all three parameters the first age class is the most sensitive, and the equilibrium population in each age

class is most sensitive to changes in the parameter f3, the number of eggs produced by individuals in age

class 3. Thus, for this model, it is clear that survival from the first age class to the second is the parameter

to which the population is most sensitive, and changes in any of the parameters will affect the first age class

the most. The reasons for this are straightforward from the formulas (3.3) and (4.2): The sensitivity of n∗

to changes in ci is a constant times the vector v, which is most heavily-weighted towards the first age class,

times vi, which is decreasing in i.

To further investigate these results we also looked at the elasticity of n∗ to changes in all of the modeling

parameters. The figures coinciding with these calculations are in Appendix A. When looking at the elasticity

of n∗ to the various model parameters the story changes only slightly: the equilibrium population’s first age

class is still the equilibrium age class that is most elastic to changes in all of the model parameters, but the

elasticity of n∗ to changes in s2, s3 and s4 are much closer to that of s1 than are the sensitivities, suggesting

that the large discrepancies seen in Figure 4.1 are largely due to those in the age distribution in n∗. The

elasticity of n∗ to changes in f4 is the largest out of the fi’s, which is in contrast to the sensitivities, where

f3 elicited the largest sensitivity, albeit only slightly.

When one uses the Ricker function f(x) = x exp(−βx) (with α = 1) for fecundity the sensitivity of n∗ to all

parameters is negative for the β = 0.05 value used in Townley et al. [44], since by changing from the Michaelis-

Menten function to the Ricker function, we change peg
−1(pe) from V −peK to pe(β)

−1 log(p−1
e ) and dpeg

−1(pe)
pe

from −K to (β)−1(1− log(p−1
e )). The latter change causes the first term in the sensitivity formula Dijn

∗ and
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the entire formula D∆cin
∗ to be negative, making both of these sensitivities negative. Thus, at equilibrium,

the population predicted by the model with the Ricker function is experiencing overcompensatory density

dependence, and increasing any of the population parameters will cause more density-dependent feedback,

which will cause a decrease in the population’s equilibrium. This is an example of the Hydra effect [1],

and is a good illustration of why it is important to use the proper functional form for the nonlinearity

modeling density-dependent feedbacks, as failing to do so can cause conservation or harvesting efforts to

have unpredicted results.

4.2. IPM for the Platte thistle

For our second example we use the sensitivity developed in this paper to further study the effects of struc-

tural model uncertainty of a nonlinear IPM of the form (1.1) from Rose et al. [38] for Platte thistle (Cirsium

canescens). In Eager et al. [16], we showed that structural model uncertainty can greatly influence the sys-

tem’s predicted transient dynamics by comparing two possible functional forms for f . Here we show how the

sensitivity and elasticity of equilibrium populations to changes in the linear data (A, b, c) are also greatly in-

fluenced by the nonlinear function f used to model density-dependent fecundity. This is an important aspect

to consider in ecological modeling because most ecological systems are driven by some density-dependent

mechanisms, but the signal for density dependence in empirical data sets is often weak. A typical example

of this is the seedling recruitment data in Fig. 1 of [38]: the data are few, very noisy, and collected over a

limited range of seed densities. It is challenging to find sensible functions that fit such noisy data well, and

commonly used criteria to choose among different candidate functions (such as Akaike information criterion

(AIC) or Bayesian information criterion) can only provide a relative ranking of poor fitting functions.

Rose et al.’s model is of the Lur’e structure (1.1) studied in this paper, where the population nt is structured

with respect to size. The authors in that paper use the natural logarithm of a plant’s root crown diameter

as a proxy for its size. The survival/growth operator A is a linear integral operator of the form

(Au)(x) =

∫ U

L

P (x, y)u(y)dy,

for each u ∈ L1[L,U ], with P (x, y) the product of the probabilities of survival, growth and not flowering,

where y is the size of the plant at time t and x is the size of the plant at time t+ 1. The functional cT is a

linear functional of the form

cTu =

∫ U

L

c(y)u(y)dy,

for each u ∈ L1[L,U ], where c(·) is the product of the seed production, survival and flowering probabilities

as a function of the size of the plant y at time t. The vector b is a probability distribution over [L,U ], which

in this model is [−2, 5.5]. All functional forms are available via Table 2 in [38].
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Figure 1: Sensitivity values for the equilibrium population n∗ with respect to changes in the survival parameters. The horizontal

axis is the age, while the vertical axis is the sensitivity of the value of n∗ at that age to changes in the parameter (a) s1, (b)

s2, (c) s3 and (d) s4.
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Figure 2: Sensitivity values for the equilibrium population n∗ with respect to changes in the fecundity parameters. The

horizontal axis is the age variable, while the vertical axis is the sensitivity of the value of n∗ at that age variable to changes in

the parameter (a) f3, (b) f4 and (c) f5.

