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Sensitivity encoding for aligned multishot magnetic

resonance reconstruction
Lucilio Cordero-Grande, Rui Pedro A. G. Teixeira, Emer J. Hughes,

Jana Hutter, Anthony N. Price, and Joseph V. Hajnal

Abstract—This paper introduces a framework for the re-
construction of magnetic resonance images in the presence of
rigid motion. The rationale behind our proposal is to make
use of the partial k-space information provided by multiple
receiver coils in order to estimate the position of the imaged
object throughout the shots that contribute to the image. The
estimated motion is incorporated into the reconstruction model
in an iterative manner to obtain a motion-free image. The
method is parameter-free, does not assume any prior model for
the image to be reconstructed, avoids blurred images due to
resampling, does not make use of external sensors, and does
not require modifications in the acquisition sequence. Validation
is performed using synthetically corrupted data to study the
limits for full motion-recovered reconstruction in terms of the
amount of motion, encoding trajectories, number of shots and
availability of prior information, and to compare with the state
of the art. Quantitative and visual results of its application to
a highly challenging volumetric brain imaging cohort of 207

neonates are also presented, showing the ability of the proposed
reconstruction to generally improve the quality of reconstructed
images, as evaluated by both sparsity and gradient entropy based
metrics.

Index Terms—magnetic resonance, image reconstruction, mo-
tion correction, parallel imaging, multishot acquisition

I. INTRODUCTION

MAGNETIC resonance (MR) is a flexible but relatively

slow imaging technique. Thus, for common acquisition

requirements, motion can occur within the duration of an MR

scan. Therefore, there is a demand for methods to prevent or

correct for motion. In multishot or segmented methods, only a

fraction of the k-space is acquired after a single radiofrequency

(RF) excitation or, for magnetization prepared sequences, after
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a single preparation phase. This type of sampling usually pro-

vides a good compromise between true single-echo sequences,

which are very slow, and single-shot sequences, which have

limited resolution and less flexible contrast. However, the

encoding requirements for high-resolution volumetric imaging

imply that a large number of shots is required. As these shots

are usually acquired distant in time [1], when motion occurs

in between them, the images may be severely degraded.

Motion in MR imaging can be classified into rigid and

non-rigid. Focusing on brain imaging, rigid motion is caused

by patient head motion whereas non-rigid motion comes

either from internal sources such as arterial pulsation or

from other structures in the field of view (FOV) such as in

cases of eyeball or neck motion. In this paper we propose a

framework to correct for rigid motion during brain structural

scans. Direct applications of the method include studies of

severely diseased, non-compliant, elderly or pediatric patients.

In addition, a high prevalence of motion artifacts has been

reported in clinical examinations [2]. Finally, small motion

will become a limiting factor for ultra-high resolution images.

In this scenario, image quality improvement is to be expected

from the application of motion compensation techniques even

in cases where no perceptible motion artifacts are present [3].

From the vast literature on motion compensation in MR

(see [4] for a review), we restrict ourselves to retrospective

rigid motion correction methods in structural multishot MR.

In [5], inconsistencies in k-space are detected by using parallel

reconstruction of k-space subsets and corrupted lines are

removed in order to perform the final reconstruction. This

method is extended in [6] by the introduction of prior informa-

tion using the projection onto convex sets formalism, allowing

for an improvement both in terms of detection of inconsisten-

cies and reconstruction error. Alternatively, in [7] a scheme is

proposed in which the motion is extracted from a navigator

built into the k-space sampling scheme, which is exemplified

by using a spiral trajectory with low resolution navigator im-

ages that are registered to a reference. Related motion resilient

approaches relying on a specific encoding trajectory have

been proposed in [8] —using the implicit navigators provided

by the periodically rotated overlapping parallel lines with

enhanced reconstruction (PROPELLER) sampling scheme—

and [9] (using radial trajectories). A more comprehensive

treatment that uses all the acquired data without resorting to

explicit or implicit navigators is introduced in [10]. Similarly

to our proposal, the authors present a joint reconstruction and

motion estimation method, but in their case reconstruction and

motion estimation are formulated using distinct functionals,
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as the former is based on the fidelity to the measured data

whereas the latter is based on the minimization of a gradient

entropy metric in the image domain. Complementarily, our

approach makes use of the full reconstruction inverse to

integrate multicoil information and estimate and correct for

motion. As we will show in Section III-E, these extensions

may potentially allow for larger ranges in motion recovery.

In a recent step further [11], the same authors have extended

the previous approach to use the fidelity to the measured data

for elastic motion estimation. Nevertheless, once again, their

proposal uses an approximation to the reconstruction inverse

and the inclusion of multicoil information is not explicitly

addressed. Finally, although applied to physiological motion

correction, we should mention the related contribution in [12],

which formulates the reconstruction and motion estimation

problem jointly and in a parallel imaging scenario. However,

their method is devised for free form deformations rather

than rigid motion. Thus, the estimation is based on optical

flow, which implies imaginary component truncation when

applied to complex data reconstruction. Also, the aperture

problem forces joint motion estimation and reconstruction to

be constrained by a regularization term, which is not required

within a rigid motion assumption.

In this paper we propose a general framework for rigid mo-

tion corrected reconstructions in volumetric MR acquisitions,

which admits a simpler formulation than in multislice counter-

parts, where treatment of through-plane motion appears more

intricate [4]. The contributions of our proposal are threefold:

(1) we provide a fully data-based generalized reconstruction

formulation where a common functional is used to estimate the

rigid motion and the structural data in parallel MR using the

sensitivity encoding (SENSE) redundancy the coil array pro-

vides, (2) we make use of a rigid transformation representation

that fully preserves the image resolution, thereby allowing for

optimal reconstructions when neglecting the non-rigid motion

components1, and (3) we study the regime in which these fully

rigidly corrected reconstructions are possible in terms of the

amount of motion, encoding trajectories, number of shots and

use of prior information. In addition, the source code of a MAT-

LAB implementation of the reconstruction method proposed in

Section II together with the experiments in Section III is freely

available at https://github.com/mriphysics/alignedSENSE.

The paper is organized as follows: In Section II we present

the formulation for joint rigid motion estimation and image

reconstruction for parallel multishot MR. In Section III we

study both the motion estimation and reconstruction perfor-

mance of the method with regard to the motion level, encoding

trajectories, number of shots, use of prior information, and

in relation to the results provided by [10]. In Section IV we

explain, assess and illustrate its application in a real scenario,

namely, the motion-corrected reconstruction of volumetric MR

in neonatal brain imaging. In Section V we discuss the impli-

cations of our proposal together with its potential applicability

and future developments. Finally, the main conclusions of this

1We will refer to these optimal reconstructions as fully rigidly corrected

reconstructions. They satisfy two properties: (a) true synthetic rigid motion
parameters are estimated by the method and (b) reconstruction is performed
using the aforementioned rigid transform representation.

work are established in Section VI.

