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Sensitivity Densities for Rotational Ground-Motion Measurements

by Andreas Fichtner and Heiner Igel

Abstract We derive and analyze sensitivity densities for two quantities derived
from rotational ground-motion measurements: the rms (root-mean-square) amplitude
Aω of the rotation seismogram ω � 1

2
∇ × u and the apparent shear-wave speed

βa � 1
2
Av=Aω, where Av denotes the rms amplitude of the velocity seismogram. In

the case of a plane Swave in a homogeneous and isotropic medium, βa coincides with
the true shear-wave speed β. Based on analytical and numerical examples, we demon-
strate that the βa kernels attain large absolute values only in the vicinity of the receiver
but not in the vicinity of the source. This effect is pronounced in the case of both body
S waves and surface waves (Love + Rayleigh). Moreover, the βa kernels are domi-
nated by the higher Fresnel zones while reaching only small absolute values in the first
Fresnel zone. This implies (1) that measurements of βa are to the first order indepen-
dent of the Earth structure near the source, (2) that such measurements may be used
for one-station local shear-wave speed tomography, and (3) that comparatively low-
frequency signals can be used in order to invert for small-scale structures. The sensi-
tivity densities corresponding to the rotation amplitude measurement Aω resemble
those for the velocity amplitude measurements Av. It is, therefore, the combination
of Aω with Av, and not one of them alone, that is likely to provide additional con-
straints on the Earth’s structure near the receiver.

Online Material: Slices through 3D sensitivity kernels of the apparent shear-
wave speed.

Introduction

In the course of the last decade direct measurements of
seismically induced rotational ground motions have become
feasible and reliable (e.g., Nigbor, 1994; Pancha et al., 2000;
Igel et al., 2005, 2007). Theoretical seismologists (e.g., Aki
and Richards, 2002) have argued for decades that in addition
to the classical recording of translational motions, rotations
should also be measured because only then is a complete de-
scription of the motion of a measurement point possible.
Moreover, the mechanical characteristics of inertial seis-
mometers necessitate knowledge of rotational ground mo-
tions. Seismometers are particularly sensitive to rotations
about horizontal axes, that is, to tilt. This is one of the reasons
why it is difficult to integrate acceleration or velocity record-
ings (e.g., Trifunac and Todorovska, 2001; Grazier 2005;
Pillet and Virieux, 2007).

The analyses of broadband rotational and translational
ground motions (Igel et al., 2005, 2007) have indicated that
even single station observations allow us to access informa-
tion about the subsurface velocity structure, for example,
through the derivation of phase velocities either in the time
or frequency domain (Suryanto, 2006; Ferreira and Igel,
2008). This raises the question whether such joint observa-
tions can be used to further constrain the Earth structure. The

primary goals of this article, therefore, are (1) to propose
suitable measurements that can be derived from rotational
and translational observations and (2) to illustrate their sen-
sitivity to Earth’s structure using the adjoint method.

Our focus will be on two quantities derived from the
rotation seismogram ω � 1

2
∇ × u, where u denotes a syn-

thetic or an observed displacement field: (1) the rotation am-
plitude jωj and (2) the ratio j _uj=jωj. The latter is a particularly
attractive quantity in the context of structural inversion. Its
unit is that of a velocity, suggesting that it yields very direct
information about the Earth’s wave speed structure. In fact, if
we let u�xr; t� denote a displacement field recorded in a
homogeneous and isotropic medium over time t at the loca-
tion x � xr, then the assumption that u�x; t� is a plane shear-
wave directly yields

j _u�xr�j
jω�xr�j � 2β � 2

���
μ
ρ

r
: (1)

In realistic Earth models, 1
2
j _u�xr; t�j=jω�xr; t�j is more appro-

priately referred to as apparent shear-wave speed. It generally
depends on the types of waves considered and on their fre-
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quency content, suggesting that different parts of the Earth
can be sampled and that such measurements may be used to
infer information about the Earth’s structure.

The following sections are concerned with the derivation
and analysis of sensitivity densities for rotation amplitudes
and apparent shear-wave speed measurements, the emphasis
being on the latter. Such sensitivity densities are an essential
ingredient of linearized inversions and inversions based on
gradient methods. Moreover, they provide general informa-
tion on the possible origins of discrepancies between ob-
served data and synthetics.

Prior to the actual derivation of sensitivity densities, we
will introduce slightly modified definitions of the rotation
amplitude and the apparent shear-wave speed. They are in-
tended to better reflect the actual measurement process. The
subsequent theoretical developments will result in a sim-
ple recipe for the computation of sensitivity densities. This
recipe will then be applied to several special cases including
S waves in a homogeneous medium, S waves in a radially
symmetric Earth model, and surface waves recorded at re-
gional distances. Throughout this article the sensitivity den-
sities refer to the S-wave velocity β. Classical arrival time
tomographies (e.g., Aki et al., 1977 and many followers)
usually favor the S-wave slowness β�1 as a parameter be-
cause its perturbations need not be linearized. In our case,
however, the necessity to linearize perturbations of β does
not arise as we will demonstrate later.

It should be noted that a relation similar to the one in
equation (1) can be found by dividing acceleration ampli-
tudes and rotation rate amplitudes. This may be more con-
venient in practice because rotation rates are the output of
current rotation sensors based on optical principles (e.g.,
Nigbor, 1994; Takeo, 1998; Schreiber et al., 2006). However,
as we shall see later, acceleration measurements would lead
to expressions for sensitivities involving fourth-order time
derivatives of the seismic displacement field, which are nu-
merically undesirable quantities.

