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Abstract - this paper presents a wireless surface acoustic wave (SAW) pressure sensor on 41
o
YX 

LiNbO3 for tire pressure monitoring system (TPMS) application, in which a reflective delay line 

composed of an interdigital transducer (IDT) and several reflectors was used as the sensor element. 

Using the coupling of modes (COM), the SAW reflective delay line was simulated, and the optimal 

design parameters were determined. The fabricated 2.4GHz SAW sensor was wirelessly 

characterized by the network analyzer. Sharp reflection peaks, few spurious signals, and relatively 

high signal-to-noise (S/N) ratio were observed. High sensitivity of 2.9 deg/kPa and good linearity 

were observed. 

 

Index terms: coupling of modes, interdigital transducer, LiNbO3, piezoelectric substrate, reflective delay 

line, surface acoustic wave, wireless pressure sensor, temperature compensation 

 

I. INTRODUCTION 

Recently, surface acoustic wave (SAW) pressure sensors have gained an increasing amount of 

attention for wireless tire pressure monitoring systems (TPMSs), owing to their high 

sensitivity, small size, low cost, easy reproducibility, and good stability [1-2]. Typical SAW 

based pressure sensors are composed of two resonators. One is placed in the sensing area (in 

the center of the diaphragm) and the other is used as a reference sensor to compensate the 

temperature effect (depending on its location on the substrate). A differential frequency output 
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signal is used to evaluate the pressure information. Many research groups have successfully 

presented SAW pressure sensors with different designs and structures [1-2]. However, due to 

the high temperature sensitivity of the resonance frequency of the surface acoustic wave 

resonator (SAWR), the output signal of the sensor system is degraded by the influence of the 

resonant parts of the radio channel, antennas and matching networks. Moreover, even when 

differential structures such as dual SAWRs are used for the sensor system, the temperature 

effect cannot be effectively compensated, because the temperature is not measured at the same 

location as the pressure sensor [3].  

To overcome the disadvantages of the current SAW pressure sensor, a reflective delay line 

patterned with an interdigital transducer (IDT) and several reflectors on a piezoelectric 

substrate was presented as the pressure sensor element [4-6]. This device shows some unique 

advantages over other currently available devices: (1) it is small, light and has a simple 

measurement system, owing to its one-chip architecture; (2) it is possible to compensate 

temperature effect; and (3) during the sensitivity evaluation, phase shifts provide it with a 

much higher resolution. However, this type of device still has the following drawbacks: (i) no 

systematic theoretical simulation for the device performance improvement, (ii) high 

propagation loss, (iii) a high level of spurious signals, and (iv) a relatively low signal-to-noise 

(S/N) ratio. Therefore, in this paper, we describe an optimal design for a SAW pressure sensor 

which is accomplished by the coupling of modes (COM) and theoretical analysis of the sensor 

response mechanism, in order to determine the optimal design parameters.  

For TPMS applications, we fabricated 2.4GHz SAW-based wireless pressure sensors. A 41
o
 

YX LiNbO3 piezoelectric substrate was used, which provide a leaky shear horizontal (SH) 

SAW mode with high SAW propagation velocity (4792.2m/s) and large electromechanical 

coupling factor K
2
 (17.2%) [7]. Figure 1 shows a schematic diagram of the SAW pressure 

sensors. An RF pulse is transmitted from the network analyzer to a SAW transponder through 

the antennas. The interdigital transducer (IDT) converts the electromagnetic (EM) signals into 

mechanical acoustic waves. The SAW propagates on the piezoelectric substrate and is 

partially reflected by the reflectors. The reflected waves are reconverted into an EM wave by 

the IDT and are transmitted back to the network analyzer. A mechanical force induces the 

bending of the diaphragm. The bending changes the SAW propagation length and velocity, 
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resulting in the phase shifts of the reflected peaks depending on the applied pressure value. By 

evaluating the phase shifts, we can extract the external pressure values.  

To find the optimal design parameters, the coupling of modes (COM) modeling and finite 

element methods (FEMs) were performed. The device was fabricated according to the 

extracted design parameters and then wirelessly characterized using an RF network analyzer. 

In this paper, we describe the process used to create reliable SAW sensor structures, their 

electrical and mechanical performance, and a comparison between the simulated and 

measured results. 