II. THEORY

In this Section we provide the high level formulation for

multishot reconstruction in the presence of rigid motion (also

referred to in this paper as aligned reconstruction), describe

the elements involved in the formulation, paying special at-

tention to the rigid motion transformation, and establish the

problem solving procedure adopted.

A. Generalized rigid motion-corrected multishot reconstruc-

tion

The generalized reconstruction with rigid motion correction

for parallel multishot imaging can be formulated in matrix

form as:

(x̂, T̂) = argmin
x,T

‖AFSTx− y‖22, (1)

where y denotes the measured k-space data, x the image to

be reconstructed, T the rigid motion transformation matrix, S

the coil sensitivity matrix, F the Discrete Fourier transform

(DFT) encompassing applied k-space oversampling or down-

sampling, and A a sampling matrix. The forward model for

this formulation, originally proposed in [13] for the estimation

of x assuming T is known, is depicted in Fig. 1 and the

different terms are described in Section II-B.

B. Model terms

We want to reconstruct a 3D image of size N = N1N2N3,

with Nl the number of voxels along dimension l using a coil

array of C elements from M = ESC samples of a discretized

k-space grid of size K = K1K2K3, where E denotes the

number of sampled points per shot and S is the number of

shots. The different terms included in (1) can be represented

by the following matrices:

• y is a vector of size M × 1.

• A is a matrix of size M × KSC given by A =
















A11 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · A1C · · · 0
...

...
...

. . .
...

0 · · · 0 · · · ASC

















where Asc is a matrix

of size E ×K that takes the value 1 if the sample e of

the shot s corresponds to the k-space location indexed by

k and 0 otherwise.

• F is a matrix of size KSC × NSC given by F =
















F11 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · F1C · · · 0
...

...
...

. . .
...

0 · · · 0 · · · FSC

















where Fsc = FN→K

is a matrix2 of size K ×N representing a 3D DFT with

applied oversampling or downsampling.

2We drop bold notation to avoid confusion with the DFT matrix applied
in (1).
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Fig. 1. Forward model (in 2D) of the measurement process in the presence of motion. The brain to be reconstructed x might be at different motion states Ts

during the acquisition (S = 2 states are represented, which corresponds to a 2-shot acquisition). The coil receivers spatially encode the measured information
by their sensitivity maps Ssc (C = 2 coils are assumed). The measurements are obtained in the Fourier space, so a DFT Fsc is necessary. Finally, the
data points sampled at each shot are extracted by means of Asc. A Cartesian acquisition without any spectral oversampling or downsampling is assumed
in this example, where each shot is composed by every other vertical line (actually pairs of lines are grouped together for better visualization) so that the
phase-encode direction is the horizontal one.

• S is a matrix of size NSC × NS given by S =
















S11 · · · 0
...

. . .
...

S1C · · · 0
...

. . .
...

0 · · · SSC

















, where Ssc is a diagonal matrix of

size N ×N whose diagonal elements correspond to the

spatial profile of coil c.

• T is a matrix of size NS × N given by T =







T1

...

TS






,

where Ts is a matrix of size N × N corresponding

to the rigid transformation the underlying structure has

been subject to when acquiring the shot s. This matrix is

described just below.

• x is a vector of size N × 1.

Regarding the functional form for Ts, to the best of our

knowledge, two representations have been used in the MR

motion-corrected reconstruction literature. On the one hand,

in [13] and [12], a sparse matrix is assumed with its non-

zero elements given by the interpolation kernels used to

spatially regrid the image after the transformation. On the

other hand, in [7] and [10], the transformation is applied in k-

space. In this case, translations can be expressed by linear

phase weights but, once again, regridding is necessary to

implement rotations. In contrast, our approach is based on the

convolution-based interpolation technique introduced in [14],

[15] in order to perform high quality rotations without any

regridding. Thus, considering the decomposition of a rotation

into three consecutive shears given in [14],
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

=

[

1 − tan(θ/2)
0 1

] [

1 0
sin(θ) 1

] [

1 − tan(θ/2)
0 1

]

,

(2)

a rigid transformation in 3D can be represented as a series of

linear phase modulations in k-space by:

Ts = F
HUsF FH

2 Vtan
1s F2F

H
3 Vsin

1s F3F
H
2 Vtan

1s F2

FH
3 Vtan

2s F3F
H
1 Vsin

2s F1F
H
3 Vtan

2s F3

FH
1 Vtan

3s F1F
H
2 Vsin

3s F2F
H
1 Vtan

3s F1

(3)

where F represents the 3D DFT and Fl is the DFT along

dimension l. The Us and Vls matrices are diagonal matrices of

size N ×N that describe, respectively, the applied translation



2333-9403 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2016.2557069, IEEE

Transactions on Computational Imaging

4

y x̂argmin
x

‖AFST̂x− y‖22

argmin
T

‖AFSTx̂− y‖22
T̂

Fig. 3. Alternating minimization approach. As stated in (5), if T is assumed
to be known, we can search for the best possible x in terms of the fidelity of
the model to the measured data y and, conversely, assuming x is known, we
can search for the best possible T using the same criterion.

and applied shear decomposed rotations along different axes,

and whose diagonal vectors us and vls are given by:

us = e−j(q1sk1+q2sk2+q3sk3)

vtan
1s = ej tan(θ1s/2)k2◦r3 vsin

1s = e−j sin(θ1s)k3◦r2

vtan
2s = ej tan(θ2s/2)k3◦r1 vsin

2s = e−j sin(θ2s)k1◦r3

vtan
3s = ej tan(θ3s/2)k1◦r2 vsin

3s = e−j sin(θ3s)k2◦r1

(4)

where kl is the k-space coordinate vector of the spectral image

voxels along dimension l, rl is the spatial coordinate vector of

the image voxels along dimension l, ◦ denotes the Hadamard

product, and qs = qls and θs = θls are, respectively, the

translation parameters along the different dimensions and the

rotation parameters along the different axes for each shot s.

One important property of this rigid transformation operator

is its orthonormality, i.e., T−1
s = TH

s . This property is

desirable when forward and backward application is required

—see (6)— to avoid the introduction of blurring in the motion-

corrected reconstructions. The application of this operator to

a given image is illustrated in Fig. 2.

C. Problem solving

For the sake of computational tractability, the joint problem

in (1) may be addressed in an alternating fashion (see Fig. 3)

by iteratively solving the following subproblems:

x̂ =argmin
x

‖AFST̂x− y‖22

T̂ =argmin
T

‖AFSTx̂− y‖22.
(5)

The first of these subproblems, i.e., that of reconstructing

the image x in the presence of rigid motion, is considered

in [13], where the system

THSH
F

HAHAFSTx̂ = THSH
F

HAHy (6)

is solved by means of the conjugate gradient (CG) algorithm.

