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Sensitivity-enhanced microwave-photonic
optical fiber interferometry based on the Vernier
effect

CHEN ZHU1,2 AND JIE HUANG1,3

1Department of Electrical and Computer Engineering, Missouri University of Science and Technology,

Rolla, MO 65409, USA
2cznwq@mst.edu
3jieh@mst.edu

Abstract: This paper proposes optical carrier microwave interferometry (OCMI)-based optical

fiber interferometers for sensing applications with improved measurement sensitivity with the

assistance of the Vernier effect. Fabry-Perot interferometers (FPIs) are employed in the proof

of concept. A single-FPI-OCMI system is first demonstrated for measurements of variations

of temperatures by tracking the spectral shift of the interferogram in microwave domain. By

cascading two FPIs with slightly different optical lengths, the Vernier effect is generated in

the magnitude spectrum of the system with a typical amplitude-modulated signal. By tracking

the shift of the envelope signal, temperature measurements are experimentally demonstrated

with greatly enhanced sensitivity. The amplification factor for the measurement sensitivity can

be easily adjusted by varying the length ratio of the two cascaded FPIs. In addition to the

experimental demonstration, a complete mathematical model of the FPI-OCMI system and the

mechanism for the amplified sensitivity due to Vernier effect is presented. Numerical calculations

are also performed to verify the analytical derivations.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Microwave photonics has been extensively explored in the past three decades for various

applications such as photonic generation of high-quality microwave signals, high-speed processing

of microwave signals, optically controlled phase array antennas, and high-speed photonic analog-

to-digital conversion [1–3]. Intrigued by the research advancements in microwave photonics, an

interesting concept called optical carrier-based microwave interferometry (OCMI) was proposed

and experimentally demonstrated [4–6]. The essence of the OCMI concept is to interrogate optical

interferometers (e.g., optical fiber interferometers) in microwave domain. The OCMI technique

integrates the strengths from two disparate arenas, optics and microwaves, and has been employed

to address the well-known issues faced by traditional optical fiber interferometers (OFIs). Optical

fiber-based OCMI techniques were demonstrated to provide unique features that are particularly

advantageous when it comes to sensing applications [6–8]. These attractive features include

relieved requirements of accuracy during sensor fabrication, low dependence on multimode

interference, insensitivity to variations in polarization of the probing light, and high-quality

sensing signal (e.g., high signal-to-noise ratio and fringe visibility). Another prominent feature

of the OCMI technique is the capability for fully distributed sensing with a satisfactory spatial

resolution of a few centimeters [9,10]. This is because the phase of a microwave signal can be

easily and accurately measured with a vector network analyzer (VNA). The phase spectrum of an

OCMI system contains the spatial position information of external perturbations such as changes

in temperature or strain. Both the magnitude and spatial position of the external perturbation

can be determined from the complex reflection coefficient of the system. Thus, distributed and

quantitative sensing is made possible using the OCMI technique [9].
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Several mechanisms have been demonstrated as effective methods to enhance the measurement

sensitivity of OFIs such as phase-shifted amplification technique [11,12] and Vernier effect [13].

Among them, Vernier effect is one of the simplest and most efficient approaches. In general, two

cascaded OFIs with slightly different optical path differences (OPDs) are required to generate

Vernier effect. The superposition of the two spectra of the two cascaded OFIs generates an

amplitude-modulated (AM) spectrum as the output of the whole system. The free spectral range

(FSR) of the resultant AM envelope is significantly greater than that of the two single OFIs.

It is proven that the AM envelope is much more sensitive than the individual spectrum of the

two OFIs. In other words, due to Vernier effect, the shift of the AM envelope in the output

spectrum of two cascaded OFIs is more distinct compared to the spectral shift of a single OFI

when subjected to the same external perturbation. So far, Vernier effect has been implemented in

various types of OFIs such as Fabry-Perot interferometers (FPIs) [14,15], Sagnac interferometers

[16], micro-ring resonators [17,18], and Mach-Zehnder interferometers (MZIs) [19,20]. These

configurations were used for sensing different physical, chemical, and biological parameters with

substantially improved sensitivity.