Antenna
Applied pressure

(a)

(b)

IDT Reflector

 

Figure 1. Schematic diagram of the SAW pressure sensor system. (a) 3-dimensional view of 

the SAW pressure sensor and (b) flip-over view of the top diaphragm. 

 

II. THEORETICAL ANALYSIS OF SENSOR RESPONSE MECHANISM 

A mechanical analysis of SAW propagation on the pre-stressed piezoelectric diaphragm was 

studied using FEM stress analysis [8]. The basic structure of the pressure sensor and 

coordinate system are shown in Figure 2. The sensor is composed of a piezoelectric 

diaphragm (example of 41
o
 YX LiNbO3) and a sensor cover. The SAW propagates along the 

x1 axis on the x1-x2 plane at x3=0. For the analysis, all of the material parameters of the 

medium are transformed into this coordinate system. Using the wave motion equations and 

electrical boundary conditions at x3=0, a set of equations for the stress T and electric 

displacement D, the SAW displacement U and the electrical potential φ are given by Eq. (1). 
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where ρ is the density and Cijkl, eikl, εik (i,j,k,l = 1,2,3) are the stiffnesses, piezoelectric 

coefficients and components of permittivity of the LiNbO3, respectively. Einstein’s 

summation rule was used, and the indices can be varied from 1 to 3. 

Applied pressure

LiNbO3 diaphragm

x3 (U3)

x1 (U1)

x2 (U2)

Cover
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Figure 2. Basic structure of SAW pressure sensor and coordinate system for SAW propagation 

analysis. 

Considering a shear horizontal (SH) type leaky SAW propagating on a 41
o 

YX LiNbO3 

substrate (Euler angles: (0°, -49°, 0°)), U1 and U3 are 0 [7]. The displacement U2 and the 

potential φ decrease as x3 increases and vanish at infinity. Therefore, the solutions of Eq. (1) 

have the following forms: 

2 1 3 1

2 3
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U kx i t

kx i t ikx

β α ω

ϕ β α ω

= − × −

= − × −
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ikx

,       (2) 

where β1 and β2 are the normalized amplitudes, k = ω/v = 2π/λ is the wave number, α is a 

decay constant, and v is the phase velocity of the SAW. In order to ensure the decay of the 

displacement U2 and the potential φ along x3, generally the complex constant α must have a 

negative imaginary part. Substituting Eq. (2) into Eq. (1), a set of linear homogeneous 

equations for the normalized amplitudes β1 and β2 is obtained, 

2 2 2
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This set of equations has a nontrivial solution if the determinant of the coefficients is the 
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following,  
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Eq. (4) is an algebraic equation of the fourth order in α so that for a given value of the SAW 

velocity v we obtain two eigenvalues of α with a negative imaginary part. For both 

eigenvalues of α, the eigenvectors β1 and β2 of the normalized amplitudes of Eq. (1) vanish at 

infinity from Eq. (3).  Then U2 and φ are represented as 
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with An as the normalized amplitudes. 

For the full description of the SAW, the electric potential φ, the electric displacement along 

the x3 direction D3 and the stress T3i (i=1,2) must satisfy the boundary continuity conditions at 

x3=0.  The mechanical stress continuity conditions are described by Eq. (6). 

3

3
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|

|

x x

x y

T T

T T

=

=

=

=
,                            (6) 

where Tx and Ty are the applied stress components which are calculated by FEM analysis.  

The electric displacement continuity boundary conditions are described by Eq. (7). 

D3 = e3kl∂Uk/∂xl-εik∂φ/∂xk (for x3>0) 

    D30 = -ε0∂φ /∂x3 (for x3<0), φ  = φ|x3=0×exp(kx3)  (7) ׳ ׳

D3|x3=0= D30|x3=0

where ε0 is the vacuum dielectric constant. The substitution of the general solution, Eq. (5), 

into the boundary conditions leads to a second set of homogeneous linear equations forming 

the normalized amplitudes β1 and β2. A nontrivial solution again requires that the 

determination vanishes at an assumed velocity value, i.e., 
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Then, using the iterative method, for a given stress distribution along the diaphragm, the SAW 

velocity change Δv/v depending on the applied pressure can be calculated from the derivation 

using above equations. The relative phase change ΔΦ/Φ along the diaphragm can also be 

determined from the velocity change Δv/v and Δl/l which is the SAW propagation distance 

mentioned in Fig. 2 by Eq. (9) 

