
Published as a conference paper at ICLR 2018

SENSITIVITY AND GENERALIZATION

IN NEURAL NETWORKS: AN EMPIRICAL STUDY

Roman Novak, Yasaman Bahri∗, Daniel A. Abolafia,
Jeffrey Pennington, Jascha Sohl-Dickstein

Google Brain

{romann, yasamanb, danabo, jpennin, jaschasd}@google.com

ABSTRACT

In practice it is often found that large over-parameterized neural networks
generalize better than their smaller counterparts, an observation that appears
to conflict with classical notions of function complexity, which typically favor
smaller models. In this work, we investigate this tension between complexity and
generalization through an extensive empirical exploration of two natural metrics
of complexity related to sensitivity to input perturbations. Our experiments survey
thousands of models with various fully-connected architectures, optimizers, and
other hyper-parameters, as well as four different image classification datasets.

We find that trained neural networks are more robust to input perturbations
in the vicinity of the training data manifold, as measured by the norm of the
input-output Jacobian of the network, and that it correlates well with general-
ization. We further establish that factors associated with poor generalization
– such as full-batch training or using random labels – correspond to lower
robustness, while factors associated with good generalization – such as data
augmentation and ReLU non-linearities – give rise to more robust functions.
Finally, we demonstrate how the input-output Jacobian norm can be predictive of
generalization at the level of individual test points.

1 INTRODUCTION

The empirical success of deep learning has thus far eluded interpretation through existing lenses
of computational complexity (Blum & Rivest, 1988), numerical optimization (Choromanska et al.,
2015; Goodfellow & Vinyals, 2014; Dauphin et al., 2014) and classical statistical learning theory
(Zhang et al., 2016): neural networks are highly non-convex models with extreme capacity that train
fast and generalize well. In fact, not only do large networks demonstrate good test performance, but
larger networks often generalize better, counter to what would be expected from classical measures,
such as VC dimension. This phenomenon has been observed in targeted experiments (Neyshabur
et al., 2015), historical trends of Deep Learning competitions (Canziani et al., 2016), and in the
course of this work (Figure 1).

This observation is at odds with Occam’s razor, the principle of parsimony, as applied to the intuitive
notion of function complexity (see §A.2 for extended discussion). One resolution of the apparent
contradiction is to examine complexity of functions in conjunction with the input domain. f(x) =
x3 sin(x) may seem decisively more complex than g(x) = x. But restrained to a narrow input
domain of [−0.01, 0.01] they appear differently: g remains a linear function of the input, while

f(x) = O
(

x4
)

resembles a constant 0. In this work we find that such intuition applies to neural
networks, that behave very differently close to the data manifold than away from it (§4.1).

We therefore analyze the complexity of models through their capacity to distinguish different inputs
in the neighborhood of datapoints, or, in other words, their sensitivity. We study two simple metrics
presented in §3 and find that one of them, the norm of the input-output Jacobian, correlates with
generalization in a very wide variety of scenarios.

∗Work done as a member of the Google Brain Residency program (g.co/brainresidency)

1

mailto:romann@google.com
mailto:yasamanb@google.com
mailto:danabo@google.com
mailto:jpennin@google.com
mailto:jaschasd@google.com

Published as a conference paper at ICLR 2018

100k 1M 10M 100M 1B
0.4

0.6

0.8

Number of weights

G
en

er
al

iz
at

io
n
 g

ap

1p 1n 1μ 0.001
0.4

0.6

0.8

Train loss

Figure 1: 2160 networks trained to 100% training accuracy on CIFAR10 (see §A.5.5 for experimen-
tal details). Left: while increasing capacity of the model allows for overfitting (top), very few models
do, and a model with the maximum parameter count yields the best generalization (bottom right).
Right: train loss does not correlate well with generalization, and the best model (minimum along
the y-axis) has training loss many orders of magnitude higher than models that generalize worse
(left). This observation rules out underfitting as the reason for poor generalization in low-capacity
models. See (Neyshabur et al., 2015) for similar findings in the case of achievable 0 training loss.

This work considers sensitivity only in the context of image classification tasks. We interpret the
observed correlation with generalization as an expression of a universal prior on (natural) image
classification functions that favor robustness (see §A.2 for details). While we expect a similar prior
to exist in many other perceptual settings, care should be taken when extrapolating our findings to
tasks where such a prior may not be justified (e.g. weather forecasting).

1.1 PAPER OUTLINE

We first define sensitivity metrics for fully-connected neural networks in §3. We then relate them to
generalization through a sequence of experiments of increasing level of nuance:

• In §4.1 we begin by comparing the sensitivity of trained neural networks on and off the
training data manifold, i.e. in the regions of best and typical (over the whole input space)
generalization.

• In §4.2 we compare sensitivity of identical trained networks that differ in a single hyper-
parameter which is important for generalization.

• Further, §4.3 associates sensitivity and generalization in an unrestricted manner, i.e. com-
paring networks of a wide variety of hyper-parameters such as width, depth, non-linearity,
weight initialization, optimizer, learning rate and batch size.

• Finally, §4.4 explores how predictive sensitivity (as measured by the Jacobian norm) is for
individual test points.

1.2 SUMMARY OF CONTRIBUTIONS

The novelty of this work can be summarized as follows:

• Study of the behavior of trained neural networks on and off the data manifold through
sensitivity metrics (§4.1).

• Evaluation of sensitivity metrics on trained neural networks in a very large-scale experi-
mental setting and finding that they correlate with generalization (§4.2, §4.3, §4.4).

§2 puts our work in context of related research studying complexity, generalization, or sensitivity
metrics similar to ours.

2

Published as a conference paper at ICLR 2018

2 RELATED WORK

2.1 COMPLEXITY METRICS

We analyze complexity of fully-connected neural networks for the purpose of model comparison
through the following sensitivity measures (see §3 for details):

• estimating the number of linear regions a network splits the input space into;

• measuring the norm of the input-output Jacobian within such regions.

A few prior works have examined measures related to the ones we consider. In particular, Pascanu
et al. (2013); Montúfar et al. (2014); Raghu et al. (2016) have investigated the expressive power of
fully-connected neural networks built out of piecewise-linear activation functions. Such functions
are themselves piecewise-linear over their input domain, so that the number of linear regions into
which input space is divided is one measure of how nonlinear the function is. A function with many
linear regions has the capacity to build complex, flexible decision boundaries. It was argued in
(Pascanu et al., 2013; Montúfar et al., 2014) that an upper bound to the number of linear regions
scales exponentially with depth but polynomially in width, and a specific construction was exam-
ined. Raghu et al. (2016) derived a tight analytic bound and considered the number of linear regions
for generic networks with random weights, as would be appropriate, for instance, at initialization.
However, the evolution of this measure after training has not been investigated before. We examine
a related measure, the number of hidden unit transitions along one-dimensional trajectories in input
space, for trained networks. Further motivation for this measure is discussed in §3.