Rose et al. [38] models density-dependent seedling recruitment with a power function of the form f1(x) = xν ,

where x is the density of seeds produced by the population in one time-step, f1(x) is the density of seedlings

that result from these seeds, and the parameter ν is fit to data. If ν ∈ (0, α) (which is essential to describe

negative density-dependent dynamics using such a power function), the power function has pathological (i.e.

not biologically motivated) properties which include having an unbounded derivative for low seed densities

and being unbounded for large seed densities. These extreme values of x are outside of the range of seed

densities considered in the statistical analysis of [38]. Therefore, in [16] we derived an alternative to the

power function for seedling recruitment based on biological principles that takes into account these extreme

values. The resulting function f2(x) = αx(β + x)−1 is the classical Michaelis-Menten function mentioned

previously. Both of these functions satisfy the conditions of Theorem 2.1, and thus we can use the formulas

derived in this paper to study the sensitivity and elasticity of n∗ to changes in linear data (A, b, c), and how

these sensitivities differ when one uses f1 or f2 for f . We constructed f2 so that its resulting equilibrium

population is the same as that which uses f1 for f .

We will look at how changes in the survival/growth kernel P (·, ·) and changes in the seed production function

c(·) change the equilibrium population n∗ of the two models by exploring how sensitive the equilibrium total

population size Ñ = ||n∗|| and the equilibrium total seed production Ñ = cTn∗ is to these aformentioned

changes to A and cT . For the former the effective population size is found by using dT defined by χ[L,U ] and
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Figure 3: Illustration of the sensitivity values for the equilibrium population n∗ from Rose et al. (2005) to changes in the

kernel function P (·, ·). (a) gives a graph of P (·, ·), (b) the sensitivities of ||n∗|| to changes in P (·, ·) for the model using the

power function, (c) the sensitivities of ||n∗|| to changes in P (·, ·) for the model using the Michaelis-Menten function and (d) the

sensitivities of cTn∗ for the model using the power function.

the latter by dT = cT . Using (3.6) and (3.8), we see that these sensitivities are equal to

(D∆A(x0,y0)
)||n∗|| = −

dpeg
−1(pe)

dpe
(pe)

2w(x0)v(y0)||v||+ peg
−1(pe)v(y0)||δ(· − x0) + (I −A)−1P (·, x0)||,

(4.3)

(D∆A(x0,y0)
)cTn∗ = −

dpeg
−1(pe)

dpe
(pe)

2w(x0)v(y0)c
T v + peg

−1(pe)v(y0)c
T (δ(· − x0) + (I −A)−1P (·, x0)),

and

D∆cx0
||n∗|| =

dpeg
−1(pe)

dpe
(−(pe)

2v(x0))||v||, (4.4)

D∆cx0
cTn∗ =

dpeg
−1(pe)

dpe
(−(pe)

2v(x0))c
T v =

dpeg
−1(pe)

dpe
(−(pe)v(x0)).

The formulas in (4.3) can be computed by using the fact that δ(x− x0) makes sense under an integral, and

both the norm n∗ and cTn∗ and computed via integration. As before, the sensitivities in (4.3) are the sum
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Figure 4: Illustration of the elasticity values for the equilibrium population n∗ from Rose et al. (2005) to changes in the

kernel function P (·, ·). (a) gives a graph of P (·, ·), (b) the elasticities of ||n∗|| to changes in P (·, ·) for the model using the

power function, (c) the elasticities of ||n∗|| to changes in P (·, ·) for the model using the Michaelis-Menten function and (d) the

elasticities of cTn∗ for the model using the power function.
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Figure 5: Illustration of the sensitivity and elasticity values for the equilibrium population n∗ from Rose et al. (2005) to changes

in the function c(·). (a) the sensitivities of ||n∗|| to changes in c(·) for the model using the power function, (b) the sensitivities

of ||n∗|| to changes in c(·) for the model using the Michaelis-Menten function, (c) the elasticities of ||n∗|| to changes in c(·) for

the model using the power function, (d) the elasticities of ||n∗|| to changes in c(·) for the model using the Michaelis-Menten

function.
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of the changes in equilibrium reproduction peg
−1(pe) applied equally to the entire population structure v

added to the specific changes in v multiplied by the equilibrium reproduction peg
−1(pe). For two models

that have the same equilibrium population n∗, the second term in the right-hand sides of (4.3) are identical,

and any discrepencies in sensitivity values will be elicited by different values for − dpeg
−1(pe)
dpe

