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I. INTRODUCTION

- ZOlne theory of optimum arrays became widely known in the underwater acoustics

community through the work of Bryn W1 and Mermoz [171. The relationship of their work

to other detection and estimation problems has been discussed in M1. Optimum array

processing structures use detailed information about the signal and noise fields. Since

this information is not known precisely in advance, one is led naturally to adaptive beam-

formers which continually adjust their parameters based upon on-line measurements of

some kind. Since adaptive processors are continually adjusting, it is natural to question

how sensitive performance is to small variations of the signal field, noise field and sys-

tem parameters from their assumed or estimated values.

The question of sensitivities has been examined in the past * in

conjunction with *super-directiveO arrays. An attempt will be made to point out the re-

lationship of the results of this paper to those earlier results. The emphasis in this paper

is on receiving arrays.

In Section II an introduction to the problem is provided usirig an intuitive approach.

The performance measures of array gain and output power are used.

Section III presents the principal sensitivity results. The approach is to take par-

tial derivatives of the gain and output signal power with respect to the size of signal, noise

and steering perturbations.

Section IV discusses the problem of signal suppression which arises in passive

adaptive processors when measurements of signal-plus-noise are used when noise only

measurements are desired. Interference rejection is also discussed.

A number of optimization problems are discussed in Section V. Particular em-

phasis is given to formulations which somehow take sensitivity into a~o'nt. It is pointed

out that the simple beamformer structure is no longer optimum in most o these
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problems. A more general array structure is suggested which possesses optimality

properties.

Vector-matrix notation similar to that in (7] will be used throughout this paper.

Column vectors, i.e., matrices with only one column are designated by underlined lower

case letters such as k and m. Other matrices are designated by underlined upper case

letters such as P. Q and R. The asterisk is used to denote complex conjugate transposi-

tion. Thus, (k*k) is a scalar and (m m*) is a dyadic squaire matrix.

II. PRELIMINARY DISCUSSION

The receiving array consists of an arbitrary arrangement of M sensors. When a

signal is present the waveform at the output of the i-th sensor is

xi(t) = vi(t) + ni(t)

where vi(t) is the signal component and ni(t) is the noise component. The noise component

includes both the effects of the external noise field and internal electronic noise. The out-

puts of all M sensors may be represented by the following vector equation:

x(t) = v(t)+ n(t) (1)

The detection problem is usually formulated as deciding whether or not the signal com-

ponent v(t) is present. Estimation problems arise when one seeks to obtain information

about particular parameters of v (t). The relationships among a number of detection and

estimation problems are discussed in [7]. There it is shown that the same beamforming

processor is optimum for a variety of different detection and estimation problems.

The signal vector v(t) and the noise vector n(t) are assumed to have mean values of

zero and to be statistically independent of each other. Because the analysis of array pro-

cessors is sometimes simplified by working in the frequency domain, it is convenient to

work with the cross-spectral density matrices of v(t), n(t) and x(t) which are denoted

P (,j), Q (w) and R (w) respectively. Then

R(w) =P _(u) + Q (W) (2)

when the signal is present. P(LJ) and Q(L) may be written as

22

P~w) = a 2s (ij) P (Li) (3)
2

Q a(LO Q(GO (4%
n

where a (w) is the noise power spectral density averaged over the M sensors so that

a () = trace ( )/M (5)
2 n

and a (w) is similarly defined as the signal power (or energy) spectral density averaged
S
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over the M sensors. Thus, P(w) and Q (w) are normalized to have their traces equal to M,
(2 2

the number of sensors in the array. The quantity s (W)/a n ( w) is the input signal-to-

noise spectral ratio (S/N)in.

A device which has the configuration shown in Figure 1 will be called a beamformer.

In general, it consists of a set of filters, one for each sensor, followed by a summation

device. The transfer function of the filter on the i-th sensor is k* (w). Two quantities of

prime interest are te output spectral density

z z(w) k k* (w) _R () k (w) (6)

and the array gain

G(wO) (7)k* ()Q() w

where, from Figure 1, the steering vector k*(u)) is the row vector of filter transfer func-

tions Ik(), .*.., k4(u) • The sensitivity analysis will be concerned with determining

the effects on z() and G(u)) of varying P(u), Q(w) and k(u)) from their nominal values.

The array gain given by (7) is the ratio of the output signal-to-noise spectral ratio

to the input signal-to-noise spectral ratio. It is easily seen to be invariant if k*(w) is

multiplied by a scale factor. In considering sensitivity problems it is sometimes useful to

normalize both the numerator and denominator of (7) by dividing by the magnitude squared

of k*(o). Then (7) becomes

G k *(w) P(L) k(Li) /(k*(w)) k (w) (8

k * (8)

The numerator of (8) is the normalized signal response and the denominator is the normal-

ized noise response. We shall see that the numerator and denominator of (8) individually

or more specifically their reciprocals are of fundamental importance in sensitivity analy-

sis.