Another perspective on function complexity can be gained by studying their robustness to pertur-
bations to the input. Indeed, Rasmussen & Ghahramani (2000) demonstrate on a toy problem how
complexity as measured by the number of parameters may be of limited utility for model selection,
while measuring the output variation allows the invocation of Occam’s razor. In this work we apply
related ideas to a large-scale practical context of neural networks with up to a billion free parameters
(§4.2, §4.3) and discuss potential ways in which sensitivity permits the application of Occam’s razor
to neural networks (§A.2).

Sokolic et al. (2017) provide theoretical support for the relevance of robustness, as measured by the
input-output Jacobian, to generalization. They derive bounds for the generalization gap in terms
of the Jacobian norm within the framework of algorithmic robustness (Xu & Mannor, 2012). Our
results provide empirical support for their conclusions through an extensive number of experiments.
Several other recent papers have also focused on deriving tight generalization bounds for neural
networks (Bartlett et al., 2017; Dziugaite & Roy, 2017; Neyshabur et al., 2018). We do not propose
theoretical bounds in this paper but establish a correlation between our metrics and generalization
in a substantially larger experimental setting than undertaken in prior works.

2.2 REGULARIZATION

In the context of regularization, increasing robustness to perturbations is a widely-used strategy:
data augmentation, noise injection (Jiang et al., 2009), weight decay (Krogh & Hertz, 1992), and
max-pooling all indirectly reduce sensitivity of the model to perturbations, while Rifai et al. (2011);
Sokolic et al. (2017) explicitly penalize the Frobenius norm of the Jacobian in the training objective.

In this work we relate several of the above mentioned regularizing techniques to sensitivity, demon-
strating through extensive experiments that improved generalization is consistently coupled with
better robustness as measured by a single metric, the input-output Jacobian norm (§4.2). While some
of these findings confirm common-sense expectations (random labels increase sensitivity, Figure 4,
top row), others challenge our intuition of what makes a neural network robust (ReLU-networks,
with unbounded activations, tend to be more robust than saturating HardSigmoid-networks, Figure
4, third row).

2.3 INDUCTIVE BIAS OF SGD

One of our findings demonstrates an inductive bias towards robustness in stochastic mini-batch opti-
mization compared to full-batch training (Figure 4, bottom row). Interpreting this regularizing effect

3

Published as a conference paper at ICLR 2018

in terms of some measure of sensitivity, such as curvature, is not new (Hochreiter & Schmidhuber,
1997; Keskar et al., 2016), yet we provide a novel perspective by relating it to reduced sensitivity to
inputs instead of parameters.

The inductive bias of SGD (“implicit regularization”) has been previously studied in (Neyshabur
et al., 2015), where it was shown through rigorous experiments how increasing the width of a single-
hidden-layer network improves generalization, and an analogy with matrix factorization was drawn
to motivate constraining the norm of the weights instead of their count. Neyshabur et al. (2017)
further explored several weight-norm based measures of complexity that do not scale with the size
of the model. One of our measures, the Frobenius norm of the Jacobian is of similar nature (since
the Jacobian matrix size is determined by the task and not by a particular network architecture).
However, this particular metric was not considered, and, to the best of our knowledge, we are the
first to evaluate it in a large-scale setting (e.g. our networks are up to 65 layers deep and up to 216

units wide).

2.4 ADVERSARIAL EXAMPLES

Sensitivity to inputs has attracted a lot of interest in the context of adversarial examples (Szegedy
et al., 2013). Several attacks locate points of poor generalization in the directions of high sensitivity
of the network (Goodfellow et al., 2014; Papernot et al., 2016; Moosavi-Dezfooli et al., 2016), while
certain defences regularize the model by penalizing sensitivity (Gu & Rigazio, 2014) or employing
decaying (hence more robust) non-linearities (Kurakin et al., 2016). However, work on adversar-
ial examples relates highly specific perturbations to a similarly specific kind of generalization (i.e.
performance on a very small, adversarial subset of the data manifold), while this paper analyzes
average-case sensitivity (§3) and typical generalization.

3 SENSITIVITY METRICS

We propose two simple measures of sensitivity for a fully-connected neural network (without biases)
f : Rd → R

n with respect to its input x ∈ R
d (the output being unnormalized logits of the n classes).

Assume f employs a piecewise-linear activation function, like ReLU. Then f itself, as a composition
of linear and piecewise-linear functions, is a piecewise-linear map, splitting the input space R

d into
disjoint regions, implementing a single affine mapping on each. Then we can measure two aspects
of sensitivity by answering

1. How does the output of the network change as the input is perturbed within the linear
region?

2. How likely is the linear region to change in response to change in the input?

We quantify these qualities as follows:

1. For a local sensitivity measure we adopt the Frobenius norm of the class probabilities Ja-
cobian J(x) = ∂fσ (x) /∂x

T (with Jij(x) = ∂ [fσ (x)]i /∂xj), where fσ = σ ◦ f with σ

being the softmax function1. Given points of interest xtest, we estimate the sensitivity of
the function in those regions with the average Jacobian norm:

Extest
[‖J (xtest)‖F] ,

that we will further refer to as simply “Jacobian norm”. Note that this does not require the
labels for xtest.

Interpretation. The Frobenius norm ‖J(x)‖F =
√

∑

ij Jij(x)
2 estimates the average-

case sensitivity of fσ around x. Indeed, consider an infinitesimal Gaussian perturbation

1The norm of the Jacobian with respect to logits
(

∂f (x) /∂xT
)

experimentally turned out less predictive of
test performance (not shown). See §A.3 for discussion of why the softmax Jacobian is related to generalization.

4

Published as a conference paper at ICLR 2018

∆x ∼ N (0, ǫI): the expected magnitude of the output change is then

E∆x

[

‖fσ (x)− fσ (x+∆x)‖22
]

≈ E∆x

[

‖J(x)∆x‖22
]

= E∆x

[

∑

i

(

∑

j

Jijxj

)2]

=
∑

ijj′

JijJij′E∆x [xjxj′] =
∑

ij

J2
ijE∆x

[

x2
j

]

= ǫ ‖J (x)‖2F .

2. To detect a change in linear region (further called a “transition”), we need to be able to
identify it. We do this analogously to Raghu et al. (2016). For a network with piecewise-
linear activations, we can, given an input x, assign a code to each neuron in the network
f , that identifies the linear region of the pre-activation of that neuron. E.g. each ReLU
unit will have 0 or 1 assigned to it if the pre-activation value is less or greater than 0
respectively. Similarly, a ReLU6 unit (see definition in §A.4) will have a code of 0, 1, or 2
assigned, since it has 3 linear regions2. Then, a concatenation of codes of all neurons in the
network (denoted by c(x)) uniquely identifies the linear region of the input x (see §A.1.1
for discussion of edge cases).

Given this encoding scheme, we can detect a transition by detecting a change in the code.
We then sample k equidistant points z0, . . . , zk−1 on a closed one-dimensional trajectory
T (x) (generated from a data point x and lying close to the data manifold; see below for
details) and count transitions t(x) along it to quantify the number of linear regions:

t(x) :=

k−1
∑

i=0

∥

∥c (zi)− c
(

z(i+1)%k

)
∥

∥

1
≈
∮

z∈T (x)

∥

∥

∥

∥

∂c(z)

∂ (dz)

∥

∥

∥

∥

1

dz, (1)

where the norm of the directional derivative ‖∂c(z)/∂ (dz)‖1 amounts to a Dirac delta
function at each transition (see §A.1.2 for further details).