Theory

Definition and Interpretation of the Apparent
Shear-Wave Speed

So far, we loosely referred to the quantity
1
2
j _u�xr; t�j=jω�xr; t�j as the apparent shear-wave speed be-

cause it has the unit of a velocity and coincides with the
shear-wave speed in the case of a homogeneous, unbounded,
and isotropic medium. In practice, however, neither the pure
determination of jωj nor of the ratio 1

2
j _u�xr; t�j=jω�xr; t�j are

particularly useful. Both filtering and averaging are often
necessary operations that suppress the influence of noise
and lead to more stable measurements. Moreover, one may
wish to window the seismograms and isolate certain seismic
phases or parts of a surface wave train, for example. In order
to accommodate such processing steps in the formal mea-
surement, we define the apparent shear-wave speed in terms

of the rms amplitudes of the filtered and windowed velocity
and rotation signals

βa�xr�≔ 1

2

Av�xr�
Aω�xr�

; (2)

where Av and Aω are defined as

Av≔
����������������������������������Z
R
�F � �Wv��2dt

s
; Aω≔

�����������������������������������Z
R
�F � �Wω��2dt

s
:

(3)

The symbols F and W denote a convolution filter and a time
window, respectively. Analogously, we shall from here on
consider Aω instead of jωj, noting that they are identical in
the case that W � F � 1. One should strictly separate two
aspects of βa: (1) the interpretation of its numerical value and
(2) its use as an observable for structural inverse problems.
Interpreting βa in terms of a true shear-wave speed is pos-
sible only when plane shear waves such as pure S or Love
waves are considered. Then βa may yield direct information
about the subsurface structure. Whether the analyzed part of
the seismogram is indeed a pure shear-wave or not is less
important in the context of structural inverse problems. The
apparent shear-wave speed is observable, regardless of its in-
tuitive interpretation. Special care must be taken when ω � 0
because the apparent shear-wave speed βa is then not de-
fined. One could in principle solve this problem by using
β�1
a instead, at least when v ≠ 0. Still, sensitivity kernels

of βa would not exist because Aω is not differentiable at the
point ω � 0. In practice, ω may never truly vanish due to the
presence of seismic noise. However, the values of βa are not
meaningful anyway when the rotation amplitude drops be-
low the noise level.

Sensitivity Densities in the Context
of the Adjoint Method

Our procedure for determining sensitivity kernels for
synthetically computed apparent shear-wave speeds, βa, is
based on the adjoint method (e.g., Lions, 1968; Chavent
et al., 1975) because it leads to elegant expressions in an un-
complicated way and because its numerical implementation
is straightforward. Alternatively, the sensitivity kernels could
be derived using the Born approximation. In order to estab-
lish a consistent notation but also in the interest of complete-
ness, we shall rederive or at least state some well-known
results concerning the adjoint method in the context of elastic
wave propagation. They may, for example, be found in one
or the other form in Tarantola (1988), Tromp et al. (2005), or
Fichtner et al. (2006).

We assume that u�x; t� is an elastic displacement field,
which is related to a set of model parameters p�x� and an
external force density f�x; t� via L�u; p� � f, where L rep-
resents the wave equation operator. More explicitly, one
may write,
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L�u; p� � ρ�x�∂2
t u�x; t� �∇ ·

Z
t

�∞
C�x; t � τ�∶∇u�x; τ�dτ

� f�x; t�: (4)

The symbol ∶ denotes the double scalar product, that is,
�C∶∇u�ij � Cijkl∂kul. The model parameters p comprise the
mass density ρ and the rate of relaxation tensor C. We repre-
sent the process of measuring the wave field u or extract-
ing information from it through an objective function E�u�,
which we assume to be expressible in the form of a time in-
tegral E�u� � R

ϵ�u�dt with an adequately chosen function
ϵ. Given u as a function of time at the receiver position
x � xr, E�u� may, for example, return cross-correlation time
shifts (e.g., Luo and Schuster, 1991) or rms amplitudes (Dah-
len and Baig, 2002) of seismic phases. The objective of the
adjoint method is to provide an expression for the Fréchet
kernel δpE, that is, the volumetric density of the functional
derivative of E with respect to the model parameters p. In its
most general form, this expression is

δpE �
Z
R
u† · ∂pL�u; p� dt; (5)

where ∂pL denotes the partial derivative of the operator L
with respect to the model parameters. The adjoint field u†

is defined through the adjoint wave equation

L†�u†; p� � ρ�x�∂2
t u†�x; t�

�∇ ·
Z

t

�∞
C�x; τ � t�∶∇u†�x; τ�dτ

� �∂uϵ�t�δ�x � xr� (6)

and its subsidiary conditions. Note that (6) is still of the wave
equation type. The external force density is proportional to
the derivative of ϵ with respect to the observed wave field u,
and it acts at the receiver location xr. In the case of an iso-
tropic and nondissipative medium described in terms of the
mass density ρ and the Lamé parameters μ and λ, the three
Fréchet kernels are

δρE � �
Z
R
∂tu† · ∂tu dt;

δμE �
Z
R
�∇u†�∶��∇u� � �∇u�T �dt;

δλE �
Z
R
�∇ · u†��∇ · u�dt:

(7)

Expressions for Fréchet kernels with respect to the S-wave
speed β or the P-wave speed α can then be derived from
equation (7). A special case of outstanding importance arises
when E�u� is equal to the i component of the displacement
field, ui�xr; τ�, that is, when ϵ�u� � δ�t � τ�ei · u�xr; t�. The
right-hand side of the adjoint equation (6) then becomes
�eiδ�t � τ�δ�x � xr�, implying that the corresponding ad-

joint field u† is the negative adjoint to Green’s function with
a source location xr and a source time τ , that is, u†�x; t� �
�g†i �xr; τ ; x; t�. Therefore, we have

δpui�xr; τ� � �
Z
R
g†i �xr; τ ; x; t� · ∂pL�u�x; t��dt: (8)

We now proceed with our actual problem, which is the deri-
vation of Fréchet kernels for apparent S-wave speed mea-
surements. The definition in equation (2) directly yields

1

βa

δββa � δβ lnβa � 1

Av

δβAv �
1

Aω
δβAω

� δβ lnAv � δβ lnAω: (9)

Letting βa, Av, and Aω play the roles of objective func-
tions, we can rewrite equation (9) using the adjoint method
terminology,

δβ lnβa �
Z
R
ψv · ∂βL�u; p�dt �

Z
R
ψω · ∂βL�u; p�dt

� ∶
Z
R
ψβa · ∂βL�u; p�dt; (10)

where ψv and ψω are the adjoint fields for Av and Aω, re-
spectively. For convenience, we incorporated the scaling
factors A�1

v and A�1
ω into the definitions of the adjoint fields.