ΔΦ/Φ =Δl/l- Δv/v.                       (9) 

To determine the diaphragm bending and stress distribution along the diaphragm of the 

pressure sensor, the finite element method (FEM) was used. Figure 3 shows the calculated 

stress distribution on the diaphragm surface along the SAW propagation direction on the 41
o 

YX LiNbO3 substrates with sizes of 20mm×8mm×350μm and 20mm×8mm×500μm in the 

case of a pressure of 300kPa. The different stress distributions resulting from the various 

diaphragm thicknesses result in different relative phase changes along the diaphragm. Figure 

4 shows the calculated relative phase change along the LiNbO3 diaphragms with different 

thicknesses. Better sensitivity was observed from 350μm LiNbO3 than from 500μm Y-cut 

quartz [6]. The picture in Figure 3 shows that: (1) the proper thickness of the LiNbO3 

diaphragm makes it possible to obtain better sensitivity than quartz, (2) there is a sign change 

of the relative phase change over the diaphragm area. Using the method of difference (MOD) 

and proper positioning of the SAW reflectors (example of a reflective delay line with three 

reflectors), as shown in Figure 4, it is possible to compensate the temperature effect and 

obtain a higher absolute value for the sensor information according to the equation: 

ΔΦ=ΔΦ2-1-w×ΔΦ3-2=(Φ2-Φ1)-w×(Φ3-Φ2),     (10) 

where the weighting factor w=l1/l2, and l1 and l2 are the distances between the reflectors, 

which were determined by the FEM analysis [6]. Usually, the first and second reflectors are 

placed in the stretched and compressed areas, respectively; the latter one is placed at the end 

of the compressed section. The acoustic wave velocity is slower in the stretched section, 
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whereas it is faster in the compressed section. Φi (i=1,2,3) are the relative phase changes of 

the i
th

 reflector (R1, R2 and R3 in Figure 4).  

 

 

Figure 3. Calculated stress distribution on LiNbO3 diaphragm under 300kPa pressure in cases 

of (a) 350μm thick diaphragm and (b) 500μm thick diaphragm. 
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Figure 4. Relative phase changes along the SAW propagation path in case of Y cut quartz and 

41
o
 YX LiNbO3 under 300kPa pressure. 

 

Also, Figure 4 shows that varying the diaphragm thickness results in the variation of the 

diaphragm bending, strain/stress distribution, and corresponding velocity change. The effect 

of the piezoelectric diaphragm thickness on the sensitivity of the sensor (calculated from Eq. 

(10)) was evaluated and shown in Figure 5, in which the simulation parameters are as follows: 

41
o 
YX LiNbO3 substrate, operation frequency substrate of 2.4GHz and diaphragm area of 8 

mm×4 mm. The thickness was varied from 150μm to 400μm. Figure 5 shows the calculated 

phase shift of the sensor with respect to the diaphragm thickness under a pressure of 200kPa. 
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It shows that the sensitivity increases as the diaphragm thickness decreases, due to the marked 

bending under the applied pressure. However, a very thin thickness will decrease the 

endurance of the diaphragm, thus resulting in a small pressure sensing range. 
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Figure 5. Calculated phase shift as function of diaphragm thickness at pressure of 200kPa. 

 

III. COUPLING OF MODE (COM) MODELING OF SAW DEVICE 

COM modeling is a very efficient technique for the analysis of SAW devices [9]. We 

previously reported the simulation of SAW reflective delay lines with various IDT structures 

and reflector configurations using COM modeling [10]. The two and three dimensional mixed 

matrix (P-matrix) representations are used to present the solutions of the COM equations for 

the IDT and reflectors and referred to as PIDT and PRef, respectively. By solving the P-matrix 

elements, the two-dimensional admittance matrix, Y, can be expressed as  
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Using the admittance matrix solution, the reflection coefficient S11 can be deduced by 

11 22 12 21
11

11 22 12 21

( ) ( )

( ) ( )

G G

G G

Y y Y y y y
S

Y y Y y y y

− × + + ×
=

+ × + − ×
                  (12) 

where YG is the resource and load inductance. S11 in the frequency domain can be transformed 

into the time domain through the FFT program. 
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440MHz SAW reflective delay lines with three types of reflectors and different IDT structures 

(bidirectional IDTs and SPUDT structures) were simulated. The SH wave on a 41
o
 YX 