By sampling multiple such trajectories around different points, we estimate the sensitivity
metric:

Extest
[t (xtest)] ,

that we will further refer to as simply “transitions” or “number of transitions.”

To assure the sampling trajectory T (xtest) is close to the data manifold (since this is the
region of interest), we construct it through horizontal translations of the image xtest in pixel
space (Figure App.7, right). We similarly augment our training data with horizontal and
vertical translations in the corresponding experiments (Figure 4, second row).

As earlier, this metric does not require knowing the label of xtest.

Interpretation. We can draw a qualitative parallel between the number of transitions and
curvature of the function. One measure of curvature of a function f is the total norm of the
directional derivative of its first derivative f

′ along a path:

C (f , T (x)) :=

∮

z∈T (x)

∥

∥

∥

∥

∂f ′ (z)

∂ (dz)

∥

∥

∥

∥

F

dz.

A piecewise-linear function f has a constant first derivative f
′ everywhere except for the

transition boundaries. Therefore, for a sufficiently large k, curvature can be expressed as

C (f , T (x)) =
1

2

k−1
∑

i=0

∥

∥f
′ (zi)− f

′
(

z(i+1)%k

)∥

∥

F
,

where z0, . . . , zk−1 are equidistant samples on T (x). This sum is similar to t(x) as defined
in Equation 1, but quantifies the amount of change in between two linear regions in a non-
binary way. However, estimating it on a densely sampled trajectory is a computationally-
intensive task, which is one reason we instead count transitions.

2For a non-piecewise-linear activation like Tanh, we consider 0 as the boundary of two regions and find this
metric qualitatively similar to counting transitions of a piecewise-linear non-linearity.

5

Published as a conference paper at ICLR 2018

As such, on a qualitative level, the two metrics (Jacobian norm and number of transitions) track the
first and second order terms of the Taylor expansion of the function.

Above we have defined two sensitivity metrics to describe the learned function around the data,
on average. In §4.1 we analyze these measures on and off the data manifold by simply measuring
them along circular trajectories in input space that intersect the data manifold at certain points, but
generally lie away from it (Figure 2, left).

4 EXPERIMENTAL RESULTS

In the following subsections (§4.2, §4.3) each study analyzes performance of a large number (usually
thousands) of fully-connected neural networks having different hyper-parameters and optimization
procedures. Except where specified, we include only models which achieve 100% training accuracy.
This allows us to study generalization disentangled from properties like expressivity and trainability,
which are outside the scope of this work.

In order to efficiently evaluate the compute-intensive metrics (§3) in a very wide range of hyper-
parameters settings (see e.g. §A.5.5) we only consider fully-connected networks. Extending the
investigation to more complex architectures is left for future work.

4.1 SENSITIVITY ON AND OFF THE TRAINING DATA MANIFOLD

We analyze the behavior of a trained neural network near and away from training data. We do this
by comparing sensitivity of the function along 3 types of trajectories:

1. A random ellipse. This trajectory is extremely unlikely to pass anywhere near the real data,
and indicates how the function behaves in random locations of the input space that it never
encountered during training.

2. An ellipse passing through three training points of different class (Figure 2, left). This
trajectory does pass through the three data points, but in between it traverses images that
are linear combinations of different-class images, and are expected to lie outside of the
natural image space. Sensitivity of the function along this trajectory allows comparison of
its behavior on and off the data manifold, as it approaches and moves away from the three
anchor points.

3. An ellipse through three training points of the same class. This trajectory is similar to the
previous one, but, given the dataset used in the experiment (MNIST), is expected to traverse
overall closer to the data manifold, since linear combinations of the same digit are more
likely to resemble a realistic image. Comparing transition density along this trajectory to
the one through points of different classes allows further assessment of how sensitivity
changes in response to approaching the data manifold.

We find that, according to both the Jacobian norm and transitions metrics, functions exhibit much
more robust behavior around the training data (Figure 2, center and right). We further visualize this
effect in 2D in Figure 3, where we plot the transition boundaries of the last (pre-logit) layer of a
neural network before and after training. After training we observe that training points lie in regions
of low transition density.

The observed contrast between the neural network behavior near and away from data further
strengthens the empirical connection we draw between sensitivity and generalization in §4.2, §4.3
and §4.4; it also confirms that, as mentioned in §1, if a certain quality of a function is to be used for
model comparison, input domain should always be accounted for.

4.2 SENSITIVITY AND GENERALIZATION FACTORS

In §4.1 we established that neural networks implement more robust functions in the vicinity of the
training data manifold than away from it.

We now consider the more practical context of model selection. Given two perfectly trained neural
networks, does the model with better generalization implement a less sensitive function?

6

Published as a conference paper at ICLR 2018

Trajectory Mean Jacobian norm Transition density
along... along...

π/3 (point 1)

5π/3 (point 3)

π (point 2)

π/3 (point 1) π (point 2) 5π/3 (point 3)
100

0.01

1

100

10k

a random ellipse
an ellipse through 3 training points of a different class
an ellipse through 3 training points of the same class

π/3 (point 1) π (point 2) 5π/3 (point 3)40

60

80

100

120
140
160
180

a random ellipse
an ellipse through 3 training points of a different class
an ellipse through 3 training points of the same class

Figure 2: A 100%-accurate (on training data) MNIST network implements a function that is much
more stable near training data than away from it. Left: depiction of a hypothetical circular trajec-
tory in input space passing through three digits of different classes, highlighting the training point
locations (π/3, π, 5π/3). Center: Jacobian norm as the input traverses an elliptical trajectory. Sen-
sitivity drops significantly in the vicinity of training data while remaining uniform along random
ellipses. Right: transition density behaves analogously. According to both metrics, as the input
moves between points of different classes, the function becomes less stable than when it moves
between points of the same class. This is consistent with the intuition that linear combinations of
different digits lie further from the data manifold than those of same-class digits (which need not
hold for more complex datasets). See §A.5.2 for experimental details.

Before Training After Training

Figure 3: Transition boundaries of the last (pre-logits) layer over a 2-dimensional slice through
the input space defined by 3 training points (indicated by inset squares). Left: boundaries before
training. Right: after training, transition boundaries become highly non-isotropic, with training
points lying in regions of lower transition density. See §A.5.3 for experimental details.

We study approaches in the machine learning community that are commonly believed to influence
generalization (Figure 4, top to bottom):

• random labels;

• data augmentation;

• ReLUs;

• full-batch training.

We find that in each case, the change in generalization is coupled with the respective change in
sensitivity (i.e. lower sensitivity corresponds to smaller generalization gap) as measured by the
Jacobian norm (and almost always for the transitions metric).