The key element of equation (10) is the difference of the ad-
joint fields ψβa≔ψv � ψω. We will demonstrate in a later sec-
tion that this difference; and therefore, the sensitivity kernel
δβ lnβa, is large in the vicinity of the receiver but small in the
source region.

Before, however, we will derive general expressions for
the adjoint fields ψv and ψω. The analysis will be kept gen-
eral in the sense that we will not consider derivatives with
respect to one particular parameter but with respect to any
possible parameter. The numerical examples will then focus
on sensitivity densities with respect to the shear-wave
speed β.

The Adjoint Field for Velocity
Amplitude Measurements

The relative functional derivative of Av with respect to
the model parameters p denoted by A�1

v DpAv is

1

Av

DpAv �
1

A2
v

Z
R
�F � �Wv�� · �F � �WDpv�� dt

� 1

A2
v

Z
R
�F _ui�Dp _ui dt: (11)

For notational brevity we defined the composite filter F in
equation (11) as
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�F _ui��xr; t�

≔W�t�
Z ∞
�∞

�Z ∞
�∞

F�τ 2 � τ 1�W�τ 1� _ui�xr; τ 1�dτ 1
�

× F�τ 2 � t�dτ 2: (12)

The term in square brackets is the convolution filter F�t� ap-
plied to the windowed velocity seismogram �W _ui��t�. In the
frequency domain, the action of F�t� corresponds to a mul-
tiplication with F̂�ω� � jF̂�ω�jeiϕ. This operation is then
followed by a convolution with F��t�, that is, by a multi-
plication with jF̂�ω�je�iϕ in the frequency domain. Hence,
the double integral acts as a zero phase filter on W _ui. This
ensures that the second application of the windowW in front
of the double integral in equation (12) indeed affects the sig-
nal of interest. Equation (11) can be rewritten in terms of
sensitivity densities,

1

Av

DpAv �
Z
G⊂R3

p0
1

Av

δpAvdG

� 1

A2
v

Z
R
�F _ui�Dp _uidt

�
Z
G⊂R3

p0
1

A2
v

Z
R
�F _ui�δp _uidtdG; (13)

where p0 is the differentiation direction. The symbols G and
dG denote the computational domain and the corresponding
volume element, respectively. Using the expression for δpui
(equation 8) we now deduce that the sensitivity density
A�1
v δpAv � δp lnAv can be written as

δp lnAv � � 1

A2
v

Z
R2

�F _ui��xr; t�∂tg†i �xr; t; x; t0�
· ∂pL�u�x; t0�� dt0 dt

� 1

A2
v

Z
R2

∂t�F _ui��xr; t�g†i �xr; t; x; t0�

· ∂pL�u�x; t0�� dt0 dt: (14)

Then defining the adjoint field ψv to be

ψv�x; t0�≔ 1

A2
v

Z
R
∂t�F _ui��xr; t�g†i �xr; t; x; t0�dt (15)

gives the desired canonical form

δp lnAv �
Z
R
ψv�x; t0� · ∂pL�u�x; t0��dt0: (16)

Equation (15) implies that ψv can equally be obtained as the
solution of the adjoint equation L†�ψv; p� � fv, where the
adjoint source fv is given by

fv�x; t0� � 1

A2
v

∂t�F _ui��xr; t0�δ�x � xr�: (17)

The Adjoint Field for Rotation
Amplitude Measurements

We now repeat the steps that led to the expression of
the adjoint source for velocity amplitude measurements ψv

in order to obtain the corresponding expression for rotation
amplitude measurements. Differentiating the windowed and
filtered rms amplitudes of the rotational ground motion

Aω �
����������������������������������R
R�F � �Wω��2dt

q
with respect to the model param-

eters p yields

1

Aω
DpAω � 1

A2
ω

Z
R
�F � �Wω�� · �F � �WDpω�� dt

� 1

A2
ω

Z
R
�Fωi�Dpωi dt: (18)

Because ω and u are related through ωi�xr; t� �
1
2
ϵijk

∂
∂xrj uk�x

r; t�, we have

δpωi�xr; t� �
1

2
ϵijk

∂
∂xrj δpuk�x

r; t�

� � 1

2
ϵijk

Z
R

∂
∂xrj g

†
k�xr; t; x; t0� · ∂pL�u�x; t0�� dt0:

(19)

We then substitute equation (19) into the expression for
A�1
ω δpAω � δp lnAω, which follows from equation (18),

and find

δp lnAω � � 1

2A2
ω
ϵijk

Z
R

Z
R
�Fωi��xr; t�

∂
∂xrj g

†
k�xr; t; x; t0�

· ∂pL�u�x; t0�� dt0 dt: (20)

The canonical form

δp lnAω �
Z
R
ψω�x; t0� · ∂pL�u�x; t0�� dt0 (21)

can then be obtained by defining the adjoint field ψω as
follows:

ψω�x; t0�≔ � 1

2A2
ω
ϵijk

Z
R
�Fωi��xr; t�

∂
∂xrj g

†
k�xr; t; x; t0�dt:

(22)

It is again possible to compute the adjoint field ψω by solving
an adjoint equation of the form L†�ψω; p� � fω. From equa-
tion (22) we deduce that the components fωk of the adjoint
source fω are

fωk �x; t0� �
1

2A2
ω
ϵijk�Fωi��xr; t0�

∂
∂xj δ�x � xr�: (23)

It is interesting to note that fω can be written in terms of a
moment density m, that is, in the form fω � �∇ ·m. The
components mkj of the moment density are
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mkj � � 1

2A2
ω
ϵijk�Fωi��xr; t0�δ�x � xr�: (24)

Unlike realistic moment densities corresponding, for exam-
ple, to slip on a fault plane, m is antisymmetric. This high-
lights the fact that the adjoint field is a purely mathematical
construction that is potentially unphysical. It follows from
the antisymmetry of m that the adjoint source fω does not
radiate far-field P waves. Therefore, the interaction of the
forward field u and the adjoint field ψω (see equation 21)
is primarily limited to the interaction of S waves and the
near-field terms.