One of the reasons for working in the frequency domain is that the signal vector v(t)

is usually assumed to be related to a scalar signal s (t) at some source point in space by an

equation of the following form:

V(t) = fm(t -T)S(T)dT (9)

where mi(t) accounts for the propagation from the source to the i-th sensor and the re-

sponse of the i-th sensor itself. In the ideal case of non-dispersive propagation and dis-

tortion-free sensors, mI(t) is a simple time delay 6 (t - Ti). Whenever v(t) is related to

a scalar s(t) by a known transformation m(t) as in (9) P(,) is simply the dyadic
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P M = M(M m*(W) (10)

where m (w) is the Fourier transform of m (t) normalized so that m*(u)) m (,J) = M.

The noise field may be the sum of a number of components. Some components of

particular significance are spatially white noise, isotropic noise, and point source noise.

Spatially white noise is uncorrelated from sensor to sensor and of equal intensity at

each sensor. It has the identity matrix for its normalized cross-spectral density matrix.

The subscript w on Qw = I will be used to denote this type of noise component.

Another physically important noise component is isotropic noise in which the spatial

density of the noise from all directions is the same. Since there is no preferred direction,

the elements of the isotropic noise cross-spectral density matrix are all real. In a

spherically isotropic field the cross-spectral density between two sensors separated by a

distance d is sin(Lid/c)/(wd/c) where c is the velocity of propagation. The symbol Q0

will be used to denote this isotropic noise cross-spectral density matrix. Notice that Qo

depends only on the geometry of the ar ray and frequency. Another isotropic noise field

[14] is Jo(wd/c) which arises in two dimensional problems when the field is cylindrically

isotropic.

Point source noise comes from a single point source and hence is signal-like in its

spatial characteristics.

The symbol

2d = d(w) d*(w) (11)

will be used to denote this type of noise component. Again the normalization d*d = M is

assumed. Isotropic noise is simply the limit of summing infinitesimal independent noise

components of equal intensity from all directions.

Henceforth, in order to simplify the notation, the dependence of various quantities

on frequency uo will usually not be shown explicitly. *

When the signal matrix has the simple form of(10) the expression for the array gain

becomes 2

k*Q k(

• Many of the results expressed in general vector-matrix form may also be used directly

in time-domain formulation of the problem [7]

4



MPL-U -57/72

The numerator of (12) is the magnitude squared of the inner product of the steering vector

k and the signal direction vector m. We may think geometrically in terms of a generalized

angle y between these vectors defined as follows:

2 !,!!n12

Cos ) (kk) (m*m) (13)

Substituting from (13) into (8) and using the relationship rn*m = M yields

G = M cos2  k*k/(k* Q k) (14)

The array gain against spatially white noise is therefore
2

G =Mcos y (15)
w

which is also the normalized signal response (numerator of (8)). It Is a function of the

misalignment of the steering vector k and the signal direction vector m.

In a conventional beamformer k is chosen to be proportional to m. This choice of

"matching to the signal direction" makes y equal to zero. This maximizes the gain against

spatially white noise, alias normalized signal response. The maximum value of G in (15)w

is M. If G is less than unity the array becomes more sensitive than a single sensor tow

spatially white noise.

The factor Ik*k/(k* Q k) is the reciprocal of the normalized noise response (the

denominator of (8)). It is also the gain ratio G/G which we shall denote by p. When thew

noise is spatially white this factor is unity. For an arbitrary noise matrix this gain ratio

p is bounded as follows:

1 k*k1II<< (16)

Amax k* Q k m (min

where X min and Xmax are respectively the smallest and largest eigenvalues of Q. Since

Q is normalized to have its trace equal to M, the average size of the eigenvalues of Q is

unity.

When the noise is isotropic the array gain

G0 =M cosy I /_ 20t) (17)

is known as the directivity index. The gain ratio

-=k*k/ (k* ok) (18)

is known as the Q-factor [15, 241 or super-gain ratio [22]. We shall call p the general-

ized super gain ratio since it involves replacing the isotropic noise matrix in (18) with a

general noise matrix. The isotropic noise covariance matrix depends on the array geome-

try. For line arrays it becomes the identity matrix when elements are spaced at one-half
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wavelength intervals. When sensors are moved closer together than one-half wavelength

some of the eigenvalues of the isotropic matrix become extremely small and p may be-

come large.

"Optimum" and "adaptive" beamformers choose k to be something other than pro-

portional to m. The underlying philosophy is to accept a reduction in normalized signal

response in order to achieve an even greater reduction in normalized noise response,

thereby improving the gain. Since normalized signal response and gain against spatially

white noise are the same, these processors can become very sensitive to white noise if

too great a reduction in normalized signal response takes place. An "optimum" steering

vector k* under a number of criteria [71 is

k = m*Q - (19)

Lewis and Schultheiss [14] present an interesting discussion of the gain of optimum and

conventional processors and their relationship to the eigenvalues of the noise covariance

matrix. For the choice of k given by (19) the gain, white noise gain and generalized

super-gain ratio become respectively

G= _ I m (20)

G. -1m(21)
w m* 2 m

G m* m
P =w m*Q" I  

(22)

The ratio (22) of course still satisfies the bound given by (16). McDonough [16]

presents a complicated expression relating (21) to the ratio of the largest and smallest

elgenvalues of Q. He concludes (21) may become very small if Xmax/Xmin is large.