The ability to estimate for motion (second subproblem)

comes from the fact that the coil array measurements may

be used to infer the position of the object inside the scanner

using just partial k-space information. Mathematically, the

reconstruction problem needs to be overdetermined for the

motion estimation to be solvable. The solution must null

the gradient of the objective function against the motion

parameters:

∇(q,θ)‖AFST̂(q,θ)x− y‖22 = 0, (7)

which can be solved separately for each shot,

∂‖AsFsSsT̂s(qs,θs)x− ys‖
2
2

∂qls
= 0

∂‖AsFsSsT̂s(qs,θs)x− ys‖
2
2

∂θls
= 0.

(8)

We have used the Newton’s method for solving this system

of equations. Details about the expressions of the gradient

and Hessian as well as some remarks about the convergence

criterion of the joint optimization can be found in Appendix A.

In the absence of additional information, a natural choice

is a zero-motion initial condition T0
s = Id, thus making the

first step of our method correspond to a standard CG SENSE

reconstruction.

III. VALIDATION

In this Section we perform a simulation-based study of the

regime in which the proposed method can retrieve motion

and, consequently, optimal reconstruction performance can be

achieved in terms of the amount of motion, number of shots

and encoding trajectory. In addition, we compare the perfor-

mance of our approach with regard to a previous proposal [10].

A. Experimental design

Considering the immense range of potential sampling trajec-

tories, acquisition orderings, patterns of motion and number of

shots, we will initially restrict the simulation analysis to the 2D

case. This way, we expect to identify the key factors that influ-

ence motion correction performance. Then, using the lessons

learned by simulation, we will assess the 3D motion correction

performance in Section IV, when applying the method in

vivo. In order to replicate the expected anatomical features

contained in a real image, a motion-free T2 neonatal brain axial

image is selected from a fast spin echo sequence with acquired

pixel resolution 0.8 × 0.8mm, 1.6mm slice thickness, echo

time TE = 145ms, repetition time TR = 12 s and flip angle

α = 90◦ using a head coil array with C = 32 channels on a

3T PHILIPS ACHIEVA TX. Coil sensitivity maps were estimated

from a separate reference scan using [16], which has been

selected taking into account its robustness when extrapolating

the sensitivities outside the calibrated region. The image has

been reconstructed without zero filling, so that the resolution

is maintained, and subsequently cropped to a 128×128 matrix

so that the brain almost completely fills the FOV.

The resulting image is the one included in Fig 1. Our

forward model of MR measurement in the presence of rigid

motion has been applied to this image to generate synthetically

motion corrupted data. We will study different degrees of

motion as given by different rotations around the center of

the FOV as a simple way to characterize the capture range

of motion compensation. First, in Section III-B, we study

the alternating minimization scheme performance for S = 2
shots using different encoding schemes and motion levels.
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Rotation

F
H

1
V

tan

3s
F1 F

H

1
V

tan

3s
F1F

H

2
V

sin

3s
F2 F

H
UsF

Translation

x

Fig. 2. Rigid transformation operator (in 2D). The rotation is composed of three consecutive shears applied in hybrid r/k-space whereas the translation is
applied in k-space.

Then, in Section III-C, we focus on the isolated performance

of the motion estimation (assuming x is perfectly known)

and reconstruction (assuming T is perfectly known) parts.

In Section III-D, we extend the analysis to characterize the

behavior of the method for a larger number of shots. Finally,

in Section III-E we study the differences in performance with

the related approach in [10].

B. Influence of the encoding trajectory

In this Section, the performance of the method is studied

for the following encoding schemes, which are illustrated in

Fig. 4:

• A Cartesian sequential trajectory where k-space lines

are acquired in increasing order so that the data points

corresponding to a given shot form a connected region

(Fig. 4a).

• A radial sequential trajectory where k-space locations

are acquired in an order given by their orientation with

respect to the center (Fig. 4b).

• A Cartesian parallel 1D trajectory where a shot consists

of every other S line so that the lines of data points

corresponding to a given shot are spread throughout k-

space (Fig. 4c).

• A Cartesian parallel 2D trajectory where a shot consists of

every other S location so that the data points correspond-

ing to a given shot are arranged in a checkerboard-style

fashion (Fig. 4d).

• A random trajectory where k-space is sampled following

a random trajectory (Fig. 4e).

A simple experiment has been carried out in which a S = 2-

shot acquisition is simulated, where a relative rotation of

∆θ is assumed between shots. In Fig. 5, the reconstruction

error as given by the value of the objective function f —

the one to be minimized in (1), see also (10)— is plotted

on a logarithmic scale against the logarithm of the number

of iterations i of the joint optimization for each encoding

scheme and ∆θ = {2◦, 5◦, 10◦, 20◦}. The reconstruction error

is selected for assessment as it encompasses both the error in

the estimated image relative to the ground truth and the error

in the estimated motion parameters against their ground truth

values. The results reflect that, for ∆θ = 2◦, the convergence

for parallel and random encodings is much faster than for

sequential encodings. Indeed, the former ones provide a fully

rigidly corrected reconstruction (up to numerical precision)

in an affordable time whereas the latter ones take a much

larger number of iterations to achieve an optimum (or to

satisfy a reasonable stopping criteria in the context of this

experiment). Something similar can be concluded from the

results for ∆θ = 5◦ where the parallel 2D appears to have the

best convergence properties, followed by the parallel 1D and

random encodings. In this case the radial sequential strategy

seems unable to support a large decrease of the objective

function value from its starting point. For ∆θ = 10◦ the same

convergence behavior as for ∆θ = 5◦ is observed for the

parallel and random encodings whereas, although there is a

slight decrease in the objective function values, no perceptible

improvements over reconstruction without motion correction

are observed in any of the sequential encodings. Finally, for

∆θ = 20◦ the proposed methodology is unable to recover

from motion regardless of the encoding strategy adopted. Also,

this case illustrates the relative salience of motion artifacts

introduced by different encoding methods. As confirmed by

the value of the objective function at the first iteration,

sequential encodings seem to impact the image quality to a

lesser extent than parallel and random encodings. Interestingly,

the image degradation ranking of encoding methods relates

inversely to their suitability for successful motion correction

by the algorithm. This is further showcased in Fig. 6, where

we compare the image appearance with and without alignment

respectively for Cartesian sequential and Cartesian parallel

1D encodings, selected as representative of sequential and

parallel encodings. First, we can see the incremental effect

of motion artifacts from ∆θ = 5◦ (Figs. 6a and 6b) to

∆θ = 10◦ (Figs. 6c and 6d). Second, motion corruption

artifacts in parallel encoding (Figs. 6b and 6d) appear much

more coherent than their sequential counterparts (Figs. 6a

and 6c). Third, motion corrected reconstruction is able to fully

recover the uncorrupted ground truth both for sequential and

parallel encodings for ∆θ = 5◦ (respectively on Figs. 6e

and 6f). However, despite aligned reconstructions are also

obtained for ∆θ = 10◦ in the parallel sampling case (Fig. 6h),

almost no improvement is achieved for the same level of

motion when using sequential encoding (Fig. 6g).