7

Published as a conference paper at ICLR 2018

Generalization Gap Jacobian norm Transitions

0.4 0.6 0.8 1
0.4

0.6

0.8

1

Generalization gap

w/ true labels

w
/

ra
n
d
om

 l
ab

el
s

1 10 100 1000 10k

1

10

100

1000

10k

Jacobian norm

w/ true labels

w
/

ra
n
d
om

 l
ab

el
s

1000 10k 100k 1M

1000

10k

100k

1M

Transitions

w/ true labels

w
/

ra
n
d
om

 l
ab

el
s

0.2 0.4 0.6

0.2

0.4

0.6

Generalization gap

w/ data augmentation

w
/o

 d
at

a
au

gm
en

ta
ti

on

0.1 1 10 100 1000
0.1

1

10

100

1000

Jacobian norm

w/ data augmentation

w
/o

 d
at

a
au

gm
en

ta
ti

on

1000 10k 100k 1M

1000

10k

100k

1M

Transitions

w/ data augmentation

w
/o

 d
at

a
au

gm
en

ta
ti

on

0.4 0.5 0.6 0.7 0.8
0.4

0.5

0.6

0.7

0.8

Generalization gap

ReLU

H
ar

d
S
ig

m
oi

d

5 1 2 5 10 2

5

1

2

5

10

2

Jacobian norm

ReLU

H
ar

d
S
ig

m
oi

d

1000 10k 100k 1M

1000

10k

100k

1M

Transitions

ReLU

H
ar

d
S
ig

m
oi

d

0.4 0.6 0.8
0.4

0.6

0.8

Generalization gap

SGD + Momentum

L
-B

F
G

S

5 1 2 5 10 2 5 100

5

1

2

5

10

2

5

100

Jacobian norm

SGD + Momentum

L
-B

F
G

S

1000 10k 100k 1M

1000

10k

100k

1M

Transitions

SGD + Momentum

L
-B

F
G

S

Figure 4: Improvement in generalization (left column) due to using correct labels, data augmenta-
tion, ReLUs, mini-batch optimization (top to bottom) is consistently coupled with reduced sensi-
tivity as measured by the Jacobian norm (center column). Transitions (right column) correlate with
generalization in all considered scenarios except for comparing optimizers (bottom right). Each
point on the plot corresponds to two neural networks that share all hyper-parameters and the same
optimization procedure, but differ in a certain property as indicated by axes titles. The coordinates
along each axis reflect the values of the quantity in the title of the plot in the respective setting (i.e.
with true or random labels). All networks have reached 100% training accuracy on CIFAR10 in both
settings (except for the data-augmentation study, second row; see §A.5.4 for details). See §A.5.5 for
experimental details (§A.5.4 for the data-augmentation study) and §4.2.1 for plot interpretation.

8

Published as a conference paper at ICLR 2018

4.2.1 HOW TO READ PLOTS

In Figure 4, for many possible hyper-parameter configurations, we train two models that share all
parameters and optimization procedure, but differ in a single binary setting (i.e. trained on true or
random labels; with or without data augmentation; etc). Out of all such network pairs, we select only
those where each network reached 100% training accuracy on the whole training set (apart from the
data augmentation study). The two generalization or sensitivity values are then used as the x and y
coordinates of a point corresponding to this pair of networks (with the plot axes labels denoting the
respective value of the binary parameter considered). The position of the point with respect to the
diagonal y = x visually demonstrates which configuration has smaller generalization gap / lower
sensitivity.

4.3 SENSITIVITY AND GENERALIZATION GAP

We now perform a large-scale experiment to establish direct relationships between sensitivity and
generalization in a realistic setting. In contrast to §4.1, where we selected locations in the input
space, and §4.2, where we varied a single binary parameter impacting generalization, we now sweep
simultaneously over many different architectural and optimization choices (§A.5.5).

Our main result is presented in Figure 5, indicating a strong relationship between the Jacobian norm
and generalization. In contrast, Figure App.8 demonstrates that the number of transitions is not
alone sufficient to compare networks of different sizes, as the number of neurons in the networks
has a strong influence on transition count.

1 100 10k

0.5

0.6

0.7

0.8

0.9

CIFAR10

G
en

er
al

iz
at

io
n
 g

ap

1 100 10k

0.7

0.75

0.8

0.85

0.9

0.95

1

CIFAR100

5 0.1 2 5 1 2 5

0.02

0.025

0.03

0.035

MNIST

G
en

er
al

iz
at

io
n
 g

ap

1 2 5 10 2

0.1

0.12

FASHION_MNIST

Jacobian norm

Figure 5: Jacobian norm correlates with generalization gap on all considered datasets. Each point
corresponds to a network trained to 100% training accuracy (or at least 99.9% in the case of CI-
FAR100). See §A.5.4 and §A.5.5 for experimental details of bottom and top plots respectively.

9

Published as a conference paper at ICLR 2018

4.4 SENSITIVITY AND PER-POINT GENERALIZATION

In §4.3 we established a correlation between sensitivity (as measured by the Jacobian norm) and
generalization averaged over a large test set (104 points). We now investigate whether the Jacobian
norm can be predictive of generalization at individual points.

As demonstrated in Figure 6 (top), Jacobian norm at a point is predictive of the cross-entropy loss,
but the relationship is not a linear one, and not even bijective (see §A.3 for analytic expressions ex-
plaining it). In particular, certain misclassified points (right sides of the plots) have a Jacobian norm
many orders of magnitude smaller than that of the correctly classified points (left sides). However,
we do remark a consistent tendency for points having the highest values of the Jacobian norm to
be mostly misclassified. A similar yet noisier trend is observed in networks trained using ℓ2-loss as
depicted in Figure 6 (bottom). These observations make the Jacobian norm a promising quantity to
consider in the contexts of active learning and confidence estimation in future research.

10n 1μ 100μ 0.01 1 100
10e−21

100e−18

1p

10n

100μ

1

MNIST

J
ac

ob
ia

n
 n

or
m

10n 1μ 100μ 0.01 1 100
10e−21

100e−18

1p

10n

100μ

1

CIFAR10

Cross-entropy loss

100p 10n 1μ 100μ 0.01 1
10μ

100μ

0.001

0.01

0.1

1

10

J
ac

ob
ia

n
 n

or
m

100p 10n 1μ 100μ 0.01 1
10μ

100μ

0.001

0.01

0.1

1

10

ℓ2-loss

Figure 6: Jacobian norm plotted against individual test point loss. Each plot shows 5 random net-
works that fit the respective training set with 100% accuracy, with each network having a unique
color. Top: Jacobian norm plotted against cross-entropy loss. These plots experimentally confirm
the relationship established in §A.3 and Figure App.11. Bottom: Jacobian norm plotted against
ℓ2-loss, for networks trained on ℓ2-loss, exhibits a similar behavior. See §A.5.6 for experimental
details and Figure App.9 for similar observations on other datasets.

5 CONCLUSION

We have investigated sensitivity of trained neural networks through the input-output Jacobian norm
and linear regions counting in the context of image classification tasks. We have presented extensive
experimental evidence indicating that the local geometry of the trained function as captured by
the input-output Jacobian can be predictive of generalization in many different contexts, and that it
varies drastically depending on how close to the training data manifold the function is evaluated. We
further established a connection between the cross-entropy loss and the Jacobian norm, indicating
that it can remain informative of generalization even at the level of individual test points. Interesting
directions for future work include extending our investigation to more complex architectures and
other machine learning tasks.