Very recently, we demonstrated a phase-shift-amplified optical fiber interferometer based on

microwave photonics, where a destructive interference-based phase amplification technique was

implemented in an OCMI-MZI system [21]. The phase sensitivity of the system to variations of

OPD of the MZI was substantially improved due to the phase shift amplification technique. The

magnification factor for phase sensitivity can be finely tuned by adjusting the transmission ratio of

the two optical fiber arms of the MZI. In this paper, for the first time, we report the implementation

of Vernier effect in an OCMI system for sensing applications with significantly improved

measurement sensitivity. Optical fiber FPIs in an OCMI system are used for demonstration

because FPIs work in a convenient reflection mode. We present a complete mathematical model

for the sensitivity enhancement mechanism in the FPI-OCMI system due to Vernier effect. First,

the capability of a single-FPI-OCMI system for the measurement of temperature variations

is experimentally demonstrated. Enhancement of measurement sensitivity by cascading two

FPIs in the OCMI system, with the assistance of the Vernier effect is then demonstrated. The

amplification factor can also be tuned by simply adjusting the length ratio of two cascaded FPIs.

The results from the experimental investigations match well with the theoretical expectations.

2. Principle and numerical investigation

2.1. Single-FPI-OCMI system

Figure 1 shows the schematic of a single-FPI-OCMI system, where a single FPI is connected to

an OCMI system. A vector network analyzer (VNA, Agilent 8753ES) and a direct modulation

laser (HP 83402B, 1300 nm, 300 kHz-6 GHz) are employed as the microwave source and the

source of the optical carrier in the system, respectively. The output from Port 1 of the VNA is

first amplified using an RF amplifier before being injected into the RF input of the laser. The

intensity-modulated light output from the laser, where the optical signal is the carrier and the

microwave signal is the envelope, is launched into the optical fiber FPI via a fiber-optic circulator.

The reflected signal from the FPI sensor is redirected to a high-speed photodetector (HP 11982A).

After optoelectronic conversion, the RF output from the photodetector is sent to Port 2 of the

VNA. By sweeping the frequency of the microwave signal, the reflection spectrum (i.e., S21 from

the VNA, including phase and magnitude spectra) of the FPI sensor in the microwave domain is

obtained. Applying an inverse Fourier transform to the recorded S21, the time-domain signal of

the FPI-OCMI system is calculated, where the spatial positions and effective reflectivity of the

two reflectors of the FPI sensor can be unambiguously determined.

A mathematical model of the single-FPI-OCMI system is first developed. The intensity-

modulated probing light is injected into the FPI sensor and gets reflected. Neglecting the

transmission loss of the first reflector, the electric field Etotal of the reflected optical signal is
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Fig. 1. Schematic of a single-FPI-OCMI system; vector network analyzer (VNA), RF

amplifier (RF Amp), photodetector (PD). The FPI consists of two reflectors, where the first

reflector is fabricated by creating an air gap between the lead-in optical fiber and the lead-out

optical fiber supported in fiber ferrules. The lead-in fiber and lead-out fiber are aligned

face-to-face with an air gap, with the assistance of a ferrule mating sleeve. Note that the

effective reflection of the air-gap configuration can be adjusted by varying the gap distance

[22]. The second reflector is the cleaved end facet of the optical fiber.

given by

Etotal = E1 + E2 (1)

where E1 and E2 represent the electric field of the intensity-modulated optical signal reflected by

the two reflectors of the FPI sensor and are given by

Ei = mi(t)Eo,i =

√

1 +M cos

[

2πf (t +
W

c
+

2nzi

c
)
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·ΓiA exp
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, i = 1, 2 (2)

where M and f are the amplitude and frequency of the microwave modulation signal, respectively;

W represents the common electrical and optical length in the system; c is the speed of light in

vacuum; n represents the refractive index of the core of the optical fiber; zi denotes the spatial

location of the i-th reflector; t is the time term; A and ω are the amplitude and angular frequency

of the electric field of the probing light; Gi denotes reflection coefficient of the i-th reflector.