Case Studies

Homogeneous, Unbounded, and Isotropic Medium

If one wishes to derive some general properties of the βa

kernels, then there are only two options: one may simplify
the forward problem using, for example, ray theory while
keeping the Earth model realistic (e.g., Yomogida, 1992;
Dahlen and Baig, 2002), or one may simplify the Earth
model while using exact solutions of the wave equation. Here
we shall adopt a variant of the latter approach by considering
a homogeneous, unbounded, and isotropic medium. While
this is unrealistic, it still allows us to deduce some fundamen-
tal characteristics of the βa kernels, which will reappear in
more complicated cases that we will treat numerically. We
assume that the incident wave is an S wave. Because the ad-
joint P wave propagates at the P velocity α, it interacts with
the forward S wave only inside a sphere around the receiver.
The radius of this sphere is Rp � λpα=�α � β�, where λp is
the wavelength of the P wave. The adjoint S wave, however,
interacts with the forward S wave throughout the entire vol-
ume that is filled by the Fresnel zones. Thus, it contributes
significantly more to the derivatives of Av and Aω than the
adjoint P wave. Accepting that the Fréchet kernels will not
be exact in the sphere of radius Rp around the receiver; we
will neglect the adjoint P wave. Also, the near-field terms of
the adjoint wave field are disregarded because they only con-
tribute in the immediate vicinity of the receiver. Both the ad-
joint P wave and the near-field terms will automatically be
included in the numerical examples that we present in the
following sections. The n component of the S wave contri-
bution of the adjoint Green’s function g†i �xr; t; x; t0� is

�g†i �n�xr; t; x; t0� �
δin � γriγ

r
n

4πρβ2jx � xrj δ�t
0 � t� jx � xrj=β�

(25)

with γri≔�xi � xri �=jx � xrj. Substituting equation (25) into
equation (15) yields an expression for the adjoint wave-
field ψv

ψv
n�x; t0� �

δin � γri �x�γrn�x�
4πρβ2A2

vjx � xrj ∂t0 �F _ui��xr; t0 � jx � xrj=β�:

(26)

The corresponding expression for ψω
n is

ψω
n�x; t0� �

ϵijnγrj
8πρβ3A2

ωjx � xrj ∂t0 �Fωi��xr; t0 � jx � xrj=β�;

(27)

where we used ∂
∂xj jx � xrj � γrj and ϵijkγ

r
jγ

r
k � 0. Under the

assumption that the receiver at x � xr is far away from the
source at x � 0, we obtain the following expression for ωi:

ωi�xr; t0 � jx � xrj=β� � � 1

2
ϵipq

×
γp�xr�

β
_uq�xr; t0 � jx � xrj=β�;

(28)

where γp�x�≔xp=jxj is the direction cosine measured from
the source located at the coordinate origin. Combining equa-
tions (27) and (28) yields

ψω
n�x; t0� � � ϵijnϵipqγrj�x�γp�xr�

16πρβ4A2
ωjx � xrj ∂t0 �F _uq�

× �xr; t0 � jx � xrj=β�

� γri �x�γn�xr� � γrj�x�γj�xr�δni
4πρβ2A2

ωjx � xrj ∂t0 �F _ui�

× �xr; t0 � jx � xrj=β�: (29)

The adjoint field ψβa is equal to the difference ψv � ψω

ψβa
n �x; t0�

� δin � γri �x�γrn�x� � γri �x�γn�xr� � γrj�x�γj�xr�δni
4πρβ2A2

vjx � xrj
× ∂t0 �F _ui��xr; t0 � jx � xrj=β�: (30)

The radiation pattern contribution to the amplitude of the ad-
joint field ψβa can be estimated using some basic geometrical
relations that are illustrated in Figure 1:

jψβa
n j ∝ jδin�1� γrj�x�γj�xr�� �ui

� �γri �x�γrn�x� � γri �x�γn�xr�� �ui�j
≤ j1 � cos θjj �uj � j sin θjjγrn�x� � γn�xr�jj �uj

� j1 � cos θjj �uj �
���
2

p
j sin θj

�������������������
1 � cos θ

p
j �uj�:: 3

2
θ2j �uj:
(31)

The symbol�:: denotes correct to second order in θ0. Accord-
ing to equation (31), the adjoint field does not radiate to-
wards the source. Moreover, in the vicinity of the source,
that is, for small jxj, we find θ ≤ jxj=jx � xrj; and therefore,

jψβa�x; t0�j ≤ 3jxj2j �uj
8πρβ2A2

vjx � xrj2 : (32)
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Equation (32) implies that the adjoint field tends to zero as
we approach the source. The convergence is quadratic in jxj.
Because juj itself is proportional to 1=jxj, it follows from
equation (5) that the sensitivity kernel δp ln βa is propor-
tional to jxj, where p denotes any model parameter, possibly
β. In symbols

δp ln βa ∝ jxj → lim
jxj→0

δp ln βa � 0: (33)

The sensitivity kernel δp lnβa vanishes as we approach the
source. A consequence of equation (33) is that the apparent
shear-wave speed βa is only weakly affected by an Earth
structure near the source. Sensitivity densities of βa with
respect to any model parameter, for example, β, Q, or the
(anisotropic) elastic tensor components cijkl, exhibit this
behavior at least in this simple medium. This is a clear con-
trast to sensitivity kernels of other quantities such as cross-
correlation time shifts (Marquering et al., 1999; Dahlen et al.,
2000), rms amplitudes (Dahlen et al., 2002), or rotation
amplitudes. The mathematical reason for this behavior of
the apparent shear-wave speed kernels is that the kernels
δp lnAv and δp lnAω become increasingly similar as the dis-
tance from the source decreases. Note that this statement
strictly holds only when all components of ω are taken into
account. Some of the components may be naturally zero, for
example, when Love waves in a stratified medium are ana-
lyzed. Disregarding, however, nonzero components of ω will
generally lead to sensitivity kernels that do have significant
contributions further away from the receiver.