10

Published as a conference paper at ICLR 2018

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. In Advances in Neural Information Processing Systems, pp. 6241–6250, 2017.

Avrim Blum and Ronald L. Rivest. Training a 3-node neural network is np-complete. In Machine
Learning: From Theory to Applications, 1988.

Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An analysis of deep neural network
models for practical applications. CoRR, abs/1605.07678, 2016.

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. The
loss surfaces of multilayer networks. In Artificial Intelligence and Statistics, pp. 192–204, 2015.

Yann Dauphin, Razvan Pascanu, aglar Gülehre, Kyunghyun Cho, Surya Ganguli, and Yoshua Ben-
gio. Identifying and attacking the saddle point problem in high-dimensional non-convex opti-
mization. In NIPS, 2014.

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data. arXiv preprint
arXiv:1703.11008, 2017.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and D Scul-
ley. Google vizier: A service for black-box optimization. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1487–1495.
ACM, 2017.

Ian J. Goodfellow and Oriol Vinyals. Qualitatively characterizing neural network optimization prob-
lems. CoRR, abs/1412.6544, 2014.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Shixiang Gu and Luca Rigazio. Towards deep neural network architectures robust to adversarial
examples. arXiv preprint arXiv:1412.5068, 2014.

Caglar Gulcehre, Marcin Moczulski, Misha Denil, and Yoshua Bengio. Noisy activation functions.
In International Conference on Machine Learning, pp. 3059–3068, 2016.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning-
lecture 6a-overview of mini-batch gradient descent, 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 9(1):1–42, 1997.

William H Jefferys and James O Berger. Ockham’s razor and bayesian analysis. American Scientist,
80(1):64–72, 1992.

Yulei Jiang, Richard M Zur, Lorenzo L Pesce, and Karen Drukker. A study of the effect of noise
injection on the training of artificial neural networks. In Neural Networks, 2009. IJCNN 2009.
International Joint Conference on, pp. 1428–1432. IEEE, 2009.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky. Convolutional deep belief networks on cifar-10. 2010.

11

Published as a conference paper at ICLR 2018

Anders Krogh and John A Hertz. A simple weight decay can improve generalization. In Advances
in neural information processing systems, pp. 950–957, 1992.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv
preprint arXiv:1611.01236, 2016.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Sam Schoenholz, Jeffrey Pennington, and Jascha Sohl-
dickstein. Deep neural networks as gaussian processes. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=B1EA-M-0Z.

David JC MacKay. Bayesian interpolation. 1991.

David JC MacKay. A practical bayesian framework for backpropagation networks. Neural compu-
tation, 4(3):448–472, 1992.

G. Montúfar, R. Pascanu, K. Cho, and Y. Bengio. On the Number of Linear Regions of Deep Neural
Networks. Neural Information Processing Systems, February 2014.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. arXiv preprint arXiv:1610.08401, 2016.

Iain Murray and Zoubin Ghahramani. A note on the evidence and bayesian occam’s razor, 2005.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Radford M. Neal. Priors for infinite networks (tech. rep. no. crg-tr-94-1). University of Toronto,
1994.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On
the role of implicit regularization in deep learning. Proceeding of the international Conference
on Learning Representations workshop track, abs/1412.6614, 2015.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. Exploring gener-
alization in deep learning. CoRR, abs/1706.08947, 2017.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-bayesian approach to
spectrally-normalized margin bounds for neural networks. In International Conference on Learn-
ing Representations, 2018. URL https://openreview.net/forum?id=Skz_WfbCZ.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram
Swami. The limitations of deep learning in adversarial settings. In Security and Privacy (Eu-
roS&P), 2016 IEEE European Symposium on, pp. 372–387. IEEE, 2016.

R. Pascanu, G. Montufar, and Y. Bengio. On the number of response regions of deep feed forward
networks with piece-wise linear activations. International Conference on Learning Representa-
tions, December 2013.

B. Poole, S. Lahiri, M. Raghu, J. Sohl-Dickstein, and S. Ganguli. Exponential expressivity in deep
neural networks through transient chaos. Neural Information Processing Systems, June 2016.

M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein. On the Expressive Power of
Deep Neural Networks. International Conference on Machine Learning, June 2016.

Carl E. Rasmussen and Zoubin Ghahramani. Occam’s razor. In NIPS, 2000.

Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Contractive auto-
encoders: Explicit invariance during feature extraction. In Proceedings of the 28th international
conference on machine learning (ICML-11), pp. 833–840, 2011.

David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning representations by
back-propagating errors. Cognitive modeling, 5(3):1, 1988.

12

https://openreview.net/forum?id=B1EA-M-0Z
https://openreview.net/forum?id=Skz_WfbCZ

Published as a conference paper at ICLR 2018

Jure Sokolic, Raja Giryes, Guillermo Sapiro, and Miguel RD Rodrigues. Robust large margin deep
neural networks. IEEE Transactions on Signal Processing, 2017.

Ercan Solak, Roderick Murray-Smith, William E Leithead, Douglas J Leith, and Carl E Rasmussen.
Derivative observations in gaussian process models of dynamic systems. In Advances in neural
information processing systems, pp. 1057–1064, 2003.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Matus Telgarsky. Representation benefits of deep feedforward networks. CoRR, abs/1509.08101,
2015.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017.

Huan Xu and Shie Mannor. Robustness and generalization. Machine learning, 86(3):391–423,
2012.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires re-
thinking generalization. International Conference on Learning Representations, November 2016.

A APPENDIX

A.1 TRANSITION METRIC DETAILS

A.1.1 LINEAR REGION ENCODING

The way of encoding a linear region c (z) of a point z described in §3 (2) guarantees that different
regions obtain different codes, but different codes might be assigned to the same region if all the
neurons in any layer of the network are saturated (or if weights leading from the transitioning unit
to active units are exactly zero, or exactly cancel). However, the probability of such an arrangement
drops exponentially with width and hence is ignored in this work.

A.1.2 TRANSITION COUNTING

The equality between the discrete and continuous versions of t (x) in Equation 1 becomes exact with
a high-enough sampling density k such that there are no narrow linear regions missed in between
consecutive points (precisely, the encoding c (z) has to only change at most once on the line between
two consecutive points zi and zi+1).

For computational efficiency we also assume that no two neurons transitions simultaneously, which
is extremely unlikely in the context of random initialization and stochastic optimization.

Figure App.7: Depiction of a trajectory in input space used to count transitions as defined in §3 (2).
An interpolation between 28 horizontal translations of a single digit results in a complex trajectory
that constrains all points to lie close to the translation-augmented data, and allows for a tractable
estimate of transition density around the data manifold. This metric is used to compare models
in §4.2 and §4.3. Straight lines indicate boundaries between different linear regions (straight-line
boundaries between linear regions is accurate for the case of a single-layer piecewise-linear network.
The partition into linear regions is more complex for deeper networks (Raghu et al., 2016)).