Assume that the spectral width of the laser source is ωmax-ωmin, the total power of the reflected

optical signal is thus given by
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(3)

Note that the cross-product components are neglected. This is because in a typical FPI-OCMI

system, the length of the FPI sensor (i.e., the distance between the two reflectors, z1-z2) is

sufficiently greater than the coherence length of the laser source, leading to the cross-product

components approaching zero. The total power of the optical signal includes a DC term and

the superposition of two microwave signals with a frequency of f. The OCMI system uses

synchronized detection to eliminate the DC term in Eq. (3), and the magnitude and phase of

the superimposed microwave signal at frequency f are recorded (i.e., S21). Thus, the signal S21
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measured by the VNA is given by

S = So cos(2πft + Φ) (4)

where So andΦ denote the magnitude and phase of the output microwave signal, respectively,

and can be expressed as

So = g
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(5)

where g represents the gain of the photodetector. The first term in Eq. (5) indicates that the

magnitude of the output microwave signal varies as a sinusoidal function of the microwave

frequency and the OPD of the FPI sensor (i.e., 2nz1−2nz2) in the OCMI system, which is the

same as a typical optical-domain FPI. By sweeping the frequency, the microwave interferogram

of the FPI-OCMI system can be obtained; by tracking the shift of the microwave interferogram,

the change in OPD of the FPI sensor can be determined. Therefore, the FPI-OCMI system can

be used as a sensing device for measuring parameters that can be correlated to the OPD of the

FPI, e.g., variations of temperature or strain. It should be noted that the phase term in Eq. (5) is

a function of the summation of the electric and optical lengths in the system. In other words,

the spatial locations of the two reflectors of the FPI can also be determined by applying the

inverse Fourier transform to Eq. (5). Thus, multiplexing a series of FPIs in the OCMI system for

distributed sensing is made possible [9].

2.2. Numerical investigation of a single FPI for temperature sensing

As mentioned above, the FPI-OCMI system can be used for sensing by tracking the shift of the

microwave interferogram. Let’s further examine the magnitude term in Eq. (5). For simplicity, we

assume that the reflectivities of the two reflectors in the FPI sensor are the same, i.e., Γ1 = Γ2 = Γ,

then the magnitude term can be simplified as

So = 2gΓ2A2M

�

�

�

�

cos(2πf
nL0

c
)

�

�

�

�

(6)

where L0 = z2 − z1, denoting the physical distance between the two reflectors of the FPI sensor,

i.e., the length of the FPI. According to the phase-matching condition, the resonance frequencies

fres and the FSR of the magnitude spectrum of the FPI-OCMI system is given by

fres =
2k+1

4
c

nL0

FSR = c
2nL0

(7)

According to Eq. (7), the temperature sensitivity of the single-FPI-OCMI system K0 can be

derived as

K0 =
∆fres

∆T
≈ −fres(ξ + α) (8)

where ∆fres and ∆T represent the change in resonance frequency and the change in temperature

of the FPI sensor, respectively; ξ and α denote thermo-optic coefficient and thermal expansion

coefficient of the optical fiber in the FPI. The temperature sensitivity is also a function of

the resonance frequency of the system, and the higher the resonance frequency, the larger the

sensitivity.

Figure 2 presents the numerical investigations of the single-FPI-OCMI system based on Eq. (6).

In the calculation, the length of the FPI was set to 0.5 m. Figure 2(a) shows the calculated
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magnitude spectrum in the frequency range of 0–2 GHz. Discrete resonance frequencies can

be observed, and the FSR was determined to be 204.3 MHz, which matched well with Eq. (7).

The shift in resonance frequencies as a function of variations of temperature is plotted in

Fig. 2(b). Three different resonance frequencies were monitored in the investigation; the higher

the resonance frequency, the larger the temperature sensitivity. The numerically calculated

sensitivity matched well with the analytical results (see Eq. (8)).