The theory of super-directive arrays involves achieving a high directivity index by

using the optimum steering vector for isotropic noise k* = m*Q I . The literature on

super-directive arrays is extensive [6, 12,22, 23, 24, 251. It is well known that high direc-

tivity index (nearly equal to M2) can be achieved with endflre steering of arrays of closely

spaced elements. In order to achieve these high gains the steering vector is made almost

orthogonal to the signal direction vector and the gain against white noise becomes ex-

tremely small. For example, Gilbert and Morgan [12] report a maximum directivity

index of 15.8 but a corresponding white noise gain of only 1.5 x 10- 4 with a four element

endfire array with 1/16 wavelength inter-element spacing. They also present the result

that the maximum directivity index of an array averaged over all steering directions is

t ____ 6



... .

MPL-U-57/72

equal to the number of elements M. To see this, we write (20) for isotropic noise as

G = trace(Q 1 mm*) (23)
-o-

and notice that the average of m m* over all directions is by definition the isotropic matrix

20.-o"

Sensitivity analyses of super-directive arrays have found the super-gain ratio and

the reciprocal of the white noise gain to be useful measures of sensitivity.

In this paper we shall find that 11G and p play key roles in sensitivity wheneverw

the perturbations are statistically independent from element to element.

The causes of variations of P, Q and k from their nominal values can be many and

varied. They include: violations of a priori assumptions such as those concerning plane

wave or point source nature of signal or interference, or isotropic nature of the noise

field; imperfect measuring devices and finite measuring intervals used to estimate Q; non-

stationarity of the noise field; presence of signal in noise estimates in passive systems;

position errors in sensor locations; amplitude and phase errors in analog components; and

sampling and quantization errors in digital components. In adaptive beamformers the

nature of these variations is usually related to the inter-play between a priori assumptions

and on-line measurements. Sensitivity to variations in k are especially important since

the underlying philosophy of adaptive beamforming is continuing adjustment of the steering

vector.

III. GENERAL SENSITIVITY RESULTS

1. Noise Perturbations

Suppose that the noise field is made up of several components so that Q may be ex-

pressed as a sum of Hermitian matrices of the form

2 - , _ 21 '2 22 +  .. .+ Qn (24)

where
n

0, i = 1, , n a=1

Each Qi in (24) is non-negative definite and has its trace equal to M so that it is a legiti-

mate normalized noise cross-spectral matrix. The parameter a. is the relative strength1

of the i-th component. The decomposition of Q into components is not unique but is some-

times useful when various physical sources of noise exist. When Q is given in the form of

(24) the array gain (7) may be expressed as follows:

n)-

G = Y( a i/Gi)' (25)

7
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where G is the array gain against the i-th noise component; that is

k*Pk

G - k= Qik (26)

From (25) it is evident that a large value of ai/Gi for any component will cause the gain G

to be small. Thus a relatively weak noise component (small a.) can limit the overall array

gain if the gain against that particular component is very small. Hence choices of k which

give low gain against a type of noise vaich is likely to be present result in systems which

are sensitive to small amounts of that type of noise.

Similarly (6) may be rewritten as follows:
2 n

2 k* Pk [ 1 +n Z . (27)

s- 2 i= l 1I
Cy

s

Quantitative measures of sensitivity to changes in the noise matrix can be obtained

by differentiating (25) and (27). Suppose that

Q = (1- a) Q1 + a 2 (28)

The fractional sensitivity of G and z to the substitution of a little Q2 -type noise for an equal

amount of Q -type noise are

dG/da) = 1- (GIG (29)

G a=o 1/ 2

and

dz/da. (G 1I/G2 ) - 1(30)"-' -a = 0 1 +G 1  ZaTs/  n(0

z ao s n

or
(dG/da,

,dz/da, G a=o (31)

z a=o 1 + (S/N)°

where (S/N)= s a 2 )G1 is the output signal to noise ratio. When G1/G > 1, the sub-

stitution of Q2 -type noise for Ql-type noise causes a decrease in gain and an increase in

output power. The gain ratio G1/G 2 in (29) and (30) may be expressed as

G I  ki* 22t= -- (32)

G k*Q k

In the special case of spatially white noise (32) reduces to the generalized super-gain ratio

G1  k* k

-- =p (33)

w kgk

8
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discussed earlier. If, in addition Q 1 -type noise is isotropic, (33) becomes the super-gain

ratio or Q-factor.

2. Signal Perturbations

Similarly we may conceive of the signal field being made up of several components

so that P may be expressed as

n n
p= E i~ ;  0 i=l1, "' ; 5 1(34)

Each P is Hermitian and non-negative definite with trace equal to M.

Then
n

G=Z e .G. (35)i-i 1 1

and 2

2 a n
z= a k*Qk [1+ - 2 PiGi1 (36)

n 2 j=l
a

n

where
k* P.k

G -1- (37)
1 k*Qk

is the gain for the i-th component of the signal field. The overall gain is simply the sum

of the gain for each component weighted by its relative strength.