C. Potential benefits of the inclusion of prior information

Motion-corrected MR reconstruction has commonly been

based on introducing certain assumptions about the image to

be reconstructed, x, such as its compact support and smooth

phase, to help motion estimation and/or reconstruction [6]. In

this Section we study the potential added value of introducing

prior models about the image to be reconstructed in our frame-

work by quantifying the capture range change of the motion

estimation approach in the experimental conditions described

in Section III-B. To this end, we study the motion estimation
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(a) Cartesian sequential. (b) Radial sequential. (c) Cartesian parallel 1D. (d) Cartesian parallel 2D. (e) Random.

Fig. 4. Considered encoding strategies exemplified for S = 2 shots: samples corresponding to one of the shots in white and those corresponding to the other
in black.
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Fig. 5. Convergence curves of the objective function for different encoding strategies for S = 2 and different ∆θ. Note the logarithmic ordinate scaling,
which implies that, whenever the curves start to decrease rapidly (as a rule of thumb, when they reach negative values), fully rigidly corrected reconstructions
have been achieved.

step of our method assuming we have a perfect knowledge

of x (i.e., best possible prior for x). In accordance with the

analysis of Section III-B we will focus on Cartesian sequential

and Cartesian parallel 1D encodings, two characteristic cases

that can illustrate the behavior for other encodings.

In Fig. 7 we show the motion estimation error as given

by the logarithm of the objective function f using the known

x and the estimated transformation T versus the logarithm

of the number of iterations i for the two selected encod-

ing schemes and ∆θ = {30◦, 60◦, 90◦, 120◦, 150◦ 180◦}. As

compared with the results in Fig. 5, the assumption of a

perfect knowledge of the image to be estimated makes the

motion estimation procedure less prone to get trapped in local

optima, as the global optimum is achieved for ∆θ ≤ 150◦

for both encoding schemes. Thus, interestingly, a similar

performance for sequential and parallel encodings is observed

in this case. This seems to suggest that the relatively worse

performance of the sequential encoding in the joint alignment

and reconstruction case is related to the reconstruction step

rather than to the alignment itself. This hypothesis has been

tested by performing a new experiment in which the optimal

T is assumed to be known (thereby assuming a perfect prior

for T) so that the reconstruction error using the estimated

image x is assessed. Convergence when running I = 100
iterations is shown in Fig. 8 for the same configuration of

encodings and levels of motion as in Fig. 7. As hypothesized,

the parallel encoding method is able to fully recover the

images in few iterations, whereas the sequential encoding

struggles to do so. This behavior can be explained if one pays

attention to the effect a relative rotation between shots would

have in the k-space sampling structure of both encodings

(we use here the 2-shot example of Figs. 4a and 4c for

an intuitive explanation). Keeping in mind that a rotation in
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Fig. 7. Convergence curves of the objective function for S = 2 and
different ∆θ assuming optimal x is known. Note the logarithmic ordinate
scaling, which implies that, whenever the curves start to decrease rapidly (as
a rule of thumb, when they reach negative values), fully rigidly corrected
reconstructions have been achieved.

space corresponds to a rotation in k-space, in the first case

(sequential encoding) a given rotation would provoke a single

unsampled connected region of k-space (as in this case the

samples corresponding to a given shot are clustered together).

In the second case (parallel encoding) the unsampled region

after the same rotation would be comprised of many connected

components, so that, in general, each of these components will

be smaller in size than the single component of the sequential

case. Thus, in the sequential case, the inversion problem will

become more rapidly ill-posed, as the sensitivity based k-

space deconvolution is highly unstable when far apart from

the sampled regions due to the almost complete lack of high

spatial frequency information of the coil profiles [17], whereas

in the parallel case, the information of unsampled locations

can be more easily retrieved with the aid of the low spatial

frequency encoding information from the sensitivity maps.
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(a) Sequential uncorrected ∆θ = 5◦. (b) Parallel uncorrected ∆θ = 5◦. (c) Sequential uncorrected ∆θ = 10◦. (d) Parallel uncorrected ∆θ = 10◦.

(e) Sequential Corrected ∆θ = 5◦. (f) Parallel corrected ∆θ = 5◦. (g) Sequential corrected ∆θ = 10◦. (h) Parallel corrected ∆θ = 10◦.

Fig. 6. Reconstructed images for S = 2 and different ∆θ for Cartesian sequential and parallel 1D encodings. More coherent artifacts are observed for parallel
encoding but fully rigidly motion corrected reconstructions are obtained for larger ∆θ than in the sequential case.
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Fig. 9. Convergence curves of the objective function using the Cartesian parallel 1D encoding for different S and ∆θ. Note the logarithmic ordinate scaling,
which implies that, whenever the curves start to decrease rapidly (as a rule of thumb, when they reach negative values), fully rigidly corrected reconstructions
have been achieved.
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D. Influence of the number of shots

In this Section we extend the analysis presented in Sec-

tion III-B to the case of S > 2-shot acquisitions focusing

on the Cartesian parallel 1D encoding strategy. In this case

each shot will be affected by a rigid transformation sampled

independently from a uniform distribution of rotations in the

range [−∆θ/2,∆θ/2] with subsequent subtraction of the mean

rotation to deduct the drifting effect described at the end of Ap-

pendix A from the analysis. Results of the convergence of the

algorithm are summarized in Fig. 9 for ∆θ = {2◦, 5◦, 10◦}.
The first conclusion is that the ability to correct for rigid

motion seems to extend nicely when increasing the number

of shots. Indeed, for the case ∆θ = 10◦, which was the

limit of good performance for S = 2, we can see that we

can recover from motion up to S = 32, which means that

just four lines are acquired per shot. Additionally, for minor

motion corruption, as given by ∆θ = 2◦, fully recovery

has been possible even when just one line is acquired per

shot (S = 128). We should clarify that these results are

illustrative, as details may change when applying the method

to different realizations of the rigid transform distribution.

However, almost sure convergence is to be expected for small

motion and number of shots and convergence will be almost
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(a) Uncorrected ∆θ = 10◦. (b) Corrected ∆θ = 10◦.

Fig. 10. Reconstructed images for S = 32 and ∆θ = 10◦ for Cartesian
parallel 1D encoding. Despite the dramatic damage to image structures, the
result of our motion corrected reconstruction is identical to the ground truth
(up to numerical precision).

impossible for large motion and number of shots. In Fig. 10

we include the resulting reconstructions without and with

motion correction for S = 32 and ∆θ = 10◦. Despite the

dramatic damage to image structures (Fig. 10a), the aligned

reconstruction has been able to fully resolve them (Fig. 10b).

Good performance of the method when applied to a large

number of shots implies that motion estimation would be

equally possible in accelerated acquisitions. A real application

domain where the data acquisition has been accelerated by

reduced phase-encode FOV and simultaneously decomposed

into a large number of shots is described in Section IV.