Fig. 2. Numerical investigations of the single-FPI-OCMI system. (a) Calculated magnitude

spectrum of the single-FPI-OCMI system. The length of the FPI was set to 0.5 m. (b)

Shift in resonance frequencies of the single-FPI-OCMI system as a function of variations of

temperature. Three different resonance frequencies were monitored. The parameters used

in the calculation were: G=0.1; A=1; M=0.8; g=0.5; ξ=8.3×10−6/°C; α=5.5×10−7/°C;

n=1.468; L0=0.5 m; W=0.2 m.

2.3. Numerical investigation of two cascaded FPIs for temperature sensing based on

the Vernier effect

Figure 3 shows a schematic diagram of two cascaded FPIs connected to an OCMI system,

which is constructed to demonstrate the Vernier effect-induced sensitivity enhancement. The

first interferometer, i.e., FPIref , is employed as a reference interferometer, while the second

interferometer, FPIsen, is used for sensing. To generate Vernier effect, the OPD of the two FPIs is

set to be slightly different.

Fig. 3. A schematic diagram of two cascaded FPIs connected to an OCMI system. The first

two reflectors are created by introducing an air gap between the lead-in fiber and lead-out

fiber. The third reflector is the cleaved facet of the optical fiber at the end. The reflectivities

of the three reflectors are G1, G2, and G3. The first FPI is used as a reference interferometer,

while the second FPI is used for sensing. n1 represents the refractive index of the core of the

lead-in optical fiber and the fiber in FPIref ; n2 denotes the refractive index of the core of the

optical fiber in FPIsen. L1 and L2 represent the length of FPIref and FPIsen, respectively.
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Derivation of the analytical model for the two-cascaded-FPIs-OCMI system follows the same

procedure shown in section 2.1. The magnitude spectrum of the system can be expressed as

So = g

√

√

√

√

√

Γ1
4A4M2

+ Γ2
4A4M2

+ Γ3
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+
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2
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2
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2
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(9)

where

φ12 = 2πf
2n1L1

c
, φ23 = 2πf

2n2L2

c
, φ13 = 2πf

2n1L1 + 2n2L2

c
(10)

Figure 4 shows the calculated magnitude spectra of the two individual FPIs (i.e., FPIref and

FPIsen) and the cascaded FPIs according to Eqs. (6), (9), and (10). Sinusoidal signals for both

the reference FPI and the sensing FPI were obtained, as expected. An amplitude-modulated

signal was obtained for the two cascaded FPIs due to the beating between the two individual

spectra. Two envelopes are indicated in the figure. The analytical expression for envelope 1 can

be derived from Eq. (9) as

S1 =

�

�

�

�

Aen1 cos(2πf
n2L2 − n1L1

c
)

�

�

�

�

+ D1 (11)

where Aen1 and D1 denote amplitude and offset of the signal; Similarly, the analytical expression

for envelope 2 can be expressed as

S2 = Aen2 cos(2πf
n2L2 − n1L1

c
) + D2 (12)

where Aen2 and D2 denote the amplitude and offset of envelope 2. By tracking the spectral shift

of the envelopes, both envelopes can be used for sensing applications with improved sensitivity.

Here, we focus on investigating envelope 2. According to the phase-matching condition, the dip

frequencies and the FSR of the envelope signal are given by

fdip =
2k+1

2

�

�

�

c
n1L1−n2L2

�

�

�

FSRen =
c

|n1L1−n2L2 |

(13)

Correlating the FSR of envelope 2 with the FSR of the two individual FPIs gives

FSRen = 2
FSRref FSRsen

|FSRref − FSRsen |
(14)

where FSRref and FSRsen are the FSR of the reference FPI and the sensing FPI, respectively.

Equation (14) matched well with the optical-domain cascaded FPIs [14].