Suppose that

P=(1 - )P 1 + PZP2  (38)

The fractional sensitivities of G and z to the substitution of a littleP 2 - t yp e signal for an

equal amount of P1 -type signal are

dG/dP, G2(~ _ 1{= -O (39)

G p=o G 1

and

dz/d (G2 /G1) - 1

dZ ) =o 1+ a 2 /(G 2 (40)
or (SIN))

or (dz/dp (S/N)0  ,(dG/d p) (41)

z 3=o +(S/N) G0=o (41)

The gain ratio G 2/G 1 appearing in (39) and (40) may be expressed as

G2  kPk (42)

1 k Pi t

9
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WhenP 1 is the result of a point signal source with direction vector m andP 2 is the identity

matrix representing independent signal perturbations from sensor to sensor (42) becomes

G2/l = k*k/A k*m 12'--- = 1/w (43)

an=2 k k/(r*Q k) =p 
(44)

which are by now familiar expressions. Low white noise gain in (43) means large response

to a spatially incoherent signal component.

Before proceeding it is useful to consider how the situation represented by (38)

might arise. Suppose that the signal vector suffered random perturbations so that it could

be written as

rn = I m1 +' -P 6 (45)

when 6 is a vector of random pertuibations with zero mean and normalized covariance

matrix E[66*] = -2 The factor \1- in (45) provides the normalization so that

E [m*rn] = trace[ E(mm*)] = M (46)

Then

E[Ikrn 2] = 11 Xk*j 12 + p V*P 2k (7

In this situation, the sensitivity results (39) and (40) should be interpreted on an ensemble

average basis.

From (39) it is evident that small perturbations on the average will not cause

severe degradation in G or z even if G2 << G However, when G2 >> G1 rapid increases

in G and z are to be expected. Of course, any individual perturbation of the type (45) may

deviate significantly from this average behavior. From (43) we see that when k is nearly

orthogonal to rn so that 1/Gw is large, random signal perturbations will on the average

cause an increase in G and z by decreasing y. Of course, unpredictable increases in G

and z due to slight perturbations in m with no change in signal power can be a source of

confusion and may be undesirable. This is especially true in processors which are sup-

posedly constrained.

Another approach to the formulation of the signal sensitivity problem is to assume

P is of the dyadic form of (10) and to allow amplitude and phase perturbations to occur to

the Individual components of m, i.e.,

M. = m. (I + a exp (48)

when m. is the nominal value of the j-th component of m and the amplitude and phase per-

turbations have zero mean and are assumed to be independent of each other. This approach

10
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has been taken in a recent paper by McDonough [16) following the lead of Gilbert and Morgan

[12). When m. is given by (48), the quantity E(jk*m I2 ) becomes3- 00O

E(k*m12 ) = 2 - k.*k.m.m. C. (49)-- -- , 1 3 1 * ij

where

2
1+ E(a ) fori jJ

C.. = (50)

{ 1+ E(aia.)} E(exp( -T( i - ) for i j

Notice that the quantity m in (48) is not normalized as m was in (46) since for m defined

in (48)

E[m*m] =M+ Imj 2 E(a) > M (51)

As shown by McDonough, (49) may be simplified under the following additional

assumptions which were made by Gilbert and Morgan:

1. Amplitude perturbations are independent from sensor to sensor and of equal
2

variance, i.e., E[a. ]  = 0...1] a ij

2. Phase perturbations are Gaussian, small, independent from sensor to sensor

and of equal variance, i.e., E[I ] = 6° o7 1.
3. m .i is a pu ephasing, i.e., [m:1 2  = ,j -- , • n.

Under the above assumptions
2

+ fori=j

.a (52)Cij -- - r for i j

and (49) becomes

12 2 ! o12 + 2 2
E[ Ik*miI I] (I -a~ ~1*n + C (53

which is almost identical to (47) for the corresponding case P = I The difference can be

attributed to the normalization of (45).

In general (49) can be made to look like (47) by defining a matrix F with elements

F.. = m. m. (Ci.-I) (52)
i j

Then (49) may be written

2 ] = Ik*m I2 + Fk (53)E[I__nlI + k*k

Much of the sensitivity work [12, 16, 241 in the field of antenna arrays has been con-

cerned with the quantity E[ k' 12 ]/1 k' 1o 2 when the components of k and/or m have

been perturbed in amplitude and/or phase from their nominal values k and m . From

(49) it is evident that the type of result will be the same whether Cij arises from

11
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perturbations of m, k, or some combination of both.

3. Steering Perturbations

As suggested above there are similarities between signal perturbations and per-

turbations in the steering vector k. Perturbations in k may also be approached in two ways,

analogous to (45) and (48) respectively. However, there is an important difference in that

perturbations in k affect both signal and noise terms.

