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ABSTRACT

This study investigates the sensitivity of daily rainfall rates in regional seasonal simulations over the contiguous

United States (CONUS) to different cumulus parameterization schemes. Daily rainfall fields were simulated at

24-km resolution using the NASA-Unified Weather Research and Forecasting (NU-WRF) Model for June–

August 2000. Four cumulus parameterization schemes and two options for shallow cumulus components in a

specific scheme were tested. The spread in the domain-mean rainfall rates across the parameterization schemes

was generally consistent between the entire CONUS and most subregions. The selection of the shallow cumulus

component in a specific scheme had more impact than that of the four cumulus parameterization schemes.

Regional variability in the performance of each schemewas assessed by calculating optimallyweighted ensembles

that minimize full root-mean-square errors against reference datasets. The spatial pattern of the seasonally av-

eraged rainfall was insensitive to the selection of cumulus parameterization overmountainous regions because of

the topographical pattern constraint, so that the simulation errors weremostly attributed to the overall bias there.

In contrast, the spatial patterns over the Great Plains regions as well as the temporal variation over most parts of

theCONUSwere relatively sensitive to cumulus parameterization selection.Overall, adopting a single simulation

result was preferable to generating a better ensemble for the seasonally averaged daily rainfall simulation, as long

as their overall biases had the same positive or negative sign.However, an ensemble ofmultiple simulation results

was more effective in reducing errors in the case of also considering temporal variation.

1. Introduction

Atmospheric convection associated with cloud gener-

ation plays an important role in the global energy balance,

hydrologic cycle, and ocean–land surface interactions

with the atmosphere (Arakawa 2004). Small-scale

convection with cumulus clouds yields large uncertainties

in atmospheric model simulations in terms of predicting

the magnitude and timing of the convection, because the

spatial scales of such convection are less than the grid

intervals used in most climate model configurations. The

influence of the subgrid convection is therefore parame-

terized in the calculation of gridpoint prognostic vari-

ables. The numerical representation of subgrid cumulus

convection is referred to as cumulus parameterization.

This type of parameterization is a mutual complement to

large-scale condensation or explicit cloudmicrophysics in

atmospheric modeling frameworks.
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To date, many cumulus parameterizations have been

designed and developed in the framework of global

climate models as well as limited-area models. These

parameterizations are characterized by different as-

sumptions in terms of, for example, supplementary

assumptions for the closure problem, the type of

equation describing advection, the parameterized ex-

change between clouds and environment, etc. These

parameterizations significantly influence the evolution

of various prognostic variables by modifying atmo-

spheric structure. Therefore, it is important to evaluate

the sensitivity of model simulations to the selection of

the parameterization through the comparison with

observed characteristics at various temporal and

spatial scales.

The discrepancy and spread exhibited across simula-

tions as a result of different cumulus parameterizations

are recognized as major factors contributing to un-

certainty in regional seasonal/climate simulations, along

with other physics parameterizations, for example, cloud

microphysics, planetary boundary layer, land surface, and

radiative transfer schemes (e.g., Liu et al. 2011). The un-

certainty due to cumulus parameterizations has been

demonstrated by previous studies and coordinated mod-

eling projects. For example, two types of cumulus pa-

rameterizations were tested within the framework of the

North American Regional Climate Change Assessment

Program (NARCCAP; Mearns et al. 2009). Multiple cu-

mulus parameterization schemes were compared to

evaluate their ability to simulate the evolution of the

NorthAmericanmonsoon system (Gochis et al. 2002).An

optimal ensemble approach to incorporate the benefits of

multiple simulations with different parameterizations was

suggested to improve the skill of precipitation simulation

(Liang et al. 2007). Twelve cumulus parameterization

schemes were evaluated to explore their skill in predicting

the distribution of seasonally averaged rainfall, the fre-

quency of daily rainfall intensity, and the precipitation

diurnal variation for a couple of flooding periods over the

central United States (Qiao and Liang 2015).

The present study investigates the sensitivity of

simulated summer rainfall over the contiguous United

States (CONUS) to the choice of cumulus parameter-

ization scheme. The simulations were conducted using

the NASA-Unified Weather Research and Forecasting

(NU-WRF) Model (Peters-Lidard et al. 2015). The

simulation members were prepared by selecting dif-

ferent deep and shallow cumulus parameterization

schemes while holding all other model configuration

components constant.

This paper is organized as follows. The model con-

figurations and the setup of the numerical experiments

are described in section 2. The simulation results are

analyzed and discussed in section 3. The summary and

conclusions are presented in section 4.

2. Description of the NU-WRF CONUS seasonal

simulations

NU-WRF is amodeling system integrating theNational

Center for Atmospheric Research (NCAR) Advanced

Research version of Weather Research and Forecasting

(WRF) Model (WRF-ARW) (Skamarock et al. 2008)

with multiple modeling components developed by the

NASA Goddard Space Flight Center (GSFC). The pres-

ent study employed a special version of NU-WRF, which

was based on WRF-ARW, version 3.5.1, and included a

bug fix that removed the accumulation of round-off errors

in lateral boundary conditions for better long-term simu-

lations (Dudhia 2015). This version of NU-WRFwas then

used in NASA’s downscaling simulation project (Ferraro

et al. 2017), which consisted of regional simulations over

CONUS with horizontal grid spacing of 24, 12, and 4km.