According to Eq. (13), the shift of the dip frequency ∆f dip of the envelope signal due to a

temperature variation of ∆T in the sensing FPI can be expressed as

∆fdip =
2k + 1

2

{

c

|n1L1 − [n2L2 + n2L2(ξ∆T + α∆T)]|
−

c

|n1L1 − n2L2 |

}

(15)

Further deriving Eq. (15), the temperature sensitivity of the two-cascaded-FPIs-OCMI is

obtained as

K1 =
∆fdip

∆T
≈ fdip(ξ + α)

n2L2

n1L1 − n2L2

(16)

Comparing Eq. (8) and Eq. (16), the amplification factor V for temperature sensitivity due to

Vernier effect can be obtained

V =
K1

K0

=

n2L2

n2L2 − n1L1

(17)
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Fig. 4. Calculated magnitude spectra of the reference FPI (top), sensing FPI (middle), and

the two cascaded FPIs (bottom). The parameters used in the calculation were: G1=0.2;

G2=0.1; G3=0.1; A=1; M=0.8; g=0.5; n1=n2=1.468; W=0.2 m; L1=20 m; L2=20.5 m.

In the study herein, the two FPIs were constructed using the same single-mode fibers, i.e.,

n1=n2, and thereby Eq. (17) can be simplified as

V =
1

1 − L1/L2

(18)

Equation (18) indicates that a positive amplification factor is obtained as L2>L1; a negative

amplification factor is expected as L2<L1; and, as the length ratio of the two FPIs approaches

unity, the larger the amplification factor is.

Numerical calculations based on Eq. (9) were performed to verify the analytical model of the

sensitivity amplification mechanism in the two-cascaded-FPIs-OCMI system. Figure 5 presents

the results. Note that envelope 2 (see Fig. 4) of the calculated spectrum for the cascaded FPIs was

first obtained using a curve fit method. Measurements of temperature variations of the sensing

FPI were performed by tracking the shift of the envelope signal. Figure 5(a) shows the calculated

envelope signals of the two-cascaded-FPIs-OCMI system for different temperature settings of the

sensing FPI. In this case, L2=100.5 m and L1=100 m, i.e., L2>L1. As the temperature increased,

the envelope signal shifted to the lower frequency region. The shift in the dip frequencies of the

envelope signal as a function of temperature variations is plotted in Fig. 5(b). Three different

dip frequencies were monitored, and as shown in the figure, the higher the dip frequency, the

larger the sensitivity. Figure 5(c) shows the calculated envelope signals where L2=99.5 m, and

L1=100 m, i.e., L2<L1, for different temperature settings of the sensing FPI. The envelope signal

shifted to the higher frequency region as temperature increased. Figure 5(d) shows the shift

in dip frequencies as a function of temperature variations. Similarly, three dip frequencies

were monitored in the calculation, and the higher the dip frequency, the larger the sensitivity.

The obtained temperature sensitivities in Fig. 5(b) and (d) matched well with the analytical

results according to Eq. (16). For the first case where L2>L1, a positive amplification factor of

approximately 182 was obtained, which was close to the amplification factor 201 obtained from



Research Article Vol. 29, No. 11 / 24 May 2021 / Optics Express 16827

Eq. (18). For the second case where L2<L1, a negative amplification factor of approximately

−223 was obtained, approaching the amplification factor −199 from the analytical expression.

Fig. 5. Numerical investigations of the two-cascaded-FPIs-OCMI system for temperature

sensing. (a) The evolution of the envelope signal as temperature increased in steps of 10

°C when L2>L1. (b) Shift in dip frequencies as a function of variations of temperature.

In (a) and (b), L2=100.5 m and L1=100 m. (c) The evolution of the envelope signal as

temperature increased in steps of 10 °C when L2<L1. (d) Shift in dip frequencies as a

function of variations of temperature. In (c) and (d), L2=99.5 m and L1=100 m. Other

parameters used in the calculation were: G1=0.2; G2=0.1; G3=0.1; A=1; M=0.8; g=0.5;

n1=n2=1.468; W=0.2 m; ξ=8.3×10−6/°C; α=5.5×10−7/°C.