Following the approach of (45), suppose that

k = 1-E k+ TEW'TJ (54)

where 77 is a vector of random perturbations with zero mean and covariance matrix

E[nn*1 = W where W is normalized to have its trace equal to k* k 1. Then expected out-

put power is

z = E[k*Rk] = (1 - E )kRk1  + c trace(RW) (55)

and the sensitivity of the expected output power is

dz/d trace (RW)
S_ k*_ - - 1 (56)

Defining a gain G as follows:

G E(k*Pk)/E(k* Q k) (57)

we obtain + Etrace(PW)

(1 -F)klkl +e(58)
(1 - E)k*lQ k + e trace(QW)

The sensitivity of this gain is

dG/ Etrace (PW/G 1 ) - trace (QW)dG/d E.-
-) E = (59)

Simplifications again occur when the perturbations are independent from sensor to sensor

and of equal variance so that W = (k* kl/M)I. Then (55) becomes
2 r2

Z (1 E) k* Rk + c(a +  n) k*l k  (60)
-1--i s n kk 1 (0

and (56) becomes

dz/dE k*kl 1 + (S/N).

4o= _1 n (61)
k* Qk I+ (S/N)0

When (S/N). and (S/N) are both much less than unity the output power sensitivity of (61)
in 0

is approximately equal to p - 1. When (S/N)i n and (S/N) are both much larger than unity, it

Is approximately equal to (1 /Gw) - 1 *

A similar simplification occurs in (58) which becomes

12
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(1~- -1 k0 = (62)
(1-)k* 1 Qk + E k 1 (6

and (59) which becomes

E0 = ___ -(63)

For the usual case of G1>> I the gain sensitivity of (63) is approximately equal to - P.

Following the alternate approach of (48) and considering amplitude and phase per-

turbations, we may describe k as follows:

k k (1l+b)exp(N-i -1 ) (64)
0 = i

where k is the nominal value of the j -th component of k. The amplitude perturbation b.

and the phase perturbation 0 . have zero mean and are assumed to be independent of each

other. When k is described by (62) the expected output power is

= E(k* Rk) = Z ko*Dk.. R.. (65)
-- I 3 j 13 iJ

where R is the i, j-th component of R and in analogy to (50)

I+ E(b2), for i=j

D = (66)
Dij {l+E(bib)} E[exp(Ngi (@%- ), forifj

Similarly G defined in (57) becomes

: k?* k? D..Po, I ij i
G 0 (67)

Z k0* k°D...

i ,j ij

where P i and Qij are i, j-th components of P and Q respectively. Under the following

assumptions (63) and (65) may be simplified considerably:

1. Amplitude perturbations are independent from sensor to sensor and of equal

variance, i.e., E [bibj]__ = .6 .j
I j b 13

2. Phase perturbations are Gaussian, small, independent from sensor to sensor

and of equal variance, i.e., E[ 2k =C 6., 2 «l

3. Either Ik2  kj for i, j =1, M, orQ =P =1 forl=l, ... , M.

Then (65) becomes
2 o7 0 2 2 2 0k o

z = (1 - o)k ° * Rk ° + (a +b )( s + n ) k ° * k (69)

which closely resembles (60). Under the same assumptions (67) becomes

13
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Cr2 k Pk+(a2 +c 2 ko

(1l-o )k ° * Pk° + (2 +±02 ) k °*k(0

0 (+b (70)
(1 -r 2 k °0 *4 Qk + (a2+a2 k k0

which closely resembles (62).

Finally let us note that when m is perturbed as in (48) and k is independently per-

turbed as in (64),

E[ k*m12  k 0 km~m."D..C..
-f -- km I I k iii m 1 1D (71)

Ek* Q k] k o*kD..Qi

4. Summary

Table I presents a summary of some of the more important sensitivity results

derived in this Section.

IV. INTERFERENCE REJECTION AND SIGNAL SUPPRESSION

The problem of designing an array to be insensitive to a point source of noise has

received considerable attention in the literature [1,2, 8,20]. In the notation of this paper,

the goal is to reject a component of the noise field of the form of (11).

The gain of any beamformer against such an interference is

Gd =Jk*m2/k*jJ' = Cos2Y/Cos 2  (72)

where 0 is the generalized angle between the steering vector k and the interference direc-

tion vector d. The quantity cos 20 is obtained by replacing m in (13) by d.

Perhaps, the conceptually simplest approach to interference rejection is to use a

steering vector which is orthogonal to d so that cos 20 = 0. Such a beamformer com-

pletely nulls out the unwanted interference. The quality of the null will be degraded if

either k or d suffers random perturbations. Because of the symmetry of the expression

cos2 0 = (kk)(d*d) (73)

perturbations in k or d have similar effects on the null. Perturbations in k also affect the

signal response while perturbations in d do not. The quantity E( " kd 2), when d suffers

random perturbations, may be obtained directly from the results (47) or (49) presented for

the E(Ik*m 2), when m underwent random perturbations. In the simplest case of inde-

pendent perturbations from sensor to sensor

E[cos 2 = a2/M (74)
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2.

where a is eiual to I in (47) or the combined variance of the amplitude and phase per-

turbations in (53). In this situation the expected gain is

E(Gd G G/a 2 (75)

d w

Thus if G is small, nulling becomes impractical.