13

Published as a conference paper at ICLR 2018

1000 10k 100k 1M
0.4

0.6

0.8

1

CIFAR10
G

en
er

al
iz

at
io

n
 g

ap

1000 10k 100k 1M
0.4

0.6

0.8

1

CIFAR100

Transitions

Figure App.8: Number of transitions, in contrast to Figure 5, does not generally correlate with
generalization gap. Left: 2160 networks with 100% train accuracy on CIFAR10. Right: 2097
networks with at least 99.9% training accuracy on CIFAR100. See §A.5.5 for experimental details.

10n 1μ 100μ 0.01 1 100

1e−18

1f

1p

1n

1μ

0.001

1

1000

FASHION_MNIST

J
ac

ob
ia

n
 n

or
m

10n 1μ 100μ 0.01 1 100

1e−18

1f

1p

1n

1μ

0.001

1

1000

CIFAR100

J
ac

ob
ia

n
 n

or
m

Cross-entropy loss

100p 10n 1μ 100μ 0.01 1
10μ

2

5
100μ

2

5
0.001

2

5
0.01

2

5
0.1

2

5
1
2

5
10

2

5
100

J
ac

ob
ia

n
 n

o
rm

100p 10n 1μ 100μ 0.01 1
10μ

2

5
100μ

2

5
0.001

2

5
0.01

2

5
0.1

2

5
1
2

5
10

2

5
100

J
ac

ob
ia

n
 n

o
rm

ℓ2-loss

Figure App.9: Jacobian norm plotted against individual test point loss on Fashion-MNIST (Xiao
et al., 2017) and CIFAR100. As in Figure 6, each plot shows 5 random networks that fit the respec-
tive training set to a 100% with each network having a unique color. See §A.5.6 for experimental
details.

14

Published as a conference paper at ICLR 2018

A.2 DO NEURAL NETWORKS DEFY OCCAM’S RAZOR?

Here we briefly discuss the motivation of this work in the context of Occam’s razor.

Occam’s razor is a heuristic for model comparison based on their complexity. Given a dataset D,
Occam’s razor gives preference to simpler models H. In the Bayesian interpretation of the heuristic
(Jefferys & Berger, 1992) simplicity is defined as evidence P [D|H] and is often computed using the
Laplace approximation. Under further assumptions (MacKay, 1991), this evidence can be shown
to be inversely proportional to the number of parameters in the model. Therefore, given a uniform
prior P [H] on two competing hypothesis classes, the class posterior P [H|D] ∼ P [D|H]P [H] is
higher for a model with fewer parameters.

An alternative, qualitative justification of the heuristic is through considering the evidence as a
normalized probability distribution over the whole dataset space:

∫

D′

P [D′|H] dD′ = 1

and remarking that models with more parameters have to spread the probability mass more evenly
across all the datasets by virtue of being able to fit more of them (Figure App.10, left). This similarly
suggests (under a uniform prior on competing hypothesis classes) preferring models with fewer
parameters, assuming that evidence is unimodal and peaks close to the dataset of interest.

Occam’s razor for neural networks. As seen in Figure 1, the above reasoning does not apply to
neural networks: the best achieved generalization is obtained by a model that has around 104 times
as many parameters as the simplest model capable of fitting the dataset (within the evaluated search
space).

On one hand, Murray & Ghahramani (2005); Telgarsky (2015) demonstrate on concrete examples
that a high number of free parameters in the model doesn’t necessarily entail high complexity. On
the other hand, a large body of work on the expressivity of neural networks (Pascanu et al., 2013;
Montúfar et al., 2014; Raghu et al., 2016; Poole et al., 2016) shows that their ability to compute
complex functions increases rapidly with size, while Zhang et al. (2016) validates that they also
easily fit complex (even random) functions with stochastic optimization. Classical metrics like VC
dimension or Rademacher complexity increase with size of the network as well. This indicates that
weights of a neural network may actually correspond to its usable capacity, and hence “smear” the
evidence P [D|H] along a very large space of datasets D′, making the dataset of interest D less likely.

Potential issues. We conjecture the Laplace approximation of the evidence P [D|H] and the sim-
plified estimation of the “Occam’s factor” in terms of the accessible volume of the parameter space
might not hold for neural networks in the context of stochastic optimization, and, in particular, do not
account for the combinatorial growth of the accessible volume of parameter space as width increases
(MacKay, 1992). Similarly, when comparing evidence as probability distributions over datasets, the
difference between two neural networks may not be as drastic as in Figure App.10 (left), but more
nuanced as depicted in Figure App.10 (right), with the evidence ratio being highly dependent on the
particular dataset.

We interpret our work as defining hypothesis classes based on sensitivity of the hypothesis (which
yielded promising results in (Rasmussen & Ghahramani, 2000) on a toy task) and observing a
strongly non-uniform prior on these classes that enables model comparison. Indeed, at least in
the context of natural images classification, putting a prior on the number of parameters or Kol-
mogorov complexity of the hypothesis is extremely difficult. However, a statement that the true
classification function is robust to small perturbations in the input is much easier to justify. As such,
a prior P [H] in favor of robustness over sensitivity might fare better than a prior on specific network
hyper-parameters.

Above is one way to interpret the correlation between sensitivity and generalization that we observe
in this work. It does not explain why large networks tend to converge to less sensitive functions.
We conjecture large networks to have access to a larger space of robust solutions due to solving a
highly-underdetermined system when fitting a dataset, while small models converge to more extreme
weight values due to being overconstrained by the data. However, further investigation is needed to
confirm this hypothesis.

15

Published as a conference paper at ICLR 2018

Expectation Reality?

D D0

D
D0?

Zeros Noise

P [D0|H] P [D0|H]

Small Hs

Large Hl

Large Hl

Small Hs

Zeros Noise

Figure App.10: Occam’s razor: simplified expectation vs hypothesized reality. All datasets D′ with
input and target dimensions matching those of a particular dataset D are sorted according to the
evidence P [D′|H] of a large model Hl from left to right along the horizontal axis. Left: a classic
simplified depiction of Bayesian Occam’s razor. Evidence P [D′|H] of a small model Hs with few
parameters has narrow support in the dataset space and is more peaked. If the model fits the dataset
D well, it falls close to the peak and outperforms a larger model Hl with more parameters, having
wider support. Right: suggested potential reality of neural networks. Evidence of the small model
Hs peaks higher, but the large model Hl might nonetheless concentrate the majority of probability
mass on simple functions and the evidence curves might intersect at a small angle. In this case,
while a dataset D lying close to the intersection can be fit by both models, the Bayesian evidence
ratio depends on its exact position with respect to the intersection.

A.3 BOUNDING THE JACOBIAN NORM

Here we analyze the relationship between the Jacobian norm and the cross-entropy loss at individual
test points as studied in §4.4.

Target class Jacobian. We begin by relating the derivative of the target class probability Jy(x) to

per-point cross-entropy loss l(x) = − log [fσ(x)]y(x) (where y(x) is the correct integer class).