The cumulus scheme selection was varied for the 24-km

suite of simulations, which was the sole resolution exam-

ined in the present study. The simulations extended from

1 November 1999 through 1 September 2000.

The initial and lateral boundary conditions were cal-

culated in 6-hourly input intervals using theModern-Era

Retrospective Analysis for Research and Applications,

version 2 (MERRA2; Bosilovich et al. 2015), with a

horizontal resolution of 0.58 for latitude and 0.6258 for

longitude. Spectral nudging (Miguez-Macho et al. 2004)

constrained byMERRA2 was applied to the calculation

of the horizontal wind velocities, temperature, and geo-

potential heights. The nudging featured a relaxation

time of 10 000 s and wavelengths of approximately

600 km for both east–west and north–south directions

for the components above the boundary layer. NASA’s

downscaling simulation project (Ferraro et al. 2017) was

aimed at decadal simulations with fine horizontal reso-

lution, so that the strong spectral nudging was config-

ured in the control runs to improve the reproducibility of

climatic phenomena as a counterpart of simulations

without nudging. Note that the strong nudging possibly

obscures the original strength of the sensitivity to the

choice of cumulus parameterization scheme by inhibit-

ing feedback effects from the physical process to the

model dynamics. In turn, this study avoids direct com-

parison of nudged and nonnudged simulations, the latter

of which can include the thermodynamics feedback with

its intrinsic (modeled) strength.

The following configurations for model physics pa-

rameterizations were employed in theNU-WRFCONUS

simulations. The Goddard cumulus ensemble (GCE)

single-moment, 3-ice bulk microphysical scheme
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(e.g., Tao et al. 2003; Lang et al. 2007) was used as the

grid-scale cloud microphysics scheme. Goddard short-

wave and longwave radiation schemes (Chou and Suarez

1999; Chou et al. 2001) calculated the atmospheric radi-

ation processes. For the planetary boundary layer and

subgrid-scale turbulence, the level 2.5 Mellor–Yamada–

Janjić turbulence scheme (MYJ; Janjić 1990, 1996, 2002)

was chosen, as this scheme had a long reliable history in

the National Weather Service operational models (e.g.,

Eta and North American Mesoscale Forecast System

models). The corresponding Monin–Obukhov–Janjić Eta

surface scheme (Janjić 1996, 2002) was required when

running the MYJ turbulence scheme. The Noah land

surface model (Chen and Dudhia 2001; Ek et al. 2003)

within the NASA Land Information System (LIS) model

(e.g., Kumar et al. 2006) was used to run multiyear offline

spinups of the land surface model prior to coupled NU-

WRF initialization to improve coarsely resolved initial soil

conditions obtained from reanalysis data alone. The Noah

land surface model was also employed to calculate the

land surface states withinNU-WRFafter the initialization.

The simulation domain was discretized by horizontal

grid points of 3323 157 with grid intervals of 24 km. The

atmosphere extended to a top pressure of 10 hPa and

was divided into 41 vertical layers. Time step intervals of

72 s were employed for the integration of processes ex-

cept for radiation, which was calculated at 24-min

intervals.

Table 1 lists the members of the regional seasonal

simulations characterized by different cumulus param-

eterization schemes. Four deep cumulus parameteriza-

tions were employed: the Grell 3D ensemble scheme

(G3D; Grell and Dévényi 2002; Grell and Freitas 2014),

the Betts–Miller–Janjić scheme (BMJ; Janjić 1994,

2000), the new Kain–Fritsch scheme (NKF; Kain 2004),

and the new simplified Arakawa–Schubert scheme

(NSAS; Han and Pan 2011). Each deep cumulus scheme

includes a companion parameterization for shallow

cumulus convection, and only G3D has the option of

disabling its native shallow convection component.

Among the three members using G3D in Table 1, GO

usedG3D’s native shallow convection component, GW

included the University of Washington shallow cumu-

lus parameterization scheme (UWSC; Bretherton et al.

2004; Bretherton and Park 2009) in place of its native

component for shallow convection, and G did not em-

ploy any shallow convection component. The uses of

the native shallow convection schemes and the UWSC

are indicated by the capital letters O and W, re-

spectively, in Table 1.

3. Results

a. Spatial and frequency distributions of rainfall

Figure 1a illustrates the horizontal distribution of the

daily surface rainfall averaged for June–August 2000

(JJA2000) in the Parameter-Elevation Regressions on

Independent Slopes Model (PRISM) high-resolution

spatial climate data (Daly et al. 2008). The original

PRISM daily rainfall data gridded at resolution of 2.5

arc min (approximately 0.048) were upscaled for hori-

zontal grids of 0.258 (approximately 24 km) using bi-

linear interpolation for comparison to the NU-WRF

simulations. The PRISM data in Fig. 1a show that

JJA2000-average rainfall rates higher than 1mmday21

are observed mostly over the eastern half of CONUS.