LiNbO3 piezoelectric substrate has a high SAW propagation velocity and large K
2
. A high 

SAW velocity provides easy device patterning in the fabrication process. A large value of K
2 

allows for high reflectivity from the reflectors and a low insertion loss. Figure 6 shows the 

simulated reflection coefficient S11 in the frequency and time domains in the case of 41
o
 

LiNbO3, an operation frequency of 2.4GHz, aluminum IDT with 10 finger pairs, 50λ aperture 

size, and three shorted grating reflectors. The other parameters used in the COM simulation 

were obtained from Ref. 9. From the simulated results, sharp reflection peaks, a high S/N, and 

low spurious noise between the reflection peaks were observed. Also, a SAW reflective delay 

line with a shorted grating reflector, smaller number of IDT finger pairs (10~20), and smaller 

acoustic aperture in the simulated results would be expected to show better performance. 
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Figure 6. Simulated S11 (a) in frequency domain and (b) in time domain 

 

IV. FABRICATION OF THE SAW SENSOR 

The primary goals of the SAW pressure sensors are sharp reflection peaks with a small 

attenuation, a long readout distance at 2.4GHz, and high pressure sensitivity. Relatively thin 

41
o
 YX LiNbO3 was used as the piezoelectric substrate, because it has a high SAW 

propagation velocity, large electromechanical coupling factor, and leaky SAW propagation 

mode. A high K
2
 enables greater reflection from the reflectors, in conjunction with a lower 
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insertion loss. Leaky-SAW devices are less sensitive to surface contamination and have a high 

RF power handling capability. A thin diaphragm thickness provides better sensitivity than a 

thicker one, so a 350μm LiNbO3 diaphragm was used. A uniform IDT structure was designed. 

The IDT width was ~0.45µm. The distance between the IDT and the first reflector was set to 

624µm to separate the reflected peaks from the initial environmental noise peaks.  

The fabrication procedure of the pressure sensor is shown in Figure 7. A 100nm thick 

aluminum layer was deposited on the 41
o
 YX LiNbO3 piezoelectric substrate (Figure 7(a)). 

MA-2403 electron beam resist was spin-coated and patterned by electron beam lithography 

(EBL) (Figure 7(b)). The exposed resist was developed and then reactive ion etching was 

used to etch the aluminum (Figure 7(c)). The resist was removed by acetone (Figure 7(d)). 

Next, a 250µm deep cavity on the heavily doped silicon substrate was made in TMAH 

solution (Figure 7(e-f)). The heavily doped silicon substrate provides low resistivity like a 

metal. Gold was deposited over the cavity using sputtering for ground shielding (Figure 7(g)). 

The LiNbO3 diaphragm was then attached to the silicon substrate with an epoxy (Figure 7(h)). 

A 2-dimensional planar antenna with a central frequency of 2.39GHz and bandwidth of 21 

MHz was fabricated using an 8 mil-thick RO4003 substrate (dielectric constant k: ~3.38) and 

then wire-soldered to complete the electrical connection.  

(f)

EB resist

41o YX LiNbO3

Epoxy

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Al Silicon SiO2

Au

 

Figure 7. The fabrication procedure: (a) Al deposition and spin coating of electron beam (EB) 

resist, (b) EB exposure, (c) IDT and reflectors patterns by reactive ion etch (RIE), (d) EB 

resist removal, (e) SiO2 growth, (f) SiO2 and Si wet-etching in TMAH, (g) SiO2 removal and 

ground shielding with gold, and (h) wafer bonding with epoxy. 
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V. RESULTS AND DISCUSSION 

a. Fabricated SAW devices 

The fabricated device was visualized by optical microscopy and scanning electron microscopy 

(SEM), as shown in Figures 8(a-b). There were 10 IDT finger pairs with a width of ~0.45µm 

and overlapping aperture of 91μm (50λ). Three bar-type reflectors were placed along the 

SAW propagation direction. The distance between the IDT and the first reflector was 624μm, 

and the ratio of the distance between the first and second reflectors to that between the second 

and third reflectors was 3. The piezoelectric substrate was attached to the bottom silicon 

substrate with a 250µm deep cavity using an epoxy adhesive, as shown in Figure 8(b). The 

sizes of the signal and ground pads on the device were well matched with the coaxial cable 

used for the RF measurement.  