Note that the result from equation (33) is still valid when
both the adjoint P wave and the adjoint near-field terms are
included. Their contribution to the Fréchet kernels is con-
fined to a small region around the receiver. In the following
section the kernels will be computed numerically in a more
realistic Earth model. The adjoint P wave and near-field
terms will automatically be included. This will allow us to
study the structure of the Fréchet kernels near the receiver.
We will, moreover, be able to assess whether the kernels still
vanish as we approch the source.

S Waves from a Deep Earthquake Recorded
at Regional Distances

As we pass from an oversimplified to a more realistic
Earth model, analytic solutions become unavailable. In what
follows, the solutions of the wave equation will, therefore, be
computed numerically (Oeser et al., 2006) using a spectral-
element method described in Fichtner and Igel (2008).

The kernel gallery that we shall compile in the course of
the next sections is intended to serve multiple purposes. First,
it aims at providing physical intuition, which is the founda-
tion of any application of the sensitivity kernels to inverse
problems, for example. Secondly, we shall confirm some of
the results that we found for the case of the homogeneous,
isotropic, and unbounded medium.

In our first numerical example, we consider S waves
originating from a 300 km deep source that are recorded
at an epicentral distance of 650 km. The source time function
is a low-pass filtered Heaviside function with a cutoff period
of 10 sec, and the Earth model is AK135 (Kennett et al.,
1995). Slices through the rotation amplitude kernels δβ lnAω

and the apparent shear-wave speed kernels δβ ln βa are
shown in Figure 2. (Ⓔ Color versions of all figures are avail-
able in the electronic edition of BSSA.) Both sensitivity
kernels attain comparatively large absolute values in the
immediate vicinity of the receiver (Fig. 2a). While their
shapes, though not their actual values, are similar at the sur-
face, they become increasingly dissimilar with increasing
distance from the receiver (Fig. 2b). The vertical slices in
Figure 2c give the best general impression of the kernel char-
acteristics. They confirm that the apparent shear speed sen-
sitivity is small, in fact, as good as negligible, in the vicinity
of the source.

The velocity amplitude kernels δβ lnAv are not dis-
played because they resemble the rotation amplitude kernels
to an extent that makes them hard to distinguish visually.
This implies that velocity amplitude and rotation amplitude
measurements yield similar information about the Earth’s
structure. It is the combination of Aω and Av that potentially
provides additional constraints in the vicinity of the receiver.
The width of all sensitivity kernels depends strongly on the
frequency content of the analyzed waves. In general, lower
frequency signals generate broader kernels while the kernels
corresponding to higher frequency signals are slimmer. This
effect is clearly visible in Figure 3 where the cutoff period is
chosen to be 20 sec instead of 10 sec as in Figure 2. The
broadening with respect to the higher frequency kernels is
most significant near the surface.

Surface Waves from a Shallow Source

The geometric setup of our next example is similar to the
previous one except that the source is now located at a depth
of 10 km. Therefore, the synthetic seismograms are domi-
nated by large-amplitude surface waves (Fig. 4). We set the
moment tensor components to Mxy � Mxz � 1 · 1019 Nm
and Mxx � Myy � Mzz � Myz � 0. Consequently, both

Figure 1. Source-receiver geometry. The source is located at the
origin 0, and the receiver is at xr. The point where the kernel is
computed is denoted by x.
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Love and Rayleigh waves are recorded along the x axis (see
Fig. 2 for the geometry of the model). In realistic applications
this will almost always be the case, first, because of lateral
heterogeneities and second, because of source localization
and orientation errors.

This has immediate consequences on the interpretability
of the ratio βa � 1

2
Av=Aω. If we analyzed only a single-mode

Love wave, then βa would equal the phase velocity corre-
sponding to that particular Love wave mode. However, this
statement does not hold when Rayleigh waves are involved
as well. Already in the classical single-layer model, βa be-

comes a complicated function that is generally different from
β. We omit the analytic formula for βa in the single-layer
model also because it is of little practical relevance. Instead,
we compute βa for the complete surface wave train and with
sliding windows for a station at an epicentral distance of
Δ � 1500 km in our numerical model:

The left column of Figure 4 shows dispersed Love
waves (y component) arriving around 350 sec followed by
the Rayleigh waves on the x and z components. The corre-
sponding rotational motion recordings are plotted in the mid-
dle column. There is no rotational motion in x direction due

Figure 2. Slices through the rotation amplitude kernels δβ lnAω and the apparent shear-wave speed kernels δβ lnβa in the 1D
Earth model AK135 (Kennett et al., 1995). The source is located at the depth of 300 km (star), and the direct S wave is recorded at
an epicentral distance of 650 km (triangle). The cutoff period of the signal is 10 sec. (a) Horizontal slices at the surface through the rotation
amplitude kernel δβ lnAω (top) and the apparent shear-wave speed kernel δβ lnAω (below). Both kernels attain their largest values directly at
the receiver position. (b) As (a) but at the depth of 100 km. (c) Vertical slices through δβ lnAω (top) and δβ lnβa (below). The absolute values
of the βa kernel decrease away from the receiver, so that βa measurements are most sensitive to the Earth structure near the receiver and less
sensitive to structures at greater distances, at least correct to the first order. (Ⓔ A color version of this figure is available in the electronic
edition of BSSA.)
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to our particular choice of the source orientation. We now
determine apparent shear-wave speeds in two different ways:
First, we compute βa for the complete surface wave train be-
tween 350 and 550 sec. The result, βa � 2830 km=sec, is
represented by the bold lines in the right column of Figure 4.
Second, we compute apparent shear-wave speeds for the
seismograms windowed by sliding tapers that are 10 sec,
25 sec, and 50 sec wide. (Examples with real data can be
found in Igel et al., 2005, 2007.) The resulting apparent
shear-wave speeds, β�10�

a , β�25�
a , and β�50�

a , correspond to the
thin lines in the right column of Figure 4. From 350 to
400 sec, the seismograms are dominated by the Love waves.
Consequently, the time-dependent β�10�

a ; β�25�
a and β�50�

a at-
tain values that are close to the phase velocity of a 20 sec
Love wave propagating along continental paths, that is,
≈4 km=sec. Between 450 and 500 sec, the Rayleigh wave
becomes dominant, and one might intuitively expect that the
time-dependent apparent shear-wave speeds should increase
because Rayleigh waves do not only depend on β but also on

the much larger P-wave speed α. This, however, is not the
case. Instead, β�10�

a , β�25�
a , and β�50�

a , collectively, drop below
the mean value of 2830 km=sec mainly because ωy attains
comparatively large values after 450 sec.