Rainfall rates exceeding 5mmday21 are observed over

parts of the Appalachian Mountains and around In-

diana, Illinois, Wisconsin, Iowa, and Minnesota. The

PRISM rainfall distribution averaged for JJA2000 in

Fig. 1a is similar to the climatology for JJA derived from

the 30-yr (1981–2010) PRISM data (NCAR 2015), ex-

cept for the higher rainfall rates over Florida and the

southeastern coast in the 30-yr climatology.

Figures 1b and 1c illustrate the daily rainfall field of

MERRA2 averaged for JJA2000 and its difference from

PRISM (Fig. 1a), respectively. MERRA2 overestimates

the PRISM rainfall over the Atlantic and Gulf Coast,

TABLE 1. Members of regional seasonal simulation with different cumulus parameterization and reference datasets. The letters O and

W in the abbreviations denote the uses of the native shallow convection schemes and the UWSC, respectively. Average rainfall rates are

JJA2000-average daily rainfall rates averaged over the entire CONUS.

Abbreviations Deep cumulus parameterization Native shallow convection

Additional shallow

convection scheme Avg rainfall rates (mmday21)

GO G3D Yes No 3.73

G G3D No No 2.12

GW G3D No UWSC 1.35

BO BMJ Yes No 1.86

KO NKF Yes No 2.32

SO NSAS Yes No 1.87

PRISM 1.64

MERRA2 1.85
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Great Lakes regions, and around the southern edge of the

RockyMountains. In contrast, it exhibits underestimation

around Iowa and Missouri and parts of the Appalachian

Mountains. The MERRA2 precipitation data over

CONUS are derived originally from the background

estimates of the Goddard Earth Observing System,

version 5 (GEOS-5; Molod et al. 2012), and corrected

using the data of National Oceanic and Atmospheric

Administration (NOAA) Climate Prediction Center

(CPC) Unified Gauge-Based Analysis of Global Daily

Precipitation (CPCU; Xie et al. 2007). The details of

the correction algorithm can be found in Reichle and

Liu (2014).

Figure 2 shows corresponding daily rainfall averaged

for JJA2000 in NU-WRF simulations using the different

cumulus parameterization options listed in Table 1.

Figure S1 in the supplemental material illustrates their

differences from that in PRISM (Fig. 1a). The simula-

tions over- or underestimate the rainfall derived from

PRISM according to the cumulus parameterization

schemes selected. The JJA2000-mean daily rainfall av-

eraged over the entire CONUS is listed in Table 1. The

relative magnitudes are GO.KO.G.MERRA2.

SO . BO . PRISM . GW (the definitions of the ab-

breviations are shown in Table 1). Schemes G, BO, KO,

and SO exhibit relatively similar horizontal distributions

in Fig. 2, in contrast to the distributions in GO and GW.

These four simulations are relatively reasonable at re-

producing the PRISM rainfall field overwesternCONUS.

However, they commonly overestimated rainfall com-

pared to the PRISM rainfall over Florida, the Appala-

chianMountains and their eastern side, the southern parts

of the Rocky Mountains, and the northern parts of the

Great Plains around the 1058W meridian. They all un-

derestimated over a central region of CONUS, which was

located in the middle of both regions exhibiting an over-

estimation. The simulation biases in Fig. S1 are coincident

with those of the MERRA2 rainfall against the PRISM

data in Fig. 1c. This result demonstrates that common

biases in the NU-WRF simulations partially originated

from those inherent in MERRA2 through the lateral

boundary conditions and the strong spectral nudging.

The use of the UWSC scheme in GW uniformly re-

duced the simulated rainfall, as compared to the result of

G. As a result, it alleviated the positive biases over the

east Atlantic regions in Fig. S1c. However, it simulta-

neously caused negative biases over the central

CONUS, as compared with the plots of GO and G. This

effect of the UWSC scheme on simulating rainfall is

larger than those due to the selection of the deep cu-

mulus parameterizations, that is, among BO, KO, and

SO as well as G. In contrast, applying the native shallow

convection component of G3D in GO increased the

simulated rainfall. The GO figures (Fig. 2a and

Fig. S1a) exhibit the greatest overestimation among

the simulations throughout CONUS except for the

Pacific coast and limited areas of the northern Rocky

Mountains.

The regional variability of the daily rainfall averaged

for JJA2000 is further discussed on the basis of the re-

gionalization suggested by Bukovsky (2011). The

FIG. 1. Horizontal distribution of daily rainfall rates (mmday21)

averaged for JJA2000: (a) PRISM data, (b) MERRA2 data, and

(c) difference between PRISM and MERRA2.
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Bukovsky regionalization divides the CONUS domain

into 17 subregions. Figure 3 illustrates JJA2000-average

daily rainfall rates of PRISM,MERRA2, and NU-WRF

simulations and their overall biases averaged for

each Bukovsky subregion over CONUS. PacificNW,

PacificSW, and GreatBasin subregions (these notations

follow the Bukovsky regionalization) are characterized

by a dry summer, and all simulations exhibit very similar

rainfall rates. In contrast, the simulated rainfall rates are

much more sensitive to the cumulus parameterization

outside of these three subregions. The relative magni-

tudes of the simulated rainfalls follow roughly those

averaged throughout CONUS, that is, GO.KO.G.