. Fig 3 shows

a heat map of the kernel function P (·, ·) and the sensitivity of the equilibrium total population Ñ = ||n∗||

for both the model using the power function for f and the model using the Michaelis-Menten function for

f . Notice that, as predicted, the qualitative features of the two plots are the same, but the sensitivities

for the model with the power function are an order-of-magnitude larger than those for the model with the

Michaelis-Menten function. Thus, not only does the power function elicit transient dynamics that are much

more pronounced that those from the model with the Michaelis-Menten function [16], the sensitivity of the

common ||n∗|| are also larger when using the power function. Notice that the hottest spots on the sensitivity

figure are transitions from about y = 1 in time t to x = 5 in time t+1, transitions not generally seen in the

dynamics of the Platte thistle. Thus, as in the last example, we resort to the elasticity of ||n∗|| to changes

in P (·, ·) to normalize for the size of the parameter being perturbed. When looking at the elasticities, it

appears as though the survival/stage transitions from about to y = 1.5 to x = 2 are those for which ||n∗||

is most elastic, while some other nontrivial transitions in the life history of the Platte thistle (e.g. y = 0

to x = 0.5) are those for which ||n∗|| is relatively inelastic. Those stage transitions for which ||n∗|| is most

sensitive and elastic are the same as those for which the equilibrium total seed production cTn∗ is the most

sensitive and elastic (Figs 4.2 (d) and 4.2 (d) show these sensitivities and elasticities for the model using the

power function, which are qualitatively the same as those with the Michaelis-Menten function).

Fig 5 (a)-(b) show the sensitivity, and (c)-(d) show the elasticity, of ||n∗|| to changes in c(·), respectively. The

formula for the sensitivity of ||n∗|| with respect to c(·) in (4.4) shows that this sensitivity as a function of the

stage variable x will be shaped like v, the equilibrium stage distribution of n∗. However, the elasticity is not

shaped like v, as most of the elasticity is centered on large plants, but not the largest plants. These plants have

the combination of having high reproduction and a large representation in the equilibrium population, which

causes this high elasticity. As with the sensitivity of ||n∗|| and cTn∗ with respect to P (·, ·), the sensitivity

to c(·) is larger in the model with the power function than that with the Michaelis-Menten function, again

showing the effects of model uncertainty on predicted population dynamics.

5. Discussion

In this paper we motivate and develop sensitivity formulas for the equilibrium population n∗ of a Lur’e

system defined in general by (1.1). Lur’e systems have been useful in the study of both fish and plant

populations subject to density-dependent feedback on reproduction and structured life-history stages. We
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show the utility of these formulas by applying them to two published population models for the dynamics of

populations subject to density-dependent feedbacks in fecundity, one for a fish population and one for a plant

population. A relatively simple analytical formula for the equilibrium population n∗ is known when (A, b, c)

and f satisfy some reasonable ecological assumptions (see Theorem 2.1). This formula gives us a way to

compute these sensitivities, and to interpret the two main contributions to these sensitivies: changes elicited

by equilibrium reproduction peg
−1(pe) and changes elicited by equilibrium population structure (I −A)−1b.

Isolating these two factors allows us to see the differences in sensitivity values caused by different nonlinear

functional forms for fecundity for the IPM in Rose et al. [38] for the Platte thistle. Specifically, using a

power function for the nonlinear fecundity (which is the function that gives the smallest AIC value using the

data in [38]) elicits sensitivity values that are an order of magnitude larger than when we use a Michaelis-

Menten function, which can be derived using first biological principles. Given that the model with the power

function also predicts transient dynamics that are much larger, in many cases unrealistically larger, than the

same model using the Michaelis-Menten function for fecundity, we should be skeptical of models that are

statistically chosen from data without biological justification.