One possible explanation for this observation is the dis-
persion of the surface wave train. Due to the dispersion, the
sliding windows always sample a certain frequency band
�ω0 �Δω;ω0 �Δω�. Making the plane wave approxima-
tion together with the assumption that the z component of
the displacement for ω∈�ω0 �Δω;ω0 �Δω� can be repre-
sented as

uz�x; t� �
Z

ω0�Δω

ω0�Δω
cos�ωt � k�ω�x�dω; (34)

gives the well-known result (e.g., Lay and Wallace, 1995)

uz�x; t� � Δωsinc�Δω�t � k00x�=2� cos�ω0t � k0x�: (35)

Figure 3. Slices through the apparent shear-wave speed kernel δβ ln βa for a cutoff period of 20 sec. Left: Horizontal slice at the surface.
The geometry of the kernel is similar to the 10 sec version in Figure 2a but has a significantly wider lateral extension. Center: Horizontal slice
at the depth of 100 km. The geometry of the kernel differs from the one of the 10 sec kernel. Right: Vertical slice parallel to the source-receiver
line. The kernel is concentrated near the receiver, whereas its absolute values decrease toward the source. (Ⓔ A color version of this figure is
available in the electronic edition of BSSA.)

Figure 4. Left: Surface wave displacements atΔ � 1500 km. Center: Rotational motion atΔ � 1500 km. Right: Time-dependent ratio
1
2
jv�xr; t�j=jω�xr; t�j computed with sliding windows that are 10 sec, 25 sec, and 50 sec wide. The bold vertical line indicates the value of βa

for the complete surface wave train.
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This equation is valid when the linear term of the Taylor
expansion k�ω� � k�ω0� � k0�ω0��ω � ω0� �… � k0 �
k00�ω � ω0� �… is dominant. The y component of the rota-
tional motion, ωy, is proportional to ∂xuz for which we find

∂xuz�x; t� � � 1

2
Δω2k00sinc

0�Δω�t � k00x�� cos�ω0t � k0x�

�Δωk0sinc�Δω�t � k00x�� sin�ω0t � k0x�:
(36)

The first summand in equation (36) is proportional to
k00 � cg�ω0��1, where cg denotes the group velocity. This
summand is mostly small because of Δω2, but it can nev-
ertheless have a contribution when cg is comparable to
c0Δω=ω0, that is, when

cg�ω0�≈ c�ω0�
Δω
ω0

: (37)

This can be the case under the following circumstances:
(1) The band width Δω is comparable to the center fre-
quency, ω0 and/or (2) the group velocity is small. In our par-
ticular example, both factors play a role because the high
amplitudes of ωy appear in the latest arrivals (small cg)
for which the frequency is relatively high.

Despite the fact that βa, for the entire wave train or
for sliding windows, is not always directly interpretable as

S-wave speed, it is a physically valid measurement. In gen-
eral, this measurement, that is, the particular value that it
yields, depends on the Earth’s structure. Therefore, we can
compute the corresponding sensitivity kernels. Some of the
results are displayed in Figure 5.

Part (a) of Figure 5 shows horizontal slices through the
rotation amplitude kernel δβ lnAω and through the corre-
sponding apparent shear velocity kernel δβ lnβa for the
station at an epicentral distance of Δ � 1500 km. While
δβ lnAω fills the space between source and receiver, the ap-
parent S-velocity kernel is restricted to the immediate vicin-
ity of the receiver. This result is similar to the one obtained
for body S waves, and it corroborates the hypothesis that this
phenomenon is independent of the type of seismic waves that
one uses for the analysis.

Note that the epicentral distance of 1500 km is much
larger than the one chosen for the body S waves in the
SWaves from a Deep Earthquake Recorded at Regional Dis-
tances section (650 km). In fact, reducing the epicentral dis-
tance in the surface wave case to 650 km leads to substantial
contributions to the βa kernel between source and receiver as
can be seen in Figure 5b. A rigorous and quantitative analysis
of this observation is beyond the scope of this article. Never-
theless, it can be explained qualitatively. The behavior of the
kernel δβ lnβa depends on the characteristics of the adjoint
wave field ψβa � ψv � ψω and therefore on the differences

Figure 5. (a) Horizontal slices at 10 km depth through the rotation amplitude kernel δβ lnAω (top) and the corresponding apparent shear
speed kernel δβ ln βa (below). The epicentral distance is Δ � 1500 km. (b) The same as (a) but for a shorter epicentral distance of
Δ � 650 km. (Ⓔ A color version of this figure is available in the electronic edition of BSSA.)
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between ψv and ψω. In the case of body waves, the difference
ψv � ψω decays as 1=r away from the receiver. However,
when surface waves are considered, the geometric spreading
of the adjoint field away from the receiver is proportional to
1=

���
r

p
. Therefore, differences between ψv and ψω are carried

much further into the source region. As Figure 5 indicates,
this effect can be compensated for by increasing the epicen-
tral distance.

The characteristics of δβ lnβa at a greater depth are il-
lustrated in Figure 6, which shows vertical slices through
the source-receiver line. The images have different shading
scales in order to emphasize the relative amplitudes of the
kernel in different regions. Contributions along the source-
receiver path are almost entirely absent. The sensitivity of βa

to the S-wave speed β is restricted to the immediate vicinity
of the receiver and to depths of less than 50 km.