SO . BO . GW in Table 1. The overall biases com-

pared to PRISM and MERRA2 in Figs. 3b and 3c differ

widely according to the subregions. GO exhibits the

largest rainfall rates among the simulations in Fig. 3, and

its values are substantially larger than those of the other

simulations and reference datasets (except as previously

noted for PacificNW, PacificSW, and GreatBasin). KO

yields generally larger rainfall rates than other simula-

tions, except over some western subregions, that is,

GreatBasin, Southwest, SRockies, and Mezquital. It

generally overestimates the PRISM rainfall rates over

most of the subregions, whereas it is in good agreement

with PRISM over SPlains, Prairie, and DeepSouth. The

results of G are similar to those of KO, especially for

most of the central subregions. BO and SO provide

higher rainfall rates than PRISM on the western side

from SPlains; lower rates over SPlains, Prairie, and

FIG. 2. Horizontal distribution of daily rainfall rates (mmday21) averaged for JJA2000 in the NU-WRF simu-

lations with different cumulus parameterization schemes: (a) G3Dwith native shallow cumulus components (GO),

(b) G3Dwithout native shallow cumulus components (G), (c) G3Dwith the UWSC (GW), (d) BMJ scheme (BO),

(e) the NKF scheme (KO), and (f) the NSAS scheme (SO).
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DeepSouth; and higher rates over MidAtlantic and

NorthAtlantic.

Figure 4 shows the frequency distribution (divided by

the total number of samples) of all pointwise rainfall rates

in the 92 days of JJA2000 on the upscaled PRISM grid

points at horizontal intervals of 0.258 over the entire

CONUS. The NU-WRF simulation and MERRA2

rainfall fields have been regridded to the upscaled

PRISM grid points using bilinear interpolation. The NU-

WRF simulations and MERRA2 overestimate the fre-

quency of rainfall less than 2mmday21, compared to

PRISM. The probable reason is that rainfall simulated

with relatively coarse resolution tends to be smoothed out

and too widespread. The use of bilinear interpolation

possibly enhances the increase in the frequency of the

light rainfall. The MERRA2 frequency spectrum is in

better agreement with that of PRISM than those of most

NU-WRF simulations, at most rainfall ranges except for

those less than 5mmday21. NU-WRF simulation spectra

show different rainfall ranges where simulated frequency

agrees well with that of PRISM: G simulates the fre-

quency of the PRISM rainfall intensity reasonably at

25–50mmday21, while the rainfall range of KO

matching PRISM is limited to 35–50mmday21. GW’s

spectral frequency is the most similar to that of PRISM

at a range less than 10mmday21. The spectrums of BO

and SO intersect the PRISM spectrum around

20mmday21. In general, rainfall rates where the NU-

WRF-simulated frequency agrees with that of PRISM

are in proportion to the overall biases of the simula-

tions compared to PRISM (Table 1).

The simulated rainfall rate is the total derived from

the cloud microphysics scheme and from the cumulus

parameterization scheme. The horizontal fields of

JJA2000-average daily rainfall of the two components

are shown in Figs. 5 and 6; Fig. 7 also illustrates the

fraction of cumulus parameterization contribution to

the total rainfall rates. Higher microphysics-based

rainfall is simulated over some of the Northeast

and a limited area of the Northwest coast, whereas the

rainfall from cumulus parameterization schemes

dominates over most of the central and southeastern

parts of CONUS. The rainfall rate from the cloud

microphysics scheme is also sensitive to the cumulus

parameterization scheme. For example, a consider-

ably wide distribution of the rainfall is simulated in

GO only in Fig. 6a. The rainfall rate produced by

UWSC in GW is exceedingly small (not shown) com-

pared to those from the cloud microphysics and main

cumulus parameterization schemes. The use of UWSC

strongly suppresses rainfall from the main cumulus

parameterization scheme by interfering with its con-

vection trigger through stabilization, but has little in-

fluence on rainfall from the cloud microphysics. The

contribution of cumulus parameterization to the total

rainfall rate in Fig. 7 is dependent on the geographical

location, type of parameterization scheme, and use of

UWSC. For example, high fractions close to 1.0 are

simulated in southern regions of CONUS commonly in

all simulations. In contrast, the northern regions ex-

hibit relatively strong dependency on cumulus

FIG. 3. Domain-mean JJA2000-average daily rainfall rates

(mmday21) of PRISM, MERRA2, and NU-WRF simulations and

overall bias (mmday21) from PRISM and MERRA2, partitioned

by Bukovsky subregions over CONUS.
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parameterizations. KO and SO show larger fractions

close to 1.0, whereas G and BO exhibit smaller fractions.

b. Correlation and RMSE analysis

Figure 8 contains Taylor diagrams (Taylor 2001)

summarizing the correlation coefficients, standard de-

viations, and centered root-mean-square error (RMSE)

of daily rainfall rates over CONUS against PRISM,

MERRA2, andNU-WRF simulationGas the references.