3. Experimental results and discussion

3.1. Demonstration of the single FPI-OCMI system for temperature sensing

A single-FPI-OCMI system was first constructed as schematically shown in Fig. 1. Figure 6 shows

the characterization results of the system. Note that the VNA used in the experiment has a built-in

Fourier transform function. Therefore, the time-domain signal of the OCMI system, obtained by

applying an inverse Fourier transform to the complex S21 signal, can be monitored in real-time.

The time-domain signal reveals the spatial locations of the reflectors in the FPI. Figure 6(a) shows

the time-domain signal of the single-FPI-OCMI system. Two peaks could be observed in the

signal, which correspond to the two reflectors of the FPI. The strength of the peak indicates the

effective reflectivity of the reflector. The time delay between the two reflectors, the round-trip

delay of the interferometer, was determined to be 74.383 ns. Thus, the physical distance between

the two reflectors was calculated to be 7.600 m given the refractive index of the fiber core to be

1.468. Figure 6(b) shows the measured magnitude spectrum, i.e., the interferogram in frequency

domain, over a frequency range of 1–1.2 GHz. Discrete resonance frequencies could be observed,

as expected. The FSR of the spectrum was found to be 13.444 MHz, which matched well with

Eq. (7) provided that the length of the FPI is 7.600 m.

The temperature response of the single-FPI-OCMI system was subsequently tested. A section

of the optical fiber with a length of approximately 4.52 m in the FPI was heated using a water
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Fig. 6. Characterization results of the constructed single-FPI-OCMI system. (a) Time-

domain signal of the single-FPI-OCMI system. (b) Measured microwave interferogram.

bath. Figure 7 presents the results of this test. Figure 7(a) shows the measured magnitude spectra

over a frequency range of 1–1.02 GHz for different settings of temperature. The spectrum shifted

to the lower frequency region as the applied temperature increased, as expected. The measured

resonance frequency shift at ∼1.002 GHz and ∼2.010 GHz as a function of temperature is plotted

in Fig. 7(b). Linear curve fits were applied to the data sets, with the slopes determined as −4.755

kHz/°C and −10.04 kHz/°C. A higher sensitivity was obtained for the larger resonance frequency

at 2.010 GHz, which was expected from Eq. (8). Given the length of the fiber that was heated in

the experiment to be ∼4.52 m, the theoretical temperature sensitivities could be determined to be

−5.274 kHz/°C and −10.58 kHz/°C. The measured sensitivities matched well with the theoretical

values.

Fig. 7. Temperature sensing using the single-FPI-OCMI system. (a) Measured magnitude

spectra of the system over a frequency range of 1–1.02 GHz for different settings of

temperature. (b) Measured resonance frequency shift at ∼1.002 GHz and ∼2.010 GHz as a

function of temperature, as depicted by black dots. Linear curve fits were applied to the

measured data sets, as depicted by red lines.

3.2. Demonstration of the two-cascaded-FPIs-OCMI system for temperature sensing

with enhanced sensitivity based on the Vernier effect

A two-cascaded-FPIs-OCMI system was constructed for demonstrating the sensitivity enhance-

ment for temperature sensing based on Vernier effect. Figure 8 presents the characterization

results of the system. Figure 8(a) shows the measured time-domain signal of the system. The three

peaks correspond to the three reflectors of the two cascaded FPIs, as schematically illustrated in

Fig. 3. The optical fiber section between reflector 1 and reflector 2 was employed as the reference
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FPI, and the optical fiber section between reflector 2 and reflector 3 was used as the sensing FPI.

The time delays between the two adjacent reflectors were found to be 74.063 ns and 83.726 ns.

Thus, the lengths of the reference FPI and the sensing FPI were determined to be 7.568 m and

8.555 m, respectively. Figure 8(b) shows the measured magnitude spectrum of the system in a

frequency range of 1–1.5 GHz. An amplitude-modulated signal was obtained, as expected. The

envelope is also indicated in the figure. The FSR of the envelope was found to be 207.105 MHz,

which matched well with the theoretical value of 207.051 MHz obtained from Eq. (13).