Outlook: Possible Setups of Inverse Problems
Using βa Measurements

The ultimate purpose of the βa and Aω kernels is to fa-
cilitate the solution of structural inverse problems in which
the apparent shear-wave speed or the rotation amplitude
serve as observables. While the analysis and the solution
of such an inverse problem are beyond the scope of this ar-
ticle, we still want to outline three of its possible formula-
tions in order to highlight how the sensitivity kernels may be
used in practice. Our focus will be on apparent shear speed
measurements. The corresponding expressions for rotation
amplitude measurements are easily obtained by replacing
βa by Aω.

Formulation 1: Linearized Inverse Problem

It is, in principle, possible to use observations of βa

in the context of a linearized inverse problem that is con-
ceptually similar to the one encountered in classical ray to-
mography (e.g., Aki et al., 1977). The components di of the
n-dimensional data vector d are defined as the relative dif-
ferences between the observations β�0�

a;i and their correspond-
ing synthetic values βa;i, that is,

di≔�βa;i � β�0�
a;i �=βa;i; i � 1;…; n: (38)

Different index values i may, for example, denote various
events, seismic phases, stations, dominant frequencies, or
combinations of them. Under the assumption that βa;i is
able to linearize around the parameter p, not necessarily the
S-wave speed β, we may write,

di � �βa;i � β�0�
a;i �=βa;i

� �βa;i�p� � βa;i�p�0���=βa;i�p�
� �βa;i�p� � βa;i�p� δp��=βa;i�p�

≐ �
Z
G
�δp lnβa;i�δpdG; (39)

where p�0� denotes the true parameter and G the spatial
domain where the wave field and the kernel δp ln βa;i are de-
fined. Even though p is usually an infinite-dimensional func-
tion, such as a shear-wave speed or density distribution, it
needs to be expressed in terms of a finite-dimensional basis
in order to make the problem computationally tractable. By
letting hk�x�, k � 1;…; m denote the basis elements, we can
express p�x� and δp�x� as

Figure 6. Vertical slices through δβ ln βa along the source-receiver line. The image is plotted with different shading scales in order to
emphasize the different amplitudes of the kernel in the source and receiver regions. (Ⓔ A color version of this figure is available in the
electronic edition of BSSA.)
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p�x� �
Xm
j�1

pjhj�x�; δp�x� �
Xm
j�1

δpjhj�x�: (40)

Equation (39) then transforms to

di �
Xm
j�1

δpj

�
�
Z
G
�δp lnβa;i�hjdG

�
; (41)

or in matrix notation

d � Aδp; Aij≔ �
Z
G
�δp lnβa;i�hjdG: (42)

This linear tomographic system, or a regularized version of
it, may then be solved using standard iterative techniques.
(See Nolet [1993] for an overview.)

Formulation 2: Nonlinear Inverse Problem
and Gradient Methods

In the case that βa;i is not sufficiently able to linearize
well, it is preferable to view the inverse problem as an itera-
tive minimization of a nonlinear misfit function E�βa;i�. One
may, for example, choose the quadratic function

E�βa;i� �
1

2

Xn
i�1

�βa;i � β�0�
a;i �2: (43)

The gradient of E with respect to the model parameters pj

required by the method of steepest descent and its variants, is
then given by

dE

dpj

�
Xn
i�1

�βa;i � β�0�
a;i �

dβa;i

dpj

; (44)

where the gradient of βa;i is expressible through the ker-
nel δpβa;i:

dβa;i

dpj

�
Z
G
hjδpβa;i dG � �βa;iAij

�no summation over i�:
(45)

Formulation 3: Nonlinear Inverse Problem
and Monte Carlo Minimization

Monte Carlo methods offer an alternative to the minimi-
zation of the misfit E by means of gradient methods, espe-
cially when the problem is highly nonlinear. Because Monte
Carlo methods generally do not require information on the
gradient of E, the sensitivity kernels are not used directly.
They may, however, be of indirect use because they poten-
tially provide information on where random perturbations of
a test model are most effective. In that sense, gradient infor-

mation may be used for the benefit of a more economic ran-
dom model generation.

Discussion

We have demonstrated that sensitivity densities for ap-
parent shear speed measurements become negligibly small in
regions that are far from the receiver. This property is remi-
niscent of SKS splitting kernels (Sieminski et al., 2008), and
it suggests that βa may be used for the estimation of local
Earth structure. In addition to being comparatively small near
the source, δβ ln βa generally possesses another characteris-
tic feature, namely that contributions in the higher Fresnel
zones are enhanced at the expense of suppressed contribu-
tions in the first Fresnel zones. [We employ the term, Fresnel
zone, in the interest of greater clarity even though the con-
sidered signals are usually quasiperiod and not strictly pe-
riodic.] There are several implications arising from this
phenomenon: (1) Higher Fresnel zones are generally thinner
than the first Fresnel zone. It follows that for a given domi-
nant frequency ν, βa measurements yield more information
on small-scale structures than measurements of the rms am-
plitudes Av and Aω or measurements of cross-correlation
time shifts (e.g., Dahlen et al., 2000). In the inverse problem
context this means that one may, and probably must, gener-
ally work with comparatively low frequencies when βa mea-
surements are used as data. Otherwise, the βa measurement
will be sensitive to very small-scale structure that one may
not be able to resolve. (2) The shape of δβ lnβa is rather sus-
ceptible to waveform changes. This is not the case for kernels
that attain large values in the first Fresnel zone. Rotation and
velocity amplitude kernels are two examples. Consequently,
small changes in the Earth model will lead to changes in the
βa kernels that are larger than in the Av or Aω kernels. Care-
fully incorporating already known 3D Earth structure into the
computation of the synthetic seismograms is therefore essen-
tial when βa measurements are to be used for structural in-
versions. (3) As mentioned in the Outlook: Possible Setups
of Inverse Problems section, sensitivity densities are often
not used directly. Instead, they are multiplied by a basis func-
tion hj and integrated over the computational domain (see
equation 45). This procedure is meaningful only when the
scale of the principal features of the sensitivity densities is
comparable to the characteristic length scale of the basis
function. Hence, if we wish to exploit the comparatively
large values of δβ ln βa in the receiver region, then the char-
acteristic length scale of hj should be small. On the other
hand, when we use rotation or amplitude measurements only,
then the characteristic length scale of hj can be larger be-
cause the dominant feature of the corresponding kernels is
the broad first Fresnel zone. (4) Usually, the gradient of
an objective functional with respect to the model parameters
(again, see equation 45) is multiplied by a covariance matrix
either to yield the direction of steepest ascent or to deliber-
ately smooth the final model. Just as the characteristic length
scale of hj, the correlation length of the covariance matrix
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should also be chosen to be smaller for βa measurements
than for measurements of Av or Aω, for example.