E. Comparison with the state of the art

As stated in Section I, partial solutions for combined motion

estimation and motion compensated reconstruction have been

previously proposed. In this Section we perform a comparison

of our results with one of such solutions [10]. This approach

has been selected for comparison because of the closeness of

its formulation to the one here proposed. Namely, [10] also

uses a forward model of the acquisition process in the presence

of motion as a way to obtain estimations of the rigid motion

throughout the acquisition. Despite the publicly available

implementation at http://mloss.org/software/view/430/ is just

implemented for the single coil case, the authors have kindly

provided us with their extension to the multicoil case, which is

used in the comparisons presented here. On the other hand, as

we want to compare the performance without assuming any

temporal model for the rigid motion, we have disabled the

term that accounts for the regularization of the trajectory of the

recovered motion parameters. Finally, although the extension

to other encoding scenarios would be conceptually simple,

their current implementation assumes that one motion state

has to be estimated per phase encode line. Thus, in order to

cover the full regime of performance of our method, from

convergence to the right solution to partial improvement, and

simultaneously being able to run the current implementation

of [10], we have assumed that motion occurs over the central

portion of the k-space, namely over the central S = 32 lines

of a parallel 1D encoding with one shot per line, so just

this information is used for motion estimation. Comparisons

are performed using the same motion distributions as in

Section III-D for ∆θ = {0◦, 5◦, 20◦}. In Fig. 11 we show the

error in the estimation of motion parameters for our method

and [10].

Results for ∆θ = 0◦, which simulates a motion-free

case, show that, whereas our method converges to the right

solution, [10] is limited in providing optimal reconstructions

for motion-free images. This is due to the fact that a different

formulation is used for motion estimation and reconstruction.

Thus, estimated motion parameters for motion-free images are

generally not null. Although this error might have a minor

effect in the quality of reconstructed images, it points to the

fact that our method might be better envisaged as a natural

extension of standard CG-SENSE reconstructions for motion-

free cases, as, ideally, the motion corrected reconstructions

would not introduce any side effect. Differences in perfor-

mance are better understood by looking at the results for

∆θ = 5◦. In this case, partial improvement is obtained

by using [10] as the estimated motion parameters error is

generally lower than without performing any estimation (as

given by the ground truth parameters, also depicted in Fig. 11

for reference). In contrast, exact estimation of motion pa-

rameters is obtained with our method, which, in combination

with the reconstruction based on the unitary representation

of rigid transforms, would provide fully rigidly corrected

reconstructions. Finally, results for ∆θ = 20◦ show that, for

relatively large motion, both methods provide partial correc-

tions. However, the errors of our method are generally lower.

In addition the error curves reveal another interesting feature.

Whereas non-structured error curves are obtained using [10],

structured errors are obtained in our case. We think that this

effect, which suggests that the local minima of our formulation

may contain part of the structure of the global minimum,

could be related with the usage of multicoil information. The

k-space convolution effect imposed by the sensitivity maps,

might be helping to obtain piecewise consistent representations

of the underlying motion. In addition, as discussed in [10],

the use of the empirical inverse —constructed by neglecting

the effect of the left hand side matrix in (6)— to estimate

motion, would limit the ability to recover from large motion,

where the empirical inverse approximation will no longer hold.

In our case, as we use the full inverse, complete recovery is

potentially possible.

In Fig. 12 we show a visual comparison of the appearance

of partially recovered images for 1D parallel encoding with

S = 128, ∆θ = 5◦, motion synthesized as described in

Section III-D, and 1000 iterations of both methods (in order

for their computation times to remain comparable). Quality of

motion-corrected reconstructions compares favourably against

non-corrected reconstructions for both methods. However,

residual blurring is visible for [10], which should correspond

to erroneous parameter estimation, whereas only minor arti-

facts (partly due to incomplete convergence) remain with our

approach.

IV. APPLICATION

In this Section we present the application of the proposed

method to the retrospective motion compensated reconstruc-

tion of a T1-weighted 3D neonatal brain imaging sequence. In
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Fig. 11. Graphs of error in motion estimation parameters plotted against shot number (s) —alternatively k-space line number (k2)— for the method in [10]
and ours. Our method provides correct estimations of motion parameters in the motion-free (left) and moderate motion (center) cases and more consistent
partial recovery for large motion (right).

(a) Uncorrected. (b) Corrected using [10]. (c) Corrected using our method. (d) Ground truth.

Fig. 12. Comparison of reconstructed images with different motion correction methods for S = 128 and ∆θ = 5◦.

Section IV-A we describe the details of the sequence and set

of cases the method has been applied to, later, in Section IV-B,

we describe certain implementation decisions adopted in this

real case scenario, and, finally, in Section IV-C we summarize

the obtained results.

A. Materials

Neonatal brains have been imaged in natural sleep using a

magnetization prepared rapid acquisition gradient echo (MP-

RAGE) sequence [18]. Even in these conditions, babies spo-

radically move, which damages the quality of reconstructed

images. 3D T1 images were acquired as part of a broader

examination aimed to study brain development in a large num-

ber of neonates within the Developing Human Connectome

Project (dHCP). Written informed consent was obtained for all

participants prior to scanning. Neonatal informed consent was

provided by someone with parental responsibility. All study

procedures were reviewed and approved by the Riverside Re-

search Ethics Committee (14/LO/1169). Multislice structural,

functional and diffusion weighted magnetic resonance scans

were also performed. Thereby, the acquisition time of the MP-

RAGE data was limited to 275 s where a 135×135×108mm3,

inferior-superior (IS) / anterior-posterior (AP) / left-right (LR)

FOV was acquired with 0.8mm3 resolution. The phase en-

coding dimensions —AP (faster encoding) and LR (slower

encoding)— are sampled using an elliptical k-space shutter

with S = 113 shots and E = 121 samples per shot for a total

of K2 = 181, K3 = 113 acquired samples and N2 = 181,

N3 = 135 reconstructed samples, where subindexes 2 and

3 refer respectively to the AP and LR dimensions3. Thus,

a SENSE factor of 1.19 is used in the LR dimension. A

combination of Cartesian sequential (LR) and pseudorandom

(AP) encoding strategies is applied. Acquisition parameters

are selected as TR = 11ms, TE = 4.6ms, inversion time

TI = 1.4 s, α = 9◦, and shot interval 2.075 s. The proposed

reconstruction procedure is applied to a dataset of 207 babies

with gestational ages ranging from 35 + 1 to 42 + 2 weeks,

scanned using a 3T PHILIPS ACHIEVA TX with a dedicated

C = 32-channel neonatal head coil (RAPID BIOMEDICAL) and

patient handling system [19]. As a preprocessing step of our

method, coil sensitivity maps are estimated from a separate

reference scan [16].