We will denote fσ(x) by σ and drop the x argument to de-clutter notation (i.e. write f instead of
f(x)). Then the Jacobian can be expressed as

J =
[

(

σ1
T
)

⊙
(

I− σ1
T
)T
]

(

∂f

∂xT

)

,

where ⊙ is the Hadamard element-wise product. Then indexing both sides of the equation at the
correct class y yields

Jy = σy

(

(ey − σ)
T

(

∂f

∂xT

))

,

where ey is a vector of zeros everywhere except for ey = 1. Taking the norm of both sides results in

‖Jy‖22 = σ2
y

d
∑

k=1

(1− σy)
2

(

∂fy
∂xk

)2

+

n
∑

j 6=y

(

σj

∂fj
∂xk

)2

 (2)

= σ2
y

(1− σy)
2

d
∑

k=1

(

∂fy
∂xk

)2

+

n
∑

j 6=y

σ2
j

d
∑

k=1

(

∂fj
∂xk

)2

 (3)

= σ2
y

(1− σy)
2

∥

∥

∥

∥

∂fy
∂xT

∥

∥

∥

∥

2

2

+

n
∑

j 6=y

σ2
j

∥

∥

∥

∥

∂fj
∂xT

∥

∥

∥

∥

2

2

 (4)

16

Published as a conference paper at ICLR 2018

We now assume that magnitudes of the individual logit derivatives vary little in between logits and
over the input space3:

∥

∥

∥

∥

∂fi
∂xT

∥

∥

∥

∥

2

2

≈ 1

n
Extest

∥

∥

∥

∥

∂f

∂xT
test

∥

∥

∥

∥

2

F

,

which simplifies Equation 4 to

‖Jy‖22 ≈ Mσ2
y

(1− σy)
2 +

n
∑

j 6=y

σ2
j

 ,

where M = Extest

∥

∥∂f/∂xT
test

∥

∥

2

F
/n. Since σ lies on the (n−1)-simplex ∆n−1, under these assump-

tions we can bound:
(1− σy)

2

n− 1
6

n
∑

j 6=y

σ2
j 6 (1− σy)

2,

and finally
n

n− 1
Mσ2

y (1− σy)
2 / ‖Jy‖22 / 2Mσ2

y (1− σy)
2
,

or, in terms of the cross-entropy loss l = − log σy:
√

nM

n− 1
❡
−l
(

1− ❡
−l
)

/ ‖Jy‖2 /
√
2M❡

−l
(

1− ❡
−l
)

. (5)

We validate these approximate bounds in Figure App.11 (top).

Full Jacobian. Equation 5 establishes a close relationship between Jy and loss l = − log σy , but of
course, at test time we do not know the target class y. This allows us to only bound the full Jacobian
norm from below:

√

nM

n− 1
❡
−l
(

1− ❡
−l
)

/ ‖Jy‖2 6 ‖J‖F . (6)

For the upper bound, we assume the maximum-entropy case of σy: σi ≈ (1 − σy)/(n − 1), for
i 6= y. The Jacobian norm is

‖J‖2F =

n
∑

i=1

‖Ji‖22 = ‖Jy‖22 +
n
∑

i 6=y

‖Ji‖22 ,

where the first summand becomes:

‖Jy‖22 ≈ Mσ2
y

[

(1− σy)
2
+ (n− 1)

(

1− σy

n− 1

)2
]

=
Mn

n− 1
σ2
y (1− σy)

2
,

and each of the others

‖Ji‖22 ≈ M

(

1− σy

n− 1

)2
[

(

1− 1− σy

n− 1

)2

+

(

σ2
y + (n− 2)

(

1− σy

n− 1

)2
)]

=
M

(n− 1)3
(1− σy)

2 (
nσ2

y + n− 2
)2

.

Adding n− 1 of such summands to ‖Jy‖22 results in

‖J‖F ≈
√
M

(n− 1)
(1− σy)

√

n2σ2
y + n− 2 =

√
M

(n− 1)

(

1− ❡
−l
)

√

n2
❡
−2l + n− 2, (7)

compared against the lower bound (Equation 6) and experimental data in Figure App.11.

3In the limit of infinite width, and fully Bayesian training, deep network logits are distributed exactly ac-
cording to a Gaussian process (Neal, 1994; Lee et al., 2018). Similarly, each entry in the logit Jacobian also
corresponds to an independent draw from a Gaussian process (Solak et al., 2003). It is therefore plausible that
the Jacobian norm, consisting of a sum over the square of independent Gaussian samples in the correct limits,
will tend towards a constant.

17

Published as a conference paper at ICLR 2018

100n 1μ 10μ 100μ 0.001 0.01 0.1 1 10 100

1e−21

1e−18

1f

1p

1n

1μ

0.001

1

CIFAR10

J
ac

ob
ia

n
 n

or
m

 (
co

rr
ec

t
cl

as
s)

100n 1μ 10μ 100μ 0.001 0.01 0.1 1 10 100

1e−21

1e−18

1f

1p

1n

1μ

0.001

1

J
ac

ob
ia

n
 n

or
m

Cross-entropy loss

Figure App.11: Top: Jacobian norm ‖Jy (x)‖2 =
∥

∥

∥
∂fσ (x)y /∂x

T

∥

∥

∥

2
of the true class y output

probability is tightly related to the cross-entropy loss. Each point corresponds to one of the 1000 test
inputs to a 100% trained network on CIFAR10, while lines depict analytic bounds from Equation 5.
Bottom: Same experiment plotting the full Jacobian norm ‖J‖F against cross-entropy. Solid lines
correspond to the lower bound from Equation 6 and the norm approximation from Equation 7. See
§A.5.7 for experimental details and Figures 6 and App.9 for empirical evaluation of this relationship
on multiple datasets and models.

A.4 NON-LINEARITIES DEFINITIONS

Following activation functions are used in this work:

1. ReLU (Nair & Hinton, 2010): max(x, 0);

2. ReLU6 (Krizhevsky, 2010): min (max(x, 0), 6);

3. Tanh: hyperbolic tangent, (ex − e−x)/(ex + e−x);

4. HardTanh (Gulcehre et al., 2016): min (max(x,−1), 1);

5. HardSigmoid (Gulcehre et al., 2016): min (max(x+ 0.5, 0), 1);

A.5 EXPERIMENTAL SETUP

All experiments were implemented in Tensorflow (Abadi et al., 2016) and executed with the help of
Vizier (Golovin et al., 2017). All networks were trained with cross-entropy loss. All networks were
trained without biases. All computations were done with 32-bit precision. Learning rate decayed by
a factor of 0.1 every 500 epochs.

Unless specified otherwise, initial weights were drawn from a normal distribution with zero mean
and variance 2/n for ReLU, ReLU6 and HardSigmoid; 1/n for Tanh and HardTanh, where n is the
number of inputs to the current layer.

18

Published as a conference paper at ICLR 2018

All inputs were normalized to have zero mean and unit variance, or, in other terms, lie on the d-

dimensional sphere of radius
√
d, where d is the dimensionality of the input.