The null-steering beamformer of Anderson [1, 21 uses the following steering vector :

k* = m* [I - dd'/M1 (76)

For this steering vector the white noise gain G is given by the following equation:
w

G [-md222 [-o 2a sn (77)

where p is the generalized angle between the signal direction vector and the interference

direction vector. Thus, the expected gain (75) against the interference will be low when the

interference and signal are closely spaced such as when the interference is within the main

lobe of a beam steered conventionally in the signal direction.

When an interference is added to an existing noise field the noise matrix becomes

a2 Q + °2d-- = (a + °'d)Q (78)

The optimum steering vector is

k* =_m*Q-1 =1 2 2 - d11 Q11

= = (a /a m* +11( d,/_d + [Q (79)

_ _ _ _m*Qldcrd
k*d 1 [1+(-1 [dl _Q do/a (80)

d-- -- 1- _,Od-1 2andd
k~~~~~d ~ + dal ]m -d 1(0

a 2 2 -1
k*rn = [I+(a /l )] m'Q1 m

- - d 1 -

1 - 1 2 2 (81)

(mQ 1 mn)(d* Q 1d) 1 + d_- d /

The gain of the "optimum beamformer is also given by (81).

In order to interpret (80) and (81) it is useful to consider the meaning of various

quantities which appear in these equations:

2 2

d/a - - interference to noise ratio at the input (I/N).

* The matrix [I - dd*/M] is a projection operator which passes only the component of m

which is orthogonal to d.
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'-9 =k 1 -_ optimum steering vector in the absence of interference.

-1 2
Q1 d t a/ /N) -- maximum possible output interfererce-to -noise

-1 d 1 max
ratio, that is, the output interference-to-noise

ratio of an optimum beamformer, for Q-I-type

noise, steered in the direction of the inter-

ference.

I *Qdj 2
= kld 12 -- response in the interference direction of an opti-

mum beamformer, for Q -type noise, steered

in the signal direction.-I
m* Q1 m -- optimum gain in the absence of interference.

The "optimum" beamformer does a tradeoff between nulling the interference and

preserving gain against Q 1 -type noise. This tradeoff involves the interference-to-noise

ratio and the sidelobe level in the interference direction of the optimum beamformer, for

Ql-type noise, steered in the signal direction. When Ql-type noise is spatially white so

that Q, 1, the limit of the steering vector (79) for large input interference-to-noise ratios

is the Anderson null-steering processor (76) to within a constant of proportionality.

When (I/N)max is small the interference has little effect on the optimum steering

vector which remains nearly the same as it would be in the absence of interference. When

(I/N) becomes large, k* d given by (80) becomes small and a null develops in the direc-
max -

tion c f the interference. The factor

2 .- 12/ -l
cos2Qsl) = jxn*Qld2/(m*Qlm)(d*Qlld) (82)

appearing in (81) must be less than or equal to unity by the Schwarz inequality. It may be

interpreted as the cosine squared of the generalized angle between m and d in the linear

vector space in which length is defined relative to the metric Q so that m* rn is the

length of m.

The question of signal suppression arises when the steering vector k* is made pro-

portional to m* R instead of m* Q-I and R - contains the signal vector. It is of particu-

lar concern since the nulling embodied in the R -1 operation usually involves measured

quantities and the matching operation involved in m* usually is based on a priori assump-

tions about the signal direction vector.

Mathematically, signal suppression may be treated as a special case of interference

rejection so that the results developed above may be applied directly. In particular, we

17
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may look at the effect of the inclusion of signal in the estimator [4]

-1 -1
z = (m R m) (83)

which is the power output of a beamformer with k* = m" R- /(m" R'lm). This k provides-1

a minimum variance unbiased linear estimate of the signal [4,71. The quantity z =
-*R"1 2 2 2

SR I m may be obtained by replacing the initial factor (1 + ad/a ) in (81) with (l/a)

and redefining the other terms in (81) as follows:

d: actual (measured) signal direction vector

m: assumed (a priori) signal direction vector

Q-l: noise only matrix

2
a1 : input noise level

2

* 2 input signal level

Mismatch occurs when m # d. The effect of mismatch can be seen by examining the ratio

W -1 12 2-1I
''m d f 21  1 [ l(d Q 1 d adal]-

-z~ ~ r " 1 r 1 c1s&1.. ( d*Q 1 4d a 2 /a )) (84)

There are two distinct effects of mismatch: First is the effect of the factor

(d*Q 1 ld/ m *Q 1 
m ). This effect is the usual effect of mismatch discussed in Section III

and has nothing to do with the inclusion of the signal in the matrix inversion. Second is

what we shall call the anomalous signal suppression caused by the presence of cos 2( LQ 1 1)

in (84) which is a direct result of including the signal in the matrix inversion process.

The anomalous signal suppression will be insignificant as long as the quantity-l 2 2

(d* 1 2d/a ) is small, i.e., as long as the signal-to-noise ratio at the output of a
perfectly matched optimum beamformer with k* = d* 1 would be small. If this weak sig-

nal criterion is not satisfied, the ratio given in (82) will be reduced through the inclusion of

the signal in the matrix inversion and the mismatch between the actual and assumed signal

direction vectors.