Fig. 8. Characterization result of the constructed two-cascaded-FPIs-OCMI system. (a)

Time-domain signal of the system. (b) Measured magnitude spectrum of the system. The

envelope is also indicated in the figure.

Temperature measurements were performed using the two-cascaded-FPIs-OCMI system. A

section of the optical fiber with a length of approximately 6.48 m in the sensing FPI (with a

total length of 8.555 m) was heated using a water bath, where the temperature was increased

from 20 °C to 80 °C in steps of 10 °C. The reference FPI was kept at room temperature in

the experiment. Figure 9 gives the measured responses of the system. Figure 9(a) shows the

measured envelope signals at ∼1.348 GHz (one of the dip frequencies, see Fig. 8(b)) for different

settings of temperature. Curve fits using a four-degree polynomial model were applied to the

measured datasets and the fitted models are plotted in the figure. The envelope shifted to the lower

frequency region as temperature increased, which matched well with Fig. 5(a). Differentiating

the curve-fitted models, the dip frequencies where the derivative reaches zero can be determined.

The obtained dip frequency as a function of temperature is plotted in Fig. 9(b). The slope

represents the temperature sensitivity and was determined to be −80.23 kHz/°C using a linear

curve fit. The corresponding temperature sensitivity of the single-FPI-OCMI system (i.e., without

sensitivity amplification) could be determined to be −9.036 kHz/°C according to Eq. (8). The

measured sensitivity of the two-cascaded-FPIs-OCMI system reveals an amplification factor of

8.9. According to Eq. (16), the theoretical sensitivity can be calculated to be −78.32 kHz/°C,

corresponding to an amplification factor of 8.7. The experiment demonstrates an improved

sensitivity for the two-cascaded-FPIs-OCMI system based on Vernier effect for temperature

measurements. The stability of the system after the sensitivity amplification needs to be further

investigated.

An additional experiment was performed to demonstrate that the amplification factor based

on Vernier effect could be tuned by adjusting the length ratio between the reference FPI and

the sensing FPI in the two-cascaded-FPIs-OCMI system. In the investigation, the length of

the sensing FPI was reduced to 7.854 m while the length of the reference FPI remained as

7.568 m. The same temperature experiment was performed, where a section of the optical fiber

with a length of approximately 6.48 m in the sensing FPI (with a total length of 7.854 m) was

heated using a water bath. Figure 10 presents the investigation results of the modified system.

Figure 10(a) shows the measured magnitude spectrum of the system. Similar to Fig. 8(b), an
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Fig. 9. Temperature sensing using the two-cascaded-FPIs-OCMI system. In the system,

the lengths of the reference and sensing FPIs were 7.568 m and 8.555 m, respectively. (a)

The envelope signals at ∼1.348 GHz for different settings of temperature of the sensing FPI.

The measured signals are depicted by discrete dots. Polynomial curve fits were applied to

the measured data sets; the fitted models are depicted by solid lines. (b) Shift of the dip

frequency at ∼1.348 GHz as a function of temperature. Linear curve fit was applied to the

measured data sets.

envelope emerged in the magnitude spectrum due to the cascaded configuration. The FSR of the

envelope was found to be approximately 714.500 MHz. Figure 10(b) presents the dip frequencies

of the envelope signals at ∼1.436 GHz (obtained using the curve fit approach mentioned above)

as a function of temperatures. A linear curve fit was applied to the measured discrete data sets,

and the slope of the fitted curve was determined to be −266.1 kHz/°C, corresponding to an

amplification factor of 25.4, which was close to the theoretical value (i.e., 27.5). The obtained

sensitivity, i.e., −266.1 kHz/°C at ∼1.436 GHz is approximately three times greater than the

sensitivity obtained in the previous experiment, −80.23 kHz/°C at 1.348 GHz. This is expected

because the length ratio of the reference FPI to the sensing FPI was increased from 0.8845

(7.568/8.555) to 0.9636 (7.568/7.854). The increase in the length ratio resulted in a substantial

increase in the amplification factor, as can be expected from Eq. (18). Therefore, this experiment

demonstrates that the amplification factor of the two-cascaded-FPIs-OCMI system can be flexibly

tuned by adjusting the length ratio between the reference FPI and the sensing FPI in the system.