This work builds on existing work by [28], [47], [9], [11] and [12] in deriving the sensitivity and elasticity of

equilibria for nonlinear population models, as well as that of [21] and [23] in deriving sensitivity formulas

for IPMs. The novelty of this work is the rigorous construction of formulae able to handle the sensitivity

of equilibria for nonlinear integral projection models as well as nonlinear matrix population models. The

use of operator techniques allow us to interpret the sensitivity formulas in a natural way, showing the likely

source of discrepencies in the various sensivities seen in our examples. One interesting potential extension

of this work involves deriving similar equilibrium (and subsequently sensitivity) formulas for models that

do not quite fit into the Lur’e formulation (1.1). These would include models for which survival/growth

are density-dependent and/or there are multiple nonlinear factors that do not easily fit into in the model

formulation. In [18] we explore the global stability of a coupled plant-seed bank model with two nonlinearities

that do not compose in such a way as to create a Lur’e system. This is because the reproductive output of

plants is subject to two density-dependent factors (seed production and seedling establishment), while the

seed bank was only subject to one (seedling establishment). Despite this, the analysis in that paper revealed

a formula for the equilibrium plant and seed bank population, which is globally stable in many cases, and is

such that its sensitivity can be derived using the techniques in this paper. Future work will look into other

models with cascading nonlinearities to see if there are any generalities that can be exploited to further our

understanding of the sensitivity of the equilibrium (if such an equilibrium exists) for such models.

Another extension that we hope to consider is the sensitivity and elasticity of long-term populations coming

from models with stochasticity. Most ecological systems are subject to demographic and/or environmental
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variability, and many models that incorporate this variability have populations that converge in distribution

as t → ∞ [3], [32], [22], [19]. A closed-form version of the probability density function for n∗ has so far

proven difficult to obtain for most models, and the mean-field models for such systems are often different

than one would expect due to nonlinearities in the model and Jensen’s inequality. Obtaining such analytical

formulas for the sensitivity and elasticity of the probability distribution for n∗ that avoid the cumbersome

simulations (as in [17], for example), would be a substantial contribution, one that will likely take analyses

quite different than those in this paper.
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Figure 6: Elasticity values for the equilibrium population n∗ with respect to changes in the survival parameters. The horizontal

axis is the age variable, while the vertical axis is the elasticity of the value of n∗ at that age variable to changes in the parameter

(a) s1, (b) s2, (c) s3 and (d) s4.

7. Appendix A: Elasticity Values for Chinook Salmon

In Figures 6 and 7 we display the elasticity values for the Chinook Salmon model in Section 4.1.

8. Appendix B: The Sensitivity as a Distribution

As in [23],we introduce a sequence of continuous functions (φj(x, y))
∞

j=1 which converge in the sense of

distributions to δ(x, y). Let D(Ω) be the set of test functions on a set Ω. The function φj(x, y) corresponds

to the distribution (for h ∈ D((L,U)2))

[φj ]h :=

∫ U

L

φj(x, y)h(x, y) dy,
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Figure 7: Elasticity values for the equilibrium population n∗ with respect to changes in the fecundity parameters. The horizontal

axis is the age variable, while the vertical axis is the elasticity of the value of n∗ at that age variable to changes in the parameter

(a) f3, (b) f4 and (d) f5.

and

[φj ]h → h(0, 0) for every h ∈ D((L,U)2),

For u ∈ L1(L,U), define the operators ∆Aj : L
1(L,U) → C(L,U) by

(∆Aju)(x) :=

∫ U

L

φj(x− x0, y − y0)u(y) dy.

We define

∆A(x0,y0) = lim
j→∞

∆Aj in the sense of distributions.

The approximate sensitivity of n∗ with respect to changes in P (·, ·) at (x0, y0) is, by (3.2),

(D∆Aj
)n∗ = −

d(peg
−1(pe))

dpe
(pe)

2(wT (∆Aj)v)v + peg
−1(pe)((I −A)−1∆Ajv), (8.1)

where as before v and wT are the left and right eigenvectors, respectively, of A+ pebc
T corresponding to the

eigenvalue 1. We define the sensitivity of n∗ with respect to changes in P (·, ·) at (x0, y0) as

S(x0, y0)n
∗ := lim

j→∞

(D∆Aj
)n∗,

where the limit is in the sense of distributions. Using (8.1) we formally obtain

S(x0, y0)n
∗ = −

d(peg
−1(pe))

dpe
(pe)

2(wT δ(x− x0, y − y0)v)v + peg
−1(pe)((I −A)−1δ(x− x0, y − y0)v). (8.2)

We now give a rigorous interpretation of this formal expression.