B. Implementation details

The main issue with the application of the proposed method-

ology to the dataset described in Section IV-A is the number

of shots, S = 113, into which the acquisition is split. Aside

from the inherent complexity of estimating the motion for

each shot, this number of shots and the 3D nature of the

problem introduce large computational requirements when

applying the matrices described in Section II-B. Thus, several

implementation arrangements have been introduced for the

problem to become solvable in practice; namely:

• Coil information has been compressed using [20] so that

just a 95% of the energy is preserved. This has reduced

the effective number of coils from C = 32 to around

3As we are in a Cartesian setting, a fully sampled readout is obtained for
each phase encode. This allows the readout dimension to be dropped from
the formulation.
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C = 8 (depending on the case) with minor impact in

SNR and ability to resolve motion, as confirmed in all

test cases in which full and compressed formulations were

compared.

• A multiresolution strategy has been adopted which pro-

gressively incorporates high spatial frequency compo-

nents into the formulation. Thus, at the grossest level the

proposed method is applied to a low resolution version

of the reconstruction problem (i.e., using only the low

spatial frequencies). Then, the motion parameters and

reconstructed image are propagated to the next level as

the initializers of the reconstruction corresponding to that

level. In our specific implementation, the structure of the

multiresolution decomposition is designed in such a way

that the grossest level of the pyramid preserves informa-

tion about every shot so that at least one sampled point of

every shot is included in the frequencies corresponding

to that resolution level. This way, for the phase encoding

described in Section IV-A, all frequencies have to be

preserved in the slower phase encode direction (LR) and

the pyramid is applied just on the first (IS) and second

(AP) directions. 3 resolution levels have been used with a

subsampling ratio of 2. The motion estimation step, which

takes longer than the reconstruction step, is not applied

at the finest scale to accelerate computations, as we have

observed that the refinement it provides has an almost

imperceptible impact on the obtained reconstructions

when assessed over exemplary datasets.

• Due to the large number of shots, the usage of prior

information about the image to be reconstructed seems

advisable. However, the design of adequate priors for

this reconstruction problem is out of the scope of our

work. Thus, we have resorted to a simple method to

slightly improve the ability to escape from local optima

of the joint formulation which, on the basis of a compact

support assumption, forces the reconstruction to be zero

outside a spatial mask obtained from the reference scan

used to compute the coil sensitivity maps. This mask is

fixed for the reconstruction step but it is iteratively refined

each time a new image is computed and applied to the

solution image used in the motion estimation step.

• The rigid motion assumption may be violated in regions

outside the brain such as the neck. Thus, the motion

estimation part of our method may benefit from restricting

the used information to a region containing only brain tis-

sues. However, for the phase encoding directions, motion

estimation is performed using k-space information, which

inherently includes contributions from the whole FOV.

Thereby, without departing from the basic formulation

proposed here, the region containing the brain can only

be extracted along the readout direction (IS), for which

the estimation of the motion state corresponding to a

given shot can be likewise performed using spatial or

spectral information. A simple criteria in which a slab

containing the upper half of the FOV is used for motion

estimation has proven beneficial in our particular setting.

This region of interest (ROI) extraction also helps in

performing accelerated reconstructions.

• GPU processing is very well suited to the matrix multi-

plications and DFT operations involved in our reconstruc-

tion problem. Thereby, a GPU version of the algorithm

has been used in practice.

With these arrangements, computation time using a GEFORCE

GTX TITAN X GPU ranges from approximately 15 minutes in

moderately degraded datasets to about 600 minutes in severely

degraded datasets.

C. Assessment

Two metrics have been used to quantitatively assess the

relative image quality of uncorrected and corrected reconstruc-

tions:

• One of them makes use of the recently introduced ideas

in [21], where the authors propose to promote the spar-

sity of the reconstructed image in a properly selected

domain as a criteria to compensate for motion. This

idea is grounded on the conjecture that motion-corruption

artifacts will degrade the compressibility of reconstructed

images, which was numerically checked for the ℓ1-

norms of uncorrupted and corrupted images under a Haar

wavelet decomposition. Here, we use the compressibility

to construct a metric for assessing the ability to correct for

motion in vivo. Namely, we compare ‖W3
Db-ax‖1, with

W
3
Db-a denoting the a-vanishing moments Daubechies

(Db) wavelet decomposition at level 3, in uncorrected

and corrected images.

• A more canonical metric, the gradient entropy (GE), has

been selected on the basis of the results in [22], where

this metric showed to have the strongest correlation with

observer quality scores.

We perform a paired right-tailed sign test against the null

hypothesis that the median of the difference of these metrics

with and without motion correction is lower than zero or

zero to assess whether the aligned reconstruction effectively

improves the sparsity of the wavelet coefficients and mini-

mizes the entropy of the reconstructed image gradient. The

corresponding box plots, significance levels, and improvement

ratio for each metric are included in Fig. 13.

Results are highly significant (p ≪ 0.05) for all metrics.

Namely, a 71.5% of cases for the GE metric and up to an

89.4% of cases for the wavelet metric are consistent with

equal or improved image quality after motion correction (when

assessing it by a decrease in the metric value). Therefore, per-

formed tests show the ability of the motion correction method

to effectively improve the compressibility and minimize the

entropy of the gradient of reconstructed images, which, we

interpret, is derived from its ability to reduce motion artifacts.

However, in some of these cases there were other artifacts,

such as unresolved SENSE folding, that also impacted image

quality.

The performance of the method is illustrated by the visual

results included in Fig. 14. First, in Fig. 14a we show the

uncorrected and corrected reconstructions for a case in which

no evident motion artifacts were present. In this motion-free

scenario, motion-corrected images look almost identical to

their motion-free counterparts, which provides evidence that
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Uncorrected Corrected

(a) No motion.

Uncorrected Corrected

(b) Substantial recovery.

Uncorrected Corrected

(c) Partial recovery.

Fig. 14. Visual results of aligned reconstruction of MP-RAGE sequences. Arrows point to areas with appreciable motion artifacts in the uncorrected images.
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Fig. 13. Box plots, p-values of a paired right-tailed sign test, and percentage
of cases r in which the metric decreased for the ℓ1 norm of Db wavelet
decompositions and for the GE in motion corrected versus uncorrected
reconstructions. Negative values in the paired box plots indicate a decrease in
the corresponding metrics when applying motion correction, which has been
documented as associated with an improvement in image quality [21], [22].

no artifacts are introduced when the acquired data is free of

motion. Second, in Fig. 14b we encounter a different case in

which the uncorrected reconstruction is affected by substantial

artifacts that hinder some of the actual structures in the image

whereas the aligned reconstruction has greatly diminished the

impact of these artifacts. The effects are noticeable in all

views. Finally, in Fig. 14c we show another example where

motion was degrading the image quality in the uncorrected

images. In this case, although the aligned reconstruction helps

to diminish data inconsistencies, residual damage is clearly

noticeable in the motion corrected reconstructions (see, for

instance, the region pointed by the arrow in the axial view).