Reflectors

0.45µm

IDT

0.45µm

 

(a) 

LiNbO3 diaphragm

Cavity

Si shielding
 

(b) 

Figure 8. (a) Optical view of top diaphragm and magnified IDT and reflectors. (b) 

Cross-sectional view of the completed device. 

 

b. Wireless electrical measurement  

The reflection coefficient S11 was measured wirelessly using HP 8510 network analyzer, as 

shown in Figure 9(a). The frequency was swept from 2.25GHz to 2.45GHz with an RF power 

of 10dBm. Three sharp peaks were observed from all three reflectors. The x-axis represents 
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the travel time of the impulse and the y-axis represents the averaged reflection over the 

frequency range. The first reflection occurred at 0.26μs, and the second and third ones at 

0.55μs and 0.65μs, respectively. All of the reflected peaks were well matched with the 

predicted values obtained from the simulation (Figure 9(b)). Based on these promising results, 

we concluded that (1) all of the device parameters had good impedance matching with the 

propagating SAW, due to very precise device patterning obtained using the EBL, (2) the 

newly employed ground shielding worked very well, which reduced the coupling loss of the 

propagating SAW energy to the surrounding atmosphere and protected the fabricated SAW 

device from random variations such as noise and other environment factors during network 

analyzer testing, and (3) the use of a high K
2
 substrate provided a large reflection from the 

reflectors and small insertion loss. 

Antenna

SAW sensor
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(b) 

Figure 9. (a) The wireless S11 measurement of the fabricated SAW device using HP network 

analyzer and (b) comparison between the measured S11 and simulated one 
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Figure 10. Sensitivity evaluation of the fabricated 2.4GHz SAW pressure sensor. (Inset: 

sensitivity comparison between 440MHz and 2.4GHz SAW pressure sensors) 

 

c. Sensitivity evaluation 

A mechanical compression force was applied to the diaphragm by placing an object at its 

center, and then the S11 parameter was measured by the Network analyzer, and the time 

deviation of the reflected peaks, Δτ, as function of the amount of applied mechanical force 

was extracted using a parabolic approximation [11]. The phase shifts of the reflected peaks Φi 

were obtained from the relation: Φi = 2πf×Δτ (i=1,2,3). Then, using Eq. 10, the pressure 

sensing information was determined. Figure 10 shows the measured phase shifts versus the 

applied mechanical pressure at testing temperatures of 20
o
C, 40

o
C and 60

o
C. High linearity 

was observed up to 500kPa. The nonlinearity was 2.5%FS. The pressure sensitivity was 

evaluated as 2.9 deg/kPa.  

A sensitivity comparison with the 440MHz SAW pressure sensor mentioned in Ref. [12] was 

performed, as shown in the inset of Figure 10. Similar pressure sensitivities were observed for 

the two sensors. In general, it is known that a higher frequency device has better sensitivity 

than a lower frequency one, but that the sensitivity also depends on the geometry of the 

device, such as its diaphragm size and thickness. The 440MHz pressure sensor has a large 

device size, whereas the 2.4GHz device has a very small diaphragm area. Another observation 

is that in the 2.4GHz device, a higher linearity range was obtained than in the 440MHz SAW 

sensor, because of the smaller size of the diaphragm. The temperature dependence effect of 

the fabricated sensor was tested on a hotplate. Temperature insensitivity was observed in the 
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temperature range from 20 to 60
o
C (Figure 10). No noticeable deviation of the phase shifts 

was observed, because the temperature effect was compensated by the DOM [6]. Based on 

these results, we suggest that this prototype SAW pressure sensor is very promising for 

achieving wirelessly requestable and batteryless TPMS applications. 

 

VI. CONCLUSION 

This paper presents a wireless SAW pressure sensor incorporating a 2.4GHz reflective delay 

line for TPMS applications. A theoretical modeling was performed to predict the SAW 

propagation behavior along the pre-stressed piezoelectric substrate. The effects of the 

diaphragm type and geometrical characteristics on the sensor performance were investigated. 

The fabricated 2.4GHz SAW device was wirelessly characterized by an HP network analyzer. 

Sharp reflection peaks, a high S/N ratio, low wave attenuation, and low spurious noise 

between the reflection peaks were observed. The measured S11 agrees well with the simulated 

result. The pressure sensing experiments showed satisfactory results such as a high sensitivity 

of 2.9 deg/kPa and good linearity up to 500 kPa. 
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