-1 2 2
If we define (S/N) as (d*Q d d/a ) then (84) may be simplified to the

maxd 1

following:
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(Zm d _ * 2 ,'d _ _sill__ 2_(85)

(z) d m~ 1 m 1l+(S/N)Ma 2t (8))

where sin(.) = 1 - cos 2(.). le factor [1 + (S/N) sin (A,. Q 1 )] - is a direct measure

of the anomalous signal suppression. 1

V. OPTIMIZATION

There are a number of closely related optimization problems which have been or

can be formulated. In this section we shall briefly sketch some of these problems with

emphasis on formulations which somehow take sensitivity into consideration.

A. Beam formers

1. Maximum Gain and Minimum Variance

Th problem of unconstrained array gain maximization is to choose k such that

G = k*Pk/k*Qk (7)

is maximized. The solution of this problem is known [6] to be choosing k proportional to

the eigenvector corresponding to the largest eigenvalue of (Q-1 P). When r = mm*, the

optimum k is proportional to Qm which is well known [7, 10, 17] and easily shown by direct

application of the Schwarz inequality [9].

The relationship between maximizing the gain and minimizing variance under a con-

straint on signal response lies in that maximizing G is equivalent to minimizing the de-

nominator of (7) subject of a constraint on the numerator. Since the gain in (7) is invariant

to a scaling of k, the imposition of a constraint of the form k*m = I has no effect on G and

simply determines the constant of proportionality. Thus k = Q_'Im/(m*Q- 1m) both maxi-

mizes G and satisfies the constraint k*m 1. The related problem of minimizing k*Rk

subject to the same constraint leads to k = R1lm/(m* R im).

2. Maximum Gain Subject to Sensitivity Constraint

As shown in Section III the generalized super-gain ratio p and the gain against

white noise G play key roles in the sensitivity of beamformers when the perturbations arew

independent from sensor to sensor. The problem of maximizing the gain (7) subject to a

constraint on

G k*Pk/k*k (86)

is most easily formulated as that of finding the k which minimizes I/G with a constraint on

I/G . That is minimizing
W
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I/G+ AL,/G; \- k'(Q + AIk / k' P k  (87)

v here N is a Lagrarge multiplier. Finding the k which minimizes (87) is equivalent to

fiPh1," tho k which maximizes the reciprocal of (87), which in turn is an eigenvalue prob-

1m ()f te type di:;cussvd zbove. The optimum k is chosen to be proportional to the eigen-

vector corresponding to the largcst eigenvalue of [Q + X 11 -1 1 This problem was first

addressod by Gilbert and Morgan [121 with P = m m* so that the optimum k is equal to

+ x I]-m.

A related problem is to maximize G subject to a constraint on p . In this case we

maximize

G+ Xp = k[P+Xli]k/k Qk (88)

Again we have a similar eigenvalue problem. Uzsoky and Solymar [241 examined this

problem for the case of isotropic noise Q = Q o For the formulation of (88) to be consistent

1) must be specified witfhin its allowable range given by (16). From (86) we see that the

effect of adding the constraint on p is equivalent to that of adding a spatially white (spa-

tially incoherent) component to the signal field.

Lo, Lee and Lee (151 review a number of optimization problems and present a

numerical approach to the solution of the more difficult problem of maximizing G subject

to a constraint on the Q-factor. They maximize

( Ik-m I/ k'Q k) + (A k-1/1Q k0)

All of these optimization problems are insensitive to a scaling of k. Hence the

addition of a linear constraint such as k*m = a o is handled by simply scaling k.

3. Maximization of Expected Quantities

A somewhat different approach to the problem of sensitivity is to take the type and

anticipated size of perturbations into account before maximizing G. Thus perturbation

terms are included in the ratio to be maximized. A special case of this approach has been

taken by Cheng and Tseng [61 who maximize (71) and present numerical results for a linear

endfire array of eight dipoles. Again the magnitude of k remains free so that an additional

constraint of the form k'm = a o can t,,! handled by scaling k.

4. Multiple Linear Constraints

In the preceding discussion a single linear constraint could usually be handled by

using the degree of freedom of the magnitude of k which was left undetermined in the pro-

cess of gain maximization. An exception arises when the constraint is a null of the form

k*d = o. This situation may be treated as a special case of the more general problem of
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multiple linear constraints. Multiple constraints may be used to reduce sensitivity to sig-

nal perturbations by keeping the gain relatively constant over a range of signal perturba-

tions. A similar technique may be used to control sidelobes in a specific neighborhood of

directions. The problem can be formulated as that of minimizing the output power z subject

to the constraint H*k = g. Each row vector of the constraint matrix H* imposes a con-

straint of the form h*k = g.. Thus, the constraint matrix H* has a row for each constraint.
-I-

The total number of rows must be less than the number of sensors or the problem will be

overspecified. Using a Lagrange multiplier vector X* we may minimize

z = k*Rk+ X*[H*k -g] + [k*H -g*] (89)

Completing the square [7] yields

z = [k*+ X*H*R - 1 I R[R HX+k] - X*H*R-1 H - *g-g*X (90)

Since k appears only in the initial quadratic term of (90), the solution is obviously to make

that term equal to zero by choosing

k = -RI HA (91)

Using the constraint H*k = g to eliminate A, finally yields

k =R H IH*R H g (92)

For this choice of k the output power z becomes

z g* [H* R" 1 HI 1 g (93)

The use of an estimate for R- 1 in (91) is a generalization of the estimator (83). One ap-

proach to maintaining signal response is to have each row vector of * be a steering vector

in the neighborhood of the steering direction m and to let g be a vector with the number one

as each component.