V. DISCUSSION

The method here presented is based on incorporating the

estimation of the rigid motion states the imaged structure

traverses throughout the acquisition process on top of a

standard CG SENSE reconstruction. One important feature of

our formulation is the use of a common functional for both

rigid motion estimation and reconstruction, which provides

a simple interplay between both problems and allows its

general application for retrospective motion corrected recon-

structions in parallel MR. In Section III we described the

conditions for which motion can be retrieved in a controlled

environment where a motion free image was synthetically

corrupted. Namely we showed that, for parallel and random

encodings, we could recover from up to 10◦ rotations in 2-shot

acquisitions. We also showed that this result generalizes nicely

to a larger number of shots (up to 32 for 128 acquired phase-

encodes). Moreover, we characterized the great potential of

using prior information about the image to be reconstructed to

help motion estimation, as in this case we could estimate for up

to 150◦ rotations between the shots. Finally, we showed that

our method provides more consistent corrections than those

obtained by [10]. Additionally, experiments described in Sec-

tion IV, where a 3D neonatal brain imaging sequence acquired

in the presence of motion was retrospectively reconstructed

using our method, have provided both quantitative and visual

evidence of improvement even in this challenging application.

As suggested in the introduction, our framework seems

especially well-suited for coping with motion artifacts in ultra-
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high resolution structural brain MR, where small motion arti-

facts will usually degrade the quality and prescribed resolution

of the acquired images [3]. In this scenario, the application

of motion correction without sacrificing the reconstructed

resolution, as given by our rigid transformation formulation,

would help in extending the boundaries of the fine grained

brain structure that can be imaged. Also, the flexibility of

the proposed technique, that can be applied for virtually any

encoding strategy, allows its usage in new compressed sensing

paradigms for resolution enhancement [23].

Many proposals have focused on prospective rigid motion

correction methods. Particularly, impressive accuracy has been

reported for optical tracking procedures [24]. In this regard,

we should recall that our technique admits a straightforward

combination with these sort of approaches. Namely, if we

assume motion can be well approximated by using external

sensors, we would be in a more favorable regime to perform

further small-motion adjustments (for instance to mitigate

cross-calibration errors [25]). Also, provided motion can be

accurately estimated and k-space sampling can be assumed

homogeneous enough, our retrospective reconstruction would

have a negligible impact in the image quality, which would

reduce the need to perform real time modifications to the

acquisition sequence.

Extending the proposed methodology for treating both

within- and through-plane motion in multislice acquisitions

might be possible by modifying the sampling mask to also

encompass slice excitations. However, the fact that in this

case each sampled shot contains a combination of spatial

and spectral information may cause certain spatial locations

to be more densely sampled than others if through-plane

motion is present. We are currently investigating the use of

negative slice gaps and superresolution in order to cope with

this. Also, acquisition of multiple views could be used to

improve robustness against through-plane motion. Finally, the

spin-history effect would play a role in this scenario, so that

bias correction and outlier rejection techniques should also be

considered. We believe that comprehensive approaches that

have been presented for 3D motion-corrected reconstruction

of single shot multislice datasets [26], [27] could be combined

with the ideas presented here to effectively tackle the multishot

multislice motion-corrected reconstruction problem. Non-rigid

motion extension [12], [11] and application in multicontrast

imaging [28], under dynamic changes in contrast [29], [30]

or to accelerate dynamic acquisitions [30], [31], are also

directions that require further research.

When a large number of motion states have to be re-

solved such as in the application described in Section IV,

the introduction of prior information to guide the motion

estimation seems advisable. In this regard, and just as an

exemplary sketch of a potential procedure, the wavelet-based

ℓ1 metric used for assessment could be incorporated as a

prior in the first iterations of the alternating reconstruction

and motion estimation step in order to promote artifact-free

reconstructions that, in turn, could be used to escape local

optima of the joint functional. Later on, the use of prior

information could be disabled in order to correct for fine-

detail motion inconsistencies. Nevertheless, the inclusion of

prior information in the joint reconstruction scheme remains

outside the scope of this paper, so we have not performed any

further study in this direction.

We should also stress that motion estimation might be

compromised when large spectral undersampling is applied,

so that the localization capabilities of the coil array might

start to struggle in recovering from motion and foldings

simultaneously. Motion corrected reconstruction in this setting

may become particularly difficult when errors in the sensitivity

estimation (primarily in large motion scenarios where the

object might move outside the calibrated region) or additional

artifacts that break the model assumptions are present. In

this case, one may resort to the literature on SENSE recon-

struction with tolerance to coil inaccuracies to generalize our

proposal [32], [33], [34].

VI. CONCLUSION

We have introduced a flexible procedure to retrospectively

correct for rigid motion artifacts when reconstructing multishot

MR images which is grounded in the coil array sensitivity to

the spatial location of the object being scanned even when only

partial k-space information is available. The method uses a

common functional to estimate motion and reconstruct and, in

its basic formulation, it is parameter-free. Additionally, it does

not require a prior image or temporal modeling of rigid motion

nor the use of external sensors, although it may benefit from

their availability. Moreover, it can be applied to any encoding

scheme without introducing modifications in the acquisition

sequence. Finally, our formulation minimizes blurring and

regridding artifacts by using a unitary representation of rigid

transforms. In this paper we have carried out a comprehensive

validation of the performance of the method against different

levels of motion, encoding schemes, numbers of shots, intro-

duction of prior information, and alternative algorithms, using

synthetically corrupted images, thereby featuring the regime

on which fully rigidly corrected reconstructions are possible.

We have also quantitatively and visually demonstrated the

quality improvement obtained in brain neonatal MP-RAGE

studies when applying our proposed reconstruction scheme.

We are currently focused on the extension of the framework

to multislice acquisitions. Future plans include its extension to

elastic motion compensated reconstructions and to study the

inclusion of different image and motion priors.

APPENDIX A

NEWTON’S METHOD FOR ESTIMATING MOTION

The estimation of the imaged object motion state when a

given shot is acquired can be performed by solving (8), which,

dropping the shot index s from the notation, can be rewritten

as:

∂‖AFST̂(q,θ)x− y‖22
∂ql

= 0

∂‖AFST̂(q,θ)x− y‖22
∂θl

= 0.

(9)

Thus, if we write z = (z1, z2, z3, z4, z5, z6) =
(q1, q2, q3, θ1, θ2, θ3), the objective function of our motion
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estimation problem is

f(z) = ‖AFST(z)x− y‖22. (10)

Then, we have

∇f
l =

∂f(z)

∂zl
= 2ℜ(wHw(l)),

where







w = AFST(z)x− y

w(l) = AFS
∂T(z)

∂zl
x

(11)

and

Hf
lm =

∂2f(z)

∂zl∂zm
= 2ℜ(wH

(l)w(k) +wHw(lm)),

where w(lm) = AFS
∂2T(z)

∂zl∂zm
x.