All reported values, when applicable, were evaluated on the whole training and test sets of sizes
50000 and 10000 respectively. E.g. “generalization gap” is defined as the difference between train
and test accuracies evaluated on the whole train and test sets.

When applicable, all trajectories/surfaces in input space were sampled with 220 points.

A.5.1 PLOTS AND ERROR BARS

All figures except for 6 and App.11 are plotted with (pale) error bars (when applicable). The reported
quantity was usually evaluated 8 times with random seeds from 1 to 84, unless specified otherwise.
E.g. if a network is said to be 100%-accurate on the training set, it means that each of the 8 randomly-
initialized networks is 100%-accurate after training.

The error bar is centered at the mean value of the quantity and spans the standard error of the mean
in each direction. If the bar appears to not be visible, it may be smaller than the mean value marker.

Weight initialization, training set shuffling, data augmentation, picking anchor points of data-fitted
trajectories, selecting axes of a zero-centered elliptic trajectory depend on the random seed.

A.5.2 SENSITIVITY ALONG A TRAJECTORY

Relevant figure 2.

A 20-layer ReLU-network of width 200 was trained on MNIST 128 times, with plots displaying the
averaged values.

A random zero-centered ellipse was obtained by generating two axis vectors with normally-
distributed entries of zero mean and unit variance (as such making points on the trajectory have
an expected norm equal to that of training data) and sampling points on the ellipse with given axes.

A random data-fitted ellipse was generated by projecting three arbitrary input points onto a plane
where they fall into vertices of an equilateral triangle, and then projecting their circumcircle back
into the input space.

A.5.3 LINEAR REGION BOUNDARIES

Relevant figure 3.

A 15-layer ReLU6-network of width 300 was trained on MNIST for 218 steps using SGD with
momentum (Rumelhart et al., 1988); images were randomly translated with wrapping by up to 4
pixels in each direction, horizontally and vertically, as well as randomly flipped along each axis, and
randomly rotated by 90 degrees clockwise and counter-clockwise.

The sampling grid in input space was obtain by projecting three arbitrary input points into a plane
as described in §A.5.2 such that the resulting triangle was centered at 0 and it’s vertices were at a

distance 0.8 form the origin. Then, a sampling grid of points in the [−1; 1]
×2

square was projected
back into the input space.

A.5.4 SMALL EXPERIMENT

Relevant figures: 4 (second row) and 5 (bottom).

All networks were trained for 218 steps of batch size of 256 using SGD with momentum. Learning
rate was set to 0.005 and momentum term coefficient to 0.9.

Data augmentation consisted of random translation of the input by up to 4 pixels in each direction
with wrapping, horizontally and vertically. The input was also flipped horizontally with probabil-
ity 0.5. When applying data augmentation (second row of Figure 4), the network is unlikely to

4If a particular random seed did not finish, it was not taken into account; we believe this nuance did not
influence the conclusions of this paper.

19

Published as a conference paper at ICLR 2018

encounter the canonical training data, hence few configurations achieved 100% training accuracy.
However, we verified that all networks trained with data augmentation reached a higher test accu-
racy than their analogues without, ensuring that the generalization gap shrinks not simply because
of lower training accuracy.

For each dataset, networks of width {100, 200, 500, 1000, 2000, 3000}, depth {2, 3, 5, 10, 15, 20}
and activation function {ReLU, ReLU6, HardTanh, HardSigmoid} were evaluated on 8 random
seeds from 1 to 8.

A.5.5 LARGE EXPERIMENT

Relevant figures: 1, 4 (except for the second row), 5 (top), App.8.

335671 networks were trained for 219 steps with random hyper-parameters; if training did not com-
plete, a checkpoint at step 218 was used instead, if available. When using L-BFGS, the maximum
number of iterations was set to 2684. The space of available hyper-parameters included5:

1. CIFAR10 and CIFAR100 datasets cropped to a 24× 24 center region;

2. all 5 non-linearities from §A.4;

3. SGD, Momentum, ADAM (Kingma & Ba, 2014), RMSProp (Hinton et al., 2012) and L-
BFGS optimizers;

4. learning rates from {0.01, 0.005, 0.0005}, when applicable. Secondary coefficients were
fixed at default values of Tensorflow implementations of respective optimizers;

5. batch sizes of {128, 512} (unless using L-BFGS with the full batch of 50000);

6. standard deviations of initial weights from {0.5, 1, 4, 8} multiplied by the default value
described in §A.5;

7. widths from
{

1, 2, 4, · · · , 216
}

;

8. depths from
{

2, 3, 5, · · · , 26 + 1
}

;

9. true and random training labels;

10. random seeds from 1 to 8.

A.5.6 PER-POINT GENERALIZATION

Relevant figures 6, App.9.

Networks were with either cross-entropy or ℓ2-loss trained for 219 steps on whole datasets (CI-
FAR100, CIFAR10, Fashion-MNIST and MNIST) and evaluated on random subsets of 1000 test
images.

Hyper-parameters were: non-linearity (all functions from §A.4), width (50, 100, 200, 500, 1000),
depth (2, 5, 10, 20, 30), learning rate (0.0001, 0.001, 0.01), optimizer (SGD, Momentum, ADAM,
RMSProp). Only one random seed (1) was used. For each dataset a random subset of 5 config-
urations among all the 100%-accurate (on training) networks was plotted (apart from the case of
CIFAR100, where networks of training accuracy of at least 99.98% were selected).

A.5.7 CROSS-ENTROPY AND SENSITIVITY ANALYSIS

Relevant figure App.11.

Networks were trained for 218 on the whole CIFAR10 training set and evaluated networks on a
random test subset of size 1000. The hyper-parameters consisted of non-linearity (all functions from
§A.4), width (50, 100 or 200) and depth (2, 5, 10, 20). Only one random seed (1) was considered.
A single random 100%-accurate (on training data) network was drawn to compare experimental
measurements with analytic bounds on the Jacobian norm.

5Due to time and compute limitations, this experiment was set up such that configurations of small size were
more likely to get evaluated (e.g. only a few networks of width 216 were trained, and all of them had depth
2). However, based on our experience with smaller experiments (where each configuration got evaluated), we
believe this did not bias the findings of this paper, while allowing them to be validated across a very wide range
of scenarios.

20

	Introduction
	Paper Outline
	Summary of Contributions

	Related Work
	Complexity Metrics
	Regularization
	Inductive Bias of SGD
	Adversarial Examples

	Sensitivity Metrics
	Experimental Results
	Sensitivity On and Off the Training Data Manifold
	Sensitivity and Generalization Factors
	How to Read Plots

	Sensitivity and Generalization Gap
	Sensitivity and Per-Point Generalization

	Conclusion
	Appendix
	Transition Metric Details
	Linear Region Encoding
	Transition Counting

	Do neural networks defy Occam's razor?
	Bounding the Jacobian Norm
	Non-linearities Definitions
	Experimental Setup
	Plots and Error Bars
	Sensitivity along a Trajectory
	Linear Region Boundaries
	Small Experiment
	Large Experiment
	Per-point Generalization
	Cross-entropy and Sensitivity Analysis