We note that v = (I −A)−1b is a continuous function on [L,U ]: if not, this contradicts b = v −Av, since b

is a continuous function, and (Av) is a continuous function of x, by (2.2) and the fact that P is continuous
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on [L,U ]2. By a duality argument, w is also a continuous function. Thus, since φj is a delta-converging

sequence,

lim
j→∞

wT∆Ajv = lim
j→∞

∫ U

L

∫ U

L

w(x)φj(x− x0, y − y0) dy dx = w(x0)v(y0), (8.3)

lim
j→∞

(I −A)−1∆Ajv = (I −A)−1δ(x− x0)v(y0). (8.4)

where the convergence in (8.3) is the usual convergence in R, and the convergence in (8.4) is in the sense of

distributions. We note that η := (I −A)−1δ(x− x0) is not in L1(L,U): if it was, then (I −A)η = δ(x− x0)

would be impossible, since A is bounded. We can interpret η as a distribution as follows: let g ∈ D(L,U),

the set of test functions on (L,U). The adjoint A∗ of A is

A∗g =

∫ U

L

P (y, ·)g(y) dy.

We can use this to see that

Aδ(x− x0) = P (·, x0) ∈ C(L,U),

in the sense of distributions (that is, Aδ(x − x0) is the distribution [P (·, x0)]). Since ρ(A) < 1, we have

(I −A)−1 = I + (I −A)−1A, so

η = (I −A)−1δ(· − x0) = (I + (I −A)−1A)δ(· − x0) = δ(· − x0) + (I −A)−1P (·, x0). (8.5)

Note that this last term is a function in L1(L,U), and can be easily shown to be continuous in the same way

that v is shown to be continuous.

Using (8.2), (8.3), (8.4) and (8.5), we see that (3.6) holds in the space of distributions.
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[36] F.X. Picó, J. Retana, Age-specific, density-dependent and environment-based mortality of a short-lived

perennial herb. Plant. Biol. 10 (2008) 374-381.

[37] R. Rebarber, B. Tenhumberg, S. Townley, Global asymptotic stability of density dependent population

projection models. Theo. Pop. Bio. 81 (2012) 81-87.

[38] K.E. Rose, S.M. Louda, M. Rees, Demographic and evolutionary impacts of native and invasive insect

herbivores on cirsium canescens. Ecology 86(2) (2005) 453-465.

[39] D.M. Silva Matos, R.P. Freckelton, A.R. Watkinson, The role of density dependence in the population

dynamics of a tropical palm. Ecology 80(8) (1999) 2635-2650.

[40] H.L. Smith, H.R. Thieme, Persistence and global stability for a class of discrete time structured popu-

lation models. Discret. Contin. Dyn. S. Series. A. (DCDS - A), 2013.

[41] I. Stott, S. Townley, D. Carslake, D. J. Hodgson, On reducibility aand ergodicity of population projection

matrix models. Method. Ecol. Evol. 1 (2010) 242-252.

[42] E. Symonides, J. Silvertown, V. Andreasen, Population cycles caused by overcompensating density-

dependence in an annual plant. Oecologica 71 (1986) 156-158.

[43] S. Tavener, M. Mikucki, S.G. Field, M.F. Antolin, Transient sensitivity analysis for nonlinear population

models. Method. Ecol. Evol. 2 (2011) 560-575.

[44] S. Townley, B. Tenhumberg, R. Rebarber, Feedback control systems analysis of density dependent

population dynamics. Syst. Cont. Lett. 61 (2012) 309-315.

[45] S. Tuljapurkar, C.C. Horvitz, J.B. Pascarella, The many growth rates and elasticities of populations in

random environments. Am. Nat. 162(4) (2003) 489-502.

[46] A. Verdy, H. Caswell, Sensitivity analysis of reactive ecological dynamics. Bull. Math. Biol. 70 (2008)

1634 - 1659.

[47] J.M. Yearsley, D. Fletcher, C. Hunter, Sensitivity analysis of equilibrium population size in a density-

dependent model for Short-tailed Shearwaters. Ecol. Model. 163 (2003) 119-129.

28