(12)

If we make

Q(z1, z2, z3) = F
HU(z1, z2, z3)F

R1(z4) = F
H
2 Vtan

1 (z4)F2F
H
3 Vsin

1 (z4)F3F
H
2 Vtan

1 (z4)F2

R2(z5) = F
H
3 Vtan

2 (z5)F3F
H
1 Vsin

2 (z5)F1F
H
3 Vtan

2 (z5)F3

R3(z6) = F
H
1 Vtan

3 (z6)F1F
H
2 Vsin

3 (z6)F2F
H
1 Vtan

3 (z6)F1,
(13)

we can rewrite (3) as

T(z) = Q(z1, z2, z3)R1(z4)R2(z5)R3(z6). (14)

The partial derivatives of T are then:

∂T(z)

∂zl
=



















∂Q(z1, z2, z3)

∂zl
R1(z4)R2(z5)R3(z6), 1 ≤ l ≤ 3

Q(z1, z2, z3)R
′

1(z4)R2(z5)R3(z6), l = 4
Q(z1, z2, z3)R1(z4)R

′

2(z5)R3(z6), l = 5
Q(z1, z2, z3)R1(z4)R2(z5)R

′

3(z6), l = 6,

(15)

and

∂2T(z)

∂zl∂zm
=



























































































∂2Q(z1, z2, z3)

∂zl∂zm
R1(z4)R2(z5)R3(z6) if 1 ≤ l ≤ m ≤ 3

∂Q(z1, z2, z3)

∂zl
R′

1(z4)R2(z5)R3(z6), 1 ≤ l ≤ 3, m = 4

∂Q(z1, z2, z3)

∂zl
R1(z4)R

′

2(z5)R3(z6), 1 ≤ l ≤ 3, m = 5

∂Q(z1, z2, z3)

∂zl
R1(z4)R2(z5)R

′

3(z6), 1 ≤ l ≤ 3, m = 6

Q(z1, z2, z3)R
′′

1(z4)R2(z5)R3(z6), l = m = 4
Q(z1, z2, z3)R

′

1(z4)R
′

2(z5)R3(z6), l = 4, m = 5
Q(z1, z2, z3)R

′

1(z4)R2(z5)R
′

3(z6), l = 4, m = 6
Q(z1, z2, z3)R1(z4)R

′′

2(z5)R3(z6), l = m = 5
Q(z1, z2, z3)R1(z4)R

′

2(z5)R
′

3(z6), l = 5, m = 6
Q(z1, z2, z3)R1(z4)R2(z5)R

′′

3(z6), l = m = 6
(16)

where
∂Q(z1, z2, z3)

∂zl
= FH ∂U(q1, q2, q3)

∂ql
F , (17)

∂2Q(z1, z2, z3)

∂zl∂zm
= FH ∂2U(q1, q2, q3)

∂ql∂qm
F (18)

and, rewriting the rotation terms in (13) as

Rl(zl+3) = Rl(θl) =F
H
[l+1]3

Vtan
l (θl)F[l+1]3

FH
[l+2]3

Vsin
l (θl)F[l+2]3

FH
[l+1]3

Vtan
l (θl)F[l+1]3 ,

(19)

where [m]L = (m− 1) mod L+ 1, by making l+1 = [l+ 1]3
and l+2 = [l + 2]3,

R′

l(θl) =

FH
l+1

(V′ tan
l (θl)Fl+1

FH
l+2

Vsin
l (θl)Fl+2

FH
l+1

Vtan
l (θl)+

Vtan
l (θl)Fl+1

FH
l+2

V′ sin
l (θl)Fl+2

FH
l+1

Vtan
l (θl)+

Vtan
l (θl)Fl+1

FH
l+2

Vsin
l (θl)Fl+2

FH
l+1

V′ tan
l (θl))Fl+1

(20)

and

R′′

l (θl) =

FH
l+1

(V′′ tan
l (θl)Fl+1

FH
l+2

Vsin
l (θl)Fl+2

FH
l+1

Vtan
l (θl)+

Vtan
l (θl)Fl+1

FH
l+2

V′′ sin
l (θl)Fl+2

FH
l+1

Vtan
l (θl)+

Vtan
l (θl)Fl+1

FH
l+2

Vsin
l (θl)Fl+2

FH
l+1

V′′ tan
l (θl)+

2V′ tan
l (θl)Fl+1

FH
l+2

V′ sin
l (θl)Fl+2

FH
l+1

Vtan
l (θl)+

2Vtan
l (θl)Fl+1

FH
l+2

V′ sin
l (θl)Fl+2

FH
l+1

V′ tan
l (θl)+

2V′ tan
l (θl)Fl+1

FH
l+2

Vsin
l (θl)Fl+2

FH
l+1

V′ tan
l (θl))Fl+1

(21)

Finally, the derivatives of the diagonal elements of U and Vl

—see (4)— are:

∂u(q1, q2, q3)

∂ql
= −jkl ◦ u(q1, q2, q3), (22)

∂2u(q1, q2, q3)

∂ql∂qm
= −kl ◦ km ◦ u(q1, q2, q3), (23)

v′ tan
l (θl) =j

1 + tan2(θl/2)

2
kl+1

◦ rl+2
◦ vtan

l (θl)

v′ sin
l (θl) =− j cos(θl)kl+2

◦ rl+1
◦ vsin

l (θl)

(24)

and

v′′ tan
l (θl) =

(

tan(θl/2) + j
1 + tan2(θl/2)

2
kl+1

◦ rl+2

)

◦

v′ tan
l (θl)

v′′ sin
l (θl) =− (tan(θl) + j cos(θl)kl+2

◦ rl+1
) ◦ v′ sin

l (θl)
(25)

Then, using the Newton’s method, we make:

zi+1 = zi −

(

wiId+Hf

)

−1

∇
f , (26)

with i denoting the motion estimation iteration. wi has been

updated according to:

wi+1 =

{

2wi if f(zi+1) > f(zi)
wi/1.2 otherwise.

(27)
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Regarding the stopping criteria, considering that for any

transformation T0, Tx = TTH
0 T0x, we introduce a projec-

tion step after each motion estimation iteration on which we

update xi and Ti according to

xi ←−T
i
xi

Ti ←−TiT
iH

,
(28)

which does not alter the value of the objective function, and

where, following [35],

T
i
= Ti

(

1

S

S
∑

s=1

zis

)

, (29)

which avoids drifting instabilities in the joint optimization.

This way, the stopping condition of the method can be robustly

stated using an image-based criterion as

max
n
|xi+1

n − xi
n| < µ, (30)

where n indexes the image voxels and µ is tuned by con-

sidering the SNR of the particular application. In our im-

plementation, every joint iteration is in turn comprised of

3 CG iterations and 1 Newton’s iteration. However, more

sophisticated numerical coupling of motion estimation and

reconstruction will likely boost algorithmic performance.
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