Fig. 10. Characterization result of the constructed two-cascaded-FPIs-OCMI system for

temperature sensing where the lengths of the reference and sensing FPIs were 7.568 m and

7.854 m, respectively. (a) Measured magnitude spectrum of the system. The envelope is

also plotted in a dashed-red line. (b) Shift of the dip frequency at ∼1.436 GHz as a function

of temperature. The dip frequencies were obtained using the polynomial curve fit approach

as mentioned above. Linear curve fit was applied to the discrete data sets to determine the

measurement sensitivity, as depicted by the red line.
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It is worth mentioning that the fundamental limit of the amplification factor based on Vernier

effect is the bandwidth of the microwave modulation signals. Sensing applications of the

two-cascaded-FPIs-OCMI system are performed by tracking the shift of the envelope of the

magnitude spectrum. According to Eqs. (13) and (18), the closer the length ratio of the two FPIs

approaches unity, the larger the amplification factor and the larger the FSR of the envelope (i.e.,

the sensing signal). Given the limited frequency bandwidth of the microwave source (∆B), the

largest FSR that can be unambiguously and accurately determined from the magnitude spectrum

is restricted to ∼∆B. Therefore, the largest amplification factor is given by

Vmax ≈
nL2∆B

c
(19)

As can be seen, for a given frequency bandwidth, the larger the length of the sensing

interferometer, the larger the amplification factor that can be theoretically achieved. Compared to

the phase-shift-amplification-based system [21], the Vernier-effect-amplification-based system

requires the acquisition of the magnitude spectrum to calculate the measurands, which limits the

dynamic response of the sensor system. However, the Vernier-effect-based system is easier to

implement, and the amplification factor can be flexibly adjusted by simply tuning the length ratio

of the two cascaded FPIs. Compared to the fiber ring filter-based system [23], the FPI-based

system reported in this study works in a more convenient reflection mode and is more compact

since only one string of fiber is needed to generate Vernier effect for sensitivity amplification.

Also, a complete analytical analysis is for the first time developed to mathematically verify that

Vernier effect can be generated in cascaded microwave-photonic interferometers and can be

utilized to amplify the measurement sensitivity. More importantly, the cascaded FPIs-based

sensitivity amplification demonstrated here lays the groundwork for the development of a fully

distributed optical fiber sensor based on OCMI with significantly improved sensitivity enabled

by Vernier effect.

4. Conclusion

A method using Vernier effect for improving the sensitivity of optical fiber interferometers based

on OCMI was proposed and experimentally demonstrated. We first presented a mathematical

model for a single-FPI-OCMI system. By cascading two FPIs with slightly different optical

lengths, Vernier effect was generated in the magnitude spectrum of the OCMI system. A complete

mathematical model for the two-cascaded-FPIs-OCMI system and the mechanism of the Vernier

effect-induced sensitivity enhancement was discussed. Numerical calculations were subsequently

performed to verify the analytical derivations. Finally, temperature measurements were performed

using a single-FPI-OCMI system and a two-cascaded-FPIs-OCMI system. The results verified

substantially improved sensitivities due to Vernier effect in the two-cascaded-FPIs-OCMI system.

The amplification for sensitivity could also be tuned by varying the length ratio of the cascaded

FPIs, the closer the ratio approached unity, the larger the amplification factor. In addition to the

FPIs demonstrated in this paper, Vernier effect-amplified optical fiber interferometry can also

be implemented with other interferometers such as the Mach-Zehnder interferometer and the

Michelson interferometer for measuring other quantities, such as strain and lateral force.
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