SimulationGwas selected as a reference for the diagrams

to show how statistics change due to different shallow

convection components as well as different deep cumulus

parameterizations. To calculate the statistics, the NU-

WRF simulation and MERRA2 rainfall fields were re-

gridded to the upscaled PRISM grid points at horizontal

intervals of 0.258 using bilinear interpolation. The statis-

tics in Figs. 8a–c were calculated from the JJA2000-

average daily rainfall rates, which were shown in Figs. 1

and 2. Thus, Figs. 8a–c exhibit spatial pattern statistics of

the seasonally averaged daily rainfall. In contrast, the

statistics in Figs. 8d–f were calculated from nonaveraged

pointwise rainfall rates in the 92 days of JJA2000. Thus,

Figs. 8d–f show statistics containing both spatial and

temporal (daily) variation. Here, the two types of corre-

lation coefficients for the spatial variation in the seasonally

averaged daily rainfall fields and for the spatial–temporal

variation of rainfall fields in all days of JJA2000 are

referred to as CORS and CORST, respectively.

The comparison of Figs. 8a–c shows that the spatial

patterns of the seasonally averaged rainfall in the sim-

ulations are more correlated with that of the simulation

G than that of PRISM. The values of correlation co-

efficients (CORS) against MERRA2 are between those

of the simulation G and PRISM, except for the case of

GO. The higher CORS against MERRA2 than against

PRISM indicate that the rainfall spatial patterns of the

simulations are constrained by the atmospheric fields of

MERRA2 through the influence of lateral boundary

conditions and strong spectral nudging. In these three

diagrams, GO is commonly displaced from the group of

the other members because of rainfall significantly in-

creased by the native shallow cumulus components in

G3D. The use of UWSC in GW decreases the standard

deviation and centered RMSE of the simulated rainfall

by suppressing rainfall. GO and GW are not consider-

ably more correlated with G than BO, KO, and SO in

Fig. 8c. The shallow cumulus components in GO and

GW thus have some influence on changing not only the

magnitude of rainfall but also its spatial pattern, similar

to the choice of deep cumulus parameterizations.

From Figs. 8a–c to corresponding Figs. 8d–f, the cor-

relations have been similarly degraded, even from

Figs. 8c to 8f. This result suggests that the timing of

rainfall, even for the same location, is sensitive to the

selection of deep and/or shallow cumulus parameteriza-

tions, as reported by previous studies. The diurnal vari-

ation of simulated rainfall over CONUS is significantly

dependent on cumulus parameterization employed (e.g.,

Liang et al. 2004; Qiao and Liang 2015). Furthermore,

some parts of CONUS show diurnal rainfall peaks

around 0000UTC (e.g.,Matsui et al. 2010, their Fig. 2), so

that small changes in rainfall timing could have large

impacts on daily (0000–2400 UTC) rainfall rates. Among

Figs. 8d–f, the simulations are more correlated to G (and

to each other) than to PRISM or MERRA2. The simu-

lations have a somewhat common rainfall pattern in both

spatial and temporal variation, regardless of the selection

of cumulus parameterization.

Figure 9 illustrates the regional variability of the two

types of correlation coefficients (CORS and CORST) for

FIG. 4. Frequency distribution (divided by the total sample number) of daily rainfall rates (mmday21) in JJA2000

over CONUS in PRISM, MERRA2, and the NU-WRF simulations (the abbreviations are listed in Table 1).

Frequencies are calculated for bins with 1mmday21 intervals, except for the smallest-rainfall bin from 1025 to

1mmday21.
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the Bukovsky subregions against PRISM and MERRA2.

Figure S2 shows the same statistics but against the simu-

lation G as the reference dataset. The correlation for the

spatial pattern only in Figs. 9a and 9b exhibits significant

regional variation. There is no individual simulation that

yields the best or worst correlation over most subregions.

The series of CORS against both PRISM and MERRA2

are commonly high over some western subregions, that is,

PacificNW, Southwest, SRockies, and NPlains. The

CORS of the simulations with each other (an example

against G is shown in Fig. S2) are very high over most

western subregions. However, the values of CORS are

very different according to the selection of cumulus

parameterization over regions between the Rocky

Mountains and the East Coast, including the Appala-

chian Mountains. Some simulations yield negative

correlation coefficients there. These results demon-

strate that the spatial pattern of seasonally averaged

rainfall is strongly constrained by the topographical

pattern over mountainous regions. In contrast, over the

plains regions, the spatial pattern is more dependent on

the native thermodynamical processes in themodel and

hence more sensitive to the cumulus parameterization

than topographic effects.

The functions of CORST in Figs. 9c and 9d show quite

different structure from those in Figs. 9a and 9b for

CORS. The values of CORST against PRISM in Fig. 9c

are roughly about 0.3 over all subregions, except for

PacificNW and PacificSW, and less sensitive to the selec-

tion of cumulus parameterization. The regional variability

and sensitivity to cumulus parameterization are reduced

by including temporal variation.High positive correlations

FIG. 5. Horizontal distribution of JJA2000-average daily rainfall rates (mmday21) that are derived from the

GCE cloud microphysics scheme in the NU-WRF simulations (the same layout for different cumulus parame-

terization schemes as Fig. 2).
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in Fig. 9a have been uniformly degraded in Fig. 9c,

whereas negative correlations over some plains subregions

have been eliminated. The CORST against MERRA2 in

Fig. 9d is generally higher than that against PRISM in

Fig. 9c, except for Southwest, Mezquital, and Southeast.

Over these southern-edge subregions, almost all rainfall is

produced by cumulus parameterization schemes as

shown in Fig. 7, so that the resolution difference be-

tween the NU-WRF simulations and MERRA2 may

have a stronger impact on CORST than CORS.

Figure 10 illustrates the regional variability of the full

RMSE against PRISM and MERRA2. The difference

between the definitions of centered and full RMSE can

be found in Taylor (2001). The full RMSEs are gener-

ally much higher in the case of spatial–temporal vari-

ation in Figs. 10c and 10d than those of spatial variation

only in Figs. 10a and 10b. The increases in the full

RMSE from Figs. 10a and 10b to Figs. 10c and 10d are

caused by the increases in the centered RMSE, because

the contributions of the overall bias to the full RMSE

are the same. In Figs. 10a and 10b, the full RMSEs are

mostly attributed to the overall bias error because

centered RMSEs are not very large. For example, GW

yields the smallest full RMSE from NRockies to

NPlains. These smallest full RMSEs correspond to the

least absolute values of the overall bias of GW over

these subregions in Fig. 3b. The link between the full

RMSE and the overall bias is stronger over moun-

tainous subregions because of high CORS among the

simulations there (e.g., Fig. S2), whereas the link is

slightly weaker over the plains subregions. In Figs. 10c

and 10d for spatial–temporal variation, the relative

magnitudes of the full RMSEs are somewhat less sen-

sitive to the overall bias, although weak relationships

FIG. 6. As in Fig. 5, but for JJA2000-average daily rainfall rates derived from cumulus parameterization (the same

layout for different cumulus parameterization schemes as Fig. 2).
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between the bias and the full RMSE can be found over

mountainous subregions.

c. Estimation of the best mixture of individual

simulation results on the basis of least-RMSE

optimal ensemble calculation

The sensitivity to the cumulus parameterization

scheme is further explored by the calculation of optimal

weighted ensembles of multiple individual simulations.

The relative magnitudes of weighting coefficients in op-

timal weighted ensembles represent relative suitability of

each cumulus parameterization scheme. Four types of

least-RMSE weighted ensemble listed in Table 2 were

calculated using the approaches described by Liang et al.

(2007). The daily rainfall rates of the weighted ensembles

are given by the following equations:

R
E
(x)5aR

G
(x)1bR

BO
(x)1 gR

KO
(x)

1 (12a2b2 g)R
SO
(x) and (1)

R
E0
(x, t)5a0R

G
(x, t)1b0R

BO
(x, t)1 g0R

KO
(x, t)

1 (12a0
2b0

2 g0)R
SO
(x, t), (2)

where R is the daily rainfall rate, x is the position vector,

and a, b, and g represent weighting coefficients. Sub-

scripts G, BO, KO, and SO indicate the values of the

corresponding individual simulations inTable 1; hereG is

selected from the three simulations using G3D, because

its rainfall distribution is more similar to BO, KO, and

SO. Variable R with an overbar represents daily rainfall

rates averaged for JJA2000. Equation (1) optimizes the

spatial pattern of simulated horizontal fields averaged for

FIG. 7. Horizontal distribution of the fraction of cumulus parameterization contribution to JJA2000-average

daily rainfall rates in the NU-WRF simulations (the same layout for different cumulus parameterization schemes as

Fig. 2).
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JJA2000. In contrast, Eq. (2) is suited to the prediction of

pointwise rainfall in all days of JJA2000 with both spatial

and temporal variation; the prime symbols in Eq. (2)

represent the weighting coefficients and the ensemble

obtained for the latter. Theweighting coefficients (a,b, g,

a0,b0, and g0) are calculated for the sets byminimizing the

full RMSE of the ensemble against PRISM orMERRA2

through a simple linear regression.

Tables S1–S4 show a series of the weighting co-

efficients obtained for the four types of ensembles (a,

b, g, and 1 2 a 2 b 2 g for WEP_SP and WEM2_SP;

a0, b0, g0, and 1 2 a0
2 b0

2 g 0 for WEP and WEM2 in

Table 2) calculated for the entire CONUS or for each

Bukovsky subregion. Figures 11 and 12 illustrate the

values in Tables S1–S4 on the CONUS map parti-

tioned by the Bukovsky subregions. The relative

magnitudes of the weighting coefficients are roughly

inversely correlated with the magnitude of full RMSE

in Fig. 10.

Figures 11a–d (spatial variation only against PRISM)

show that G performs better in western regions around

the Rocky Mountains and the northeastern region. BO

and KO outperform the others over NPlain and Prairie

Bukovsky subregions, respectively. SO generally shows

higher weighting coefficients over the eastern half of

CONUS. As compared to Figs. 11e–h (spatial–temporal

variation against PRISM), Figs. 11a–d suggest that the

optimal ensemble over a subregion tends to coincide

with a single suitable simulation rather than a mixture of

multiple simulations. In the discussion about the spatial

pattern statistics in section 3b, the spatial pattern of

the JJA2000-average rainfall is similar among the

simulations, especially over mountainous regions (e.g.,

Fig. S2). A mixture of multiple simulations thus does

FIG. 8. Taylor diagrams comparing correlation coefficients, std devs, and centeredRMSEs of daily rainfall rates (mmday21) in JJA2000

over CONUS. The radial and angular coordinates of the diagrams exhibit the std dev and correlation coefficient against the reference data,

respectively. The distances between the star mark and the numeral marks show the centered RMSEs. (top) The statistics are calculated

from the horizontal fields of JJA2000-average daily rainfall (shown in Figs. 1, 2): the reference data are (a) PRISM, (b) MERRA2, and

(c) NU-WRF simulation G (in Table 1). (bottom) The statistics are calculated from nonaveraged pointwise daily rainfall in the 92 days in

JJA2000: the reference data are (d) PRISM, (e) MERRA2, and (f) NU-WRF simulation G.
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not yield an improvement of the spatial pattern over

these regions. As a result, the overall bias shown in

Fig. 3b is the key factor to determine the full RMSE. As

long as the biases of the four simulations have the same

sign (positive or negative), the smallest-bias (absolute

value) simulation is identical to the smallest-RMSE

simulation. The smallest-bias simulation outperforms

the other single simulations and a mixture of multiple

simulations over the region. An example is G over

NRockies and SRockies. The situation is different over

PacificNW, where BO shows a negative bias but G, KO,

and SO have positive biases in Fig. 3b. A mixture of

multiple simulations is effective to reduce the full

RMSE of the optimal ensemble by offsetting the biases

in each case.

Over the plains regions in Figs. 11a–d, the overall

bias has less impact on determining the optimal en-

semble, because the spatial patterns vary among the

simulations. For example, KO exhibits the smallest

absolute value of the bias in Fig. 3b and the least full

RMSE over SPlain in Fig. 10a, but a mixture of all four

individual simulations corresponds to the optimal en-

semble in Figs. 10a–d. The mixture of multiple

simulations has a positive effect on reducing the full

RMSE over the subregion by coupling different spatial

patterns in the different simulations.

In Figs. 11e–h (spatial–temporal variation against

PRISM), the optimal ensembles are composed of

mixtures of multiple simulations over almost all sub-

regions. The optimal ensembles are roughly identical to

arithmetic mean ensembles, that is, weights of 0.25 for

all four simulations. Since the correlation for spatial–

temporal variation is lower than that for the spatial

variation only (e.g., Fig. S2), a mixture of multiple

simulation results is effective in reducing the full

RMSE. Although the overall biases have less impact

on the full RMSE in this case, the trend in relative

magnitudes of the weighting coefficients in Figs. 11a–d

for spatial variation only remains in Figs. 11e–h for

spatial–temporal variation, especially over mountain-

ous regions.

There are common characteristics between the

weighting coefficients of the optimal ensembles against

PRISM in Fig. 11 and those against MERRA2 in

Fig. 12, in terms of overall distribution of the weighting

coefficients and the difference between the cases of the

FIG. 9. Correlation coefficient over each Bukovsky subregion. The reference data are (a),(c) PRISM and

(b),(d) MERRA2. The statistics are calculated (top) from the horizontal fields of JJA2000-average daily rainfall and

(bottom) from nonaveraged pointwise daily rainfall throughout JJA2000.
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spatial variation only and spatial–temporal variation.

BO generally shows slightly higher coefficients against

MERRA2 than those against PRISM. KO also exhibits

overall better performance, except for Prairie in the

spatial variation only case. These results again indicate

that the simulations using BO and KO are more con-

strained by MERRA2.

Figure 13 illustrates scatterplots for a set of two vari-

ables sampled over each Bukovsky subregion: the

domain-mean fraction of cumulus parameterization

contribution to the total rainfall rates and the weighting

coefficients of the smallest-RMSE weighted ensembles

for spatial–temporal variation against PRISM and

MERRA2 (Figs. 11e–h and 12e–h). Positive correla-

tion in the scatterplots indicates that the cumulus

parameterization performs better over subregions where

subgrid convection processes greatly contribute to the

precipitation formation, and vice versa.

Figure 13 shows that KO exhibits negative correla-

tions in both panels. In contrast, SO shows positive

correlations, and G and BO have almost no correlation

against MERRA2 in Fig. 13b, whereas they yield neg-

ative and positive correlations against PRISM in

Fig. 13a, respectively. In general, NKF and G3D per-

form better over regions where the role of subgrid

precipitation processes is limited, and the reverse is

true for BMJ and NSAS. These characteristics are

consistent with the fact that NKF and G3D have been

employed and tested more frequently in midlatitude

regional climate simulations (e.g., Liang et al. 2007;

FIG. 10. As in Fig. 9, but for full RMSEs.

TABLE 2.Members of optimal weighted ensembles calculated using the simulation results with different cumulus parameterization, that

is, G, BO, KO, and SO in Table 1. WE, P, M2, and SP in the abbreviations stand for a weighted ensemble, PRISM,MERRA2, and spatial

variation only, respectively. Average rainfall rates are JJA2000-average daily rainfall rates averaged over the entire CONUS.

Abbreviations Remarks Avg rainfall rates (mmday21)

WEP_SP Spatial variation only against PRISM 1.87

WEP Spatial–temporal variation against PRISM 1.87

WEM2_SP Spatial variation only against MERRA2 1.91

WEM2 Spatial–temporal variation against MERRA2 1.91
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Mearns et al. 2009), in which the contribution of sub-

grid parameterization seems to be small compared with

the tropics in general circulation model (GCM) simu-

lations. However, BMJ andNSAS aremore suitable for

the present simulations with a 24-km horizontal reso-

lution for daily rainfall over CONUS for JJA2000,

because the subgrid convection processes dominate the

rainfall over most regions as shown in Fig. 7.

The large scatter of the sample points in Fig. 13 sug-

gests large variability in the relationship between the

two variables. Many other factors, such as the suitability

of the cumulus parameterization with the orographic

FIG. 11. Distribution of the weighting coefficients based on least-RMSE weighted ensemble calculation for the

four cumulus parameterizations against PRISM, partitioned by the Bukovsky subregions. The statistics are cal-

culated (a)–(d) from the horizontal fields of JJA2000-average daily rainfall and (e)–(h) from nonaveraged point-

wise daily rainfall throughout JJA2000.
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effects over the subregions, likely affect the de-

termination of the weighting coefficients for the optimal

ensembles.

4. Summary and conclusions

A series of regional seasonal simulations with a

24-km horizontal resolution over CONUS were

conducted using NU-WRF with six different cumulus

parameterization schemes. This study explored the

sensitivity of simulated daily rainfall rates in JJA2000

to the cumulus parameterization schemes selected.

The simulations were evaluated by comparing them

with the daily rainfall products in PRISM and

MERRA2. The analysis results are summarized as

follows:

FIG. 12. As in Fig. 11, but for the four cumulus parameterizations against MERRA2.
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d The relative magnitudes of the JJA2000-average

rainfall rates among the simulations are roughly

common to the average across CONUS and to the

averages over each Bukovsky subregion. The simu-

lated rainfall distribution is generally similar to the

rainfall distribution in MERRA2, because the simu-

lated atmospheric fields are constrained by the vari-

able fields in MERRA2 through lateral boundary

conditions and strong spectral nudging. The overall

bias over a subregion is thus influenced by the bias in

boundary conditions regardless of cumulus parame-

terization. G3D and NKF produce more rainfall than

BMJ and NSAS, except for regions around the Rocky

Mountains. The different rainfall rates and responses

according to the cumulus parameterization are at-

tributed to the difference in the magnitudes of the

cloud-base mass flux assumed in the parameteriza-

tions. The relatively strong rainfall of NKF is mostly

attributable to the design of its closure algorithm param-

eterizing cloud-base mass fluxes (Qiao and Liang 2016).
d The effects of the selectable G3D shallow components

on the rainfall are more significant than the effects of

switching deep cumulus parameterization schemes.

The use of UWSC for G3D uniformly reduces the

simulated rainfall, whereas applying the native shal-

low convection component in G3D increases it. The

results of G3D simulation without either UWSC or

the native shallow component are the most similar to

those of the others, that is, BMJ, NKF, andNSASwith

their native shallow convection components.
d Because the spatial pattern of rainfall is largely con-

strained by the topographical pattern over mountain-

ous regions, the spatial pattern of the seasonally

averaged rainfall is similar across all simulations and

with PRISM and MERRA2. The overall bias against

the reference datasets is the key factor in determining

the full RMSE over mountainous regions. In contrast,

over the Great Plains, the spatial pattern is more

sensitive to the selection of cumulus parameteriza-

tions. However, even over the mountainous regions,

the correlation for spatial–temporal variation in the

case of sampling the nonaveraged pointwise rainfall in

all days is relatively very low. The lower correlation is

likely due to the poor simulation of temporal variation

of the daily rainfall over CONUS regardless of the

choice of the parameterizations.
d The analysis of optimally weighted ensembles high-

lights regional variability in the performances of the

cumulus parameterizations. In constructing optimal

ensembles for the spatial pattern of the seasonally

averaged rainfall, the adoption of a single simulation

with the least bias is generally preferable to a mixture

of multiple simulations, as long as all simulations

have the same sign (positive or negative) of biases. A

mixture of multiple simulation results, even an arith-

metic mean ensemble, is more effective in construct-

ing an optimal simulation result when the focus is

on nonaveraged rainfall in all days throughout

the season.
d Overall, G3D andNKF performed better over regions

where the roles of subgrid precipitation processes are

minor, and the reverse is true for BMJ and NSAS.

These differences are likely attributable to the differ-

ent parameterization designs optimized for certain

spatial scales and climate zones.

The present study has investigated the sensitivity to

different cumulus parameterization in regional simula-

tions with a 24-km resolution for the summertime of year

2000. The scale awareness of the sensitivity should be

further examined in a future study, because the regional

FIG. 13. Scatter diagrams between the fractions of cumulus pa-

rameterization contribution to the total rainfall rates and the

weighting coefficients of the parameterization schemes derived from

the calculation of least-RMSE optimal weighted ensembles for

spatial–temporal variation against (a) PRISMand (b)MERRA2 for

each Bukovsky subregion.
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variability of the schemes’ performance could be differ-

ent if it is dependent on their intended model scales and

roles of subgrid parameterization. In addition, assessment

of the interannual variation and long-term climatology of

the sensitivity are relevant to improved assessment of

climate projections.
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