B. General Array Processor

So far our discussion has centered on beamformers which have the structure of

Figure 1. A more general array processor structure is illustrated in Figure 2. In the

more general processor there are multiple outputs obtained by a matrix filtering of the

input signals. In the processor of Figure 2, K* is a matrix. While the processor of Fig-

ure 1 could be followed by a simple square-law detector and averager, the matrix filter K*

may be followed by a more general quadratic processor. It is known [7, 18] that the

structure of Figure 1 is only optimum when P is a simple dyadic. Since the effects of per-

turbation is to destroy the dyadic nature of the expectation of P we are naturally led to the

consideration of more the general processor.

21
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For example, suppose that the signal and noise were both completely incoherent

from sensor to sensor, i.e., P = Q = 1. Then all bcar formers of the type of Figure 1 will

provide no gain (G = 1) while an incoherent combination of the sensor outputs can provide a

gain of \1'M.

A processor which forms multiple closely spaced beams and averages output power

across these beams is a special case of the general array processor.

In the general array processor the output power is defined as

z = trace (K* R K) = E(y) (94)

In order to be able to properly account for the potential of incoherent gain, we define a gain

in terms of the detection index at the output of a general quadratic processor [7].

G = E(ylS+N) - E(yJN) n(95)

E B(y 2 IN) - E 2yI1N) 1/2  a2
(9s>

When the noise is Gaussian [71, (95) may be written as

G = trace [K*PK]/{ trace [(K Q K)2 ] } 1/2 (96)

Notice that (96) reduces to (7) when K is a column vector.

The problem of maximizing (96) has been solved [7, 9) by direct application of the

following Schwarz inequality:

Itrace (A* B) 2 _s trace (A* A) trace (B* B) (97)

The optimum choice of K is

K = cQ' 1 A (98)

where c is an arbitrary scalar constant of proportionality and P = AA*. The matrix A,

assumed for convenience to be of full rank, will have M rows and r columns where r is the

rank of the matrix P. The maximum value of gain (96) is

G = Itrace [(PQ 4I) 21 } 1/2 (99)

This maximum gain cannot be achieved by any K with less than r columns.

The problem of maximizing gain (96) determines K to within a scalar multiple.

Thus, constraints of the form trace (H* K) = a o may be handled by a simple scaling as

before.

The problem of minimizing trace (K* R K) subject to multiple linear constraints of

the form H* K = L is readily handled by completing the square similar to the way it was

done in (89). For details, see the development in equations (28) to (31) of [7]. The solution

is

K R " H [H* R " I -1 L (100).
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fbr this value of K,

KtRK = L: [ll* R - II L (101)

Equations (100) and (101) are generalizations of (92) and (93). A further generalization of

the estimator (83) is therefore

z = trace L*[H*R - IH] - I L (102)

C. Implementation

Most of the work [5, 13, 21,26] in adaptive beamforming has dealt with unconstrained

optimization problems so that there remains much unbroken ground in the field of con-

strained optimization.

Some exceptions do exist. The work in antenna array optimization [6, 12,22,241 has

been concerned with sensitivities but not concerned with appropriate algorithms for on-line

adaptation. The problem of multiple linear constraints leads naturally to stochastic ver-

sions of gradient-projection type algorithms [11, 191. This approach has also been sug-

gested [27] for non-linear constraints. However, slow convergence may be anticipated.

VI. CONCLUSION

General sensitivity measures have been developed for the cases of perturbations to

the signal field, the noise field and the steering vector. These sensitivity measures may

be used to test the practicality of particular processors. It was found that the white noise

gain and the generalized super-gain ratio are key parameters in determining the various

sensitivities when the perturbations are independent from sensor to sensor.

The problem of anomalous signal suppression through the inclusion of the signal in

the matrix inversion and subsequent mismatch has been treated as a special case of inter-

ference rejection. A simple expression for this anomalous signal suppression has been

presented. This signal suppression can only be significant if the signal-to-noise ratio

would be large at the output of an optimum beamformer steered perfectly in the signal

direction.

Various beamformer optimization problems have been considered. Constraining p

was found to be equivalent to adding a spatially incoherent component to the signal field

prior to unconstrained optimization. Constraining G was found to be equivalent to addingw

a spatially white component to the noise field.

In many important situations the simple beamformer structure is not optimum. A

more general array processing configuration has been presented which provides for
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incoherent combination of the outputs of a number of simple beamformers. Optimization

problems associated with this processor have been solved providing general ization of the

results for simple beamformers.
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Figure 1. General Beamformer Configuration.
I~ M-

MATR IX QUADRATIC

FILTER PROCESSOR

Figure 2. General Array Processor.