The choice of the basis functions hj is of outstanding
importance, especially in the framework of linearized inver-
sion (see the Outlook: Possible Setups of Inverse Problems
section). In conventional ray-based travel-time tomography,
the basis functions must be chosen such that the matrix A in
equation (42) is nonsingular or at least as well conditioned as
possible. The intuitive interpretation of this requirement is
that there be a generally good azimuthal ray coverage in
the region of interest. Whether suitable basis functions ex-
ist in the case of apparent shear-speed measurement, and
whether a similar intuitive interpretation exists, still needs
further investigations.

In contrast to the βa kernels, sensitivity densities for ro-
tation amplitude measurements generally reach large abso-
lute values everywhere around the geometric ray path. Their
large-scale structure very much resembles the one of sensi-
tivity densities for velocity amplitude measurements. It is,
therefore, likely that measurements of Aω alone may yield
similar information on Earth structure as measurements of
Av alone, at least in the context of linearized or gradient
method based inversion. It is the combined measurement
of Aω and Av, that is, the measurement of βa, which can po-
tentially make a difference.

Throughout the Case Studies section, we limited our at-
tention to the sensitivity of βa with respect to β. Sensitivity
of βa with respect to the P-wave speed, α, is generally small
because the velocity amplitudes and rotation amplitudes of
S body waves and surface waves are only weakly affected
by P-wave speed variations. The same is true for sensitivity
with respect to density.

The natural complement of the apparent S-wave speed
βa is the analogously defined apparent P-wave speed αa.
Indeed, when u�x; t� is a plane P wave in a homoge-
neous, isotropic, and unbounded medium, then j _uj=jsj �
j _uj=j∇ · uj � α, where α is the P-wave speed, and
s � ∇ · u. It is, therefore, meaningful to define

αa≔AvA
�1
s ; A2

s≔
Z ∞
�∞

�F � �Ws��2 dt (46)

in an arbitrary medium. The subscript s in equation (46) re-
fers to the divergence s of the displacement field. The ana-
lysis of the corresponding sensitivity densities δα lnαa is
beyond the scope of this article. Still, we remark that the ad-
joint source for the kernel δp lnAs is

fs�x; t� � 1

A2
s

�Fs��xr; t�ei
∂
∂xi δ�x � xr�; (47)

meaning that it is dipolar as is the adjoint source for δp lnAω.
We may, therefore, at least hypothesize that δα lnαa may also
vanish near the source.

Finally, we wish to address the feasibility of a structural
inversion using βa from a purely computational point of

view. While such an inversion is clearly more expensive than
a travel-time tomography based on the ray method, its com-
putational costs are still moderate, at least compared to full
waveform inversion (e.g., Gauthier et al., 1986) or wave
equation travel-time inversion (e.g., Luo and Schuster, 1991;
Tromp et al., 2005). There are three reasons for this: (1) As
already discussed, βa is sensitive to small-scale structures
even when low frequencies are used. Hence, one can choose
a broader numerical grid for the computation of the synthetic
seismograms. (2) The kernels δβ lnβa are small far from the
source. It is, therefore, unnecessary to propagate the adjoint
wave field all the way back to the source. 3) When lateral
variations in the Earth model are small, then one may re-
duce the computational costs by using a combined-method
approach. The forward wave field can be propagated in a
1D model with an inexpensive method until it comes close
to the receiver. From there on, a purely numerical method
is used that can handle 3D media. The applicability of
this approach need to be assessed for each particular 3D
Earth model.

Conclusions

This study was motivated by the recent high-quality and
consistent observations of rotational ground motions using
ring laser technology. The joint processing of rotational and
translational motions indicated that information on the sub-
surface velocity structure might be recoverable even with ob-
servations at a single measurement point. This is in contrast
to the common requirement in seismology to have access to
information from distributed stations (arrays, networks) in
order to derive wave-field characteristics such as phase ve-
locities and phase delays relating to subsurface structure.

Our theoretical analysis based upon the adjoint method-
ology reveals some interesting properties that might one day
enable a new type of seismic tomography: (1) Sensitivities of
rotational motions alone have very similar shapes to well-
known sensitivities of measurements derived from transla-
tions (e.g., travel times, amplitudes). (2) The sensitivity of
the newly introduced measurement apparent shear-wave
speed is essentially based on the difference of sensitivities
due to translations and rotations and is highly localized be-
low the receiver position. (3) Because of the specific form of
the sensitivity kernels structures well below the analyzed
wavelengths might be recoverable, and (4) the concentration
of sensitivity close to the receiver might allow the use of
efficient hybrid modelling schemes in tomographic inver-
sion schemes.

Our results indicate that additional observations of rota-
tional ground motions are indeed beneficial and may allow
estimation of the structure below the receiver on length scales
that partly depend on the analyzed frequencies. While in
principle, rotational ground motions can be estimated from
appropriately sized arrays, and such arrays would offer simi-
lar (and additional) information content, it is important to
note that array-derived rotations are very sensitive to (1) noise
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in the data, (2) variations in coupling properties within the
array, (3) nonplanarity of wavefronts, and (4) local structural
heterogeneities. In addition, the array size makes the accu-
racy of the results frequency dependent, and in particular,
one would derive rotations with sensors that are contami-
nated by rotations.

Further studies are necessary to understand the relevance
of these concepts in different situations (e.g., local, regional,
and global scale, or reservoir conditions) and to develop to-
mographic inversion schemes based on joint measurements
of rotations and translations.

Data and Resources

For the computation of synthetic seismograms and sen-
sitivity kernels we used the high-performance cluster Tethys
described by Oeser et al. (2006) and the spectral-element
code SEC3D described by Fichtner and Igel (2